Галактика – мир вечного безмолвия

Галактика - гравитационно-связанная система из звёзд, межзвёздного газа, пыли и тёмной материи. Исследование Млечного Пути великим итальянским ученым Г. Галилеем. Открытие туманных объектов Д. Гершелем. Классификация галактик - последовательность Хаббла.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 08.01.2014
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Школа-комплекс №29 с гимназическим образованием

Секция естественно-математических наук

Направление исследования: астрономия

Тип проекта: информационный

Тема: Галактика - мир вечного безмолвия

Автор:

Ишембаева Айсулуу

Руководитель:

Шумейко Александра Владимировна

Бишкек 2013г.

Оглавление

  • Введение
  • 1. История изучений галактик
  • 2. Понятие и классификация галактик
  • 3. Состав галактик
  • 3.1 Ядра галактик
  • 4. Общие свойства галактик
  • 5. Звездообразование
  • 6. Перерождение галактик
  • Заключение
  • Список литературы
  • Приложение

Введение

Галактики - это, прежде всего звездные системы; именно со звездами связано их оптическое излучение. Пространственно звезды образуют два основных структурных компонента галактики, как бы вложенных один в другой: быстро вращающийся звездный диск, толщина которого обычно составляет 1-2 тыс. св. лет, и медленно вращающуюся сферическую (или сфероидальную) составляющую, яркость которой концентрируется не к плоскости диска, а к центру галактики. Внутренняя, наиболее яркая часть сфероидального компонента называется балдж (от англ. bulge - вздутие), а внешняя часть низкой яркости - звездное гало. В центральной части массивных галактик часто выделяется небольшой и быстро вращающийся околоядерный диск размером порядка тысячи св.лет, который также состоит из звезд и газа. Такая структурность галактик отражает сложный многоступенчатый характер их формирования. Есть галактики, в которых наблюдается только один из двух основных компонентов: диск или сфероид.

Цель проекта: выявить значение галактик во вселенной

Задачи проекта: галактика звезда млечный путь

1. рассмотреть историю изучения галактик;

2. познакомиться с понятием и классификацией галактик;

3. выяснить состав галактик;

4. изучить свойства галактик;

5. проанализировать звездообразование галактик;

6. исследовать перерождение галактик.

Метод исследования: теоретический, т.е. подбор, анализ и систематизация информации по данному вопросу.

Краткий обзор литературы:

Для написания глав 1 и 2 была использована книга Марова М. Я. «Планеты солнечной системы». - М., Наука, 1986. Для написания глав 3 и 5 я использовал книгу Новикова И. Д. «Эволюция Вселенной». - М., Наука. При написании главы 6 я использовал книгу Стрелков В. Г. Бытие или сознание? - Москва, 1997. Для каждой главы для полной точности и объёмности я воспользовался дополнительной литературой и сайтами указанными ниже в списке литературы.

1. История изучений галактик

В 1610 году Галилео Галилей при исследовании Млечного Пути с помощью телескопа обнаружил, что Млечный Путь состоит из огромного числа слабых звёзд. В трактате 1755 года, основанном на работах Томаса Райта (англ. Thomas Wright), Иммануил Кант предположил, что Галактика может быть вращающимся телом, которое состоит из огромного количества звёзд, удерживаемых гравитационными силами, сходными с теми, что действуют в Солнечной системе, но в бомльших масштабах. С точки наблюдения, расположенной внутри Галактики (в частности, в нашей Солнечной системе), получившийся диск будет виден на ночном небе как светлая полоса. Кант высказал и предположение, что некоторые из туманностей, видимых на ночном небе, могут быть отдельными галактиками. К концу XVIII столетия Шарль Мессье составил каталог, содержащий 109 ярких туманностей. С момента публикации каталога до 1924 года продолжались споры о природе этих туманностей, объект M31, галактика Андромеда (рис. 1).

Уильям Гершель высказал предположение, что туманности могут быть далёкими звёздными системами, аналогичными системе Млечного Пути. В 1785 году он попытался определить форму и размеры Млечного Пути и положения в нём Солнца, используя метод «черпаков» -- подсчёта звёзд по разным направлениям. В 1795 году, наблюдая планетарную туманность NGC 1514, он отчётливо увидел в её центре одиночную звезду, окружённую туманным веществом. Существование подлинных туманностей, таким образом, не подлежало сомнению, и не было необходимости думать, что все туманные пятна -- далёкие звёздные системы.

К середине XIX века Джон Гершель, сын Уильяма Гершеля, открыл ещё 5000 туманных объектов. Построенное на их основе распределение стало главным аргументом против предположения, что они являются далёкими «островными вселенными», подобными нашей системе Млечного Пути. Было обнаружено, что существует «зона избегания» -- область, в которой нет или почти нет подобных туманностей. Эта зона находилась близ плоскости Млечного Пути и была проинтерпретирована как связь туманностей с системой Млечного Пути. Поглощение света, наиболее сильное в плоскости Галактики, было ещё неизвестно.

Вращение Галактики вокруг ядра предсказано Марианом Ковальским, который в 1860 году в «Учёных записках Казанского университета» опубликовал статью с его математическим обоснованием, издание было переведено и на французский язык. В 1865 году Уильям Хаггинс впервые получил спектр туманностей. Характер эмиссионных линии туманности Ориона явно говорил о её газовом составе, но спектр туманности Андромеды (M31 по каталогу Мессье) был непрерывный, как и у звёзд. Хаггинс заключил, что такой вид спектра M31 вызван высокой плотностью и непрозрачностью составляющего её газа.

В начале XX века Весто Слайфер (англ. Vesto Melvin Slipher) объяснил спектр туманности Андромеды отражением света центральной звезды (за которую он принял ядро галактики). Такой вывод был сделан на основе фотографий, полученных Джеймсом Килером на 36-дюймовом рефлекторе. Было обнаружено 120 000 слабых туманностей. Спектр там, где его можно получить, был отражательным. Как известно сейчас, это были спектры отражательных (в основном пылевых) туманностей вокруг звёзд Плеяд.

В 1920 году состоялся «Великий спор» между Харлоу Шепли и Гебером Кертисом. Суть спора заключалась в измерении расстояния по цефеидам до Магеллановых Облаков и оценке размера Млечного Пути. Используя усовершенствованный вариант метода черпаков, Кертис сделал вывод о маленькой (диаметром в 15 килопарсек) сплюснутой галактике с Солнцем вблизи центра. И также небольшом расстоянии до Магеллановых Облаков. Шепли, основываясь на подсчёте шаровых скоплений, дал совсем другую картину -- плоский диск диаметром около 70 килопарсек с Солнцем, находящимся далеко от центра. Расстояние до Магеллановых Облаков было того же порядка. Итогом спора стал вывод о необходимости ещё одного независимого измерения.

Современная картина нашей Галактики появилась в 1930 году, когда Роберт Джулиус Трюмплер измерил эффект поглощения света, изучая распределение рассеянных звёздных скоплений, концентрирующихся в плоскости Галактики. Новые наблюдения, произведённые в начале 1990-х годов на космическом телескопе «Хаббл», показали, что тёмная материя в нашей Галактике не может состоять только из очень слабых и малых звёзд. На нём также были получены изображения далёкого космоса, получившие названия Hubble Deep Field и Hubble Ultra Deep Field, показавшие очевидность того, что в нашей Вселенной существуют сотни миллиардов галактик.

2. Понятие и классификация галактик

Галактика (др.-греч. ГблбоЯбт -- Млечный Путь) -- гравитационно-связанная система из звёзд, межзвёздного газа, пыли и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс. Галактики -- чрезвычайно далёкие объекты, расстояние до ближайших из них принято измерять в мегапарсеках, а до далёких -- в единицах красного смещения z. Именно из-за удалённости различить на небе невооружённым глазом можно всего лишь три из них: Андромеду (видна в северном полушарии), Большое и Малое Магеллановы облака (видны в южном). Разрешить изображение до отдельных звёзд не удавалось вплоть до начала XX века. К началу 90-х годов прошлого века насчитывалось не более 30 галактик, в которых удалось увидеть отдельные звёзды, и все они входили в местную группу. После запуска космического телескопа «Хаббл» и ввода в строй 10-метровых наземных телескопов число галактик, в которых различимы отдельные звёзды, резко возросло. В 1936 году Хаббл построил классификацию галактик, которая используется по сей день и называется последовательностью Хаббла. Галактики делятся на:

- Эллиптические галактики имеют гладкую эллиптическую форму (от сильно сплющенных, до почти круглых) без отличительных деталей с равномерным уменьшением яркости от центра к периферии (рис. 2) . Они обозначаются буквой E и цифрой, которая является индексом сплющенности галактики - № 2, с. 45. Так, круглая галактика будет иметь обозначение E0, а галактика, у которой одна из больших полуосей вдвое больше другой, E5. Форма наиболее сплющенных (E7) заметно отличается от эллипса. Эллиптические галактики состоят из старых звёзд и практически полностью лишены газа.

- Спиральные галактики состоят из уплощенного диска из звезд и газа, в центре которого находится сферическое уплотнение, называемое балджем, а также обширного сферического гало (рис.3). В плоскости диска формируются яркие спиральные рукава, состоящие преимущественно из молодых звезд, газа и пыли. Хаббл разделил все известные спиральные галактики на нормальные спирали (обозначаются символом S) и спирали с баром (SB), которые в отечественной литературе часто называют галактиками с перемычкой или пересеченными.

- Неправильные или иррегулярные галактики -- галактика, лишенная как вращательной симметрии, так и значительного ядра (рис. 4). Характерным представителем неправильных галактик являются Магеллановы облака. Бытовал даже термин «магеллановы туманности». Неправильные галактики отличаются разнообразием форм, обычно небольшими размерами и обилием газа, пыли и молодых звёзд. Обозначаются -- I. В силу того, что форма неправильных галактик твёрдо не определена, как неправильные галактики часто классифицировали пекулярные галактики.

- В 1936 году был добавлен класс Линзовидных галактики, которые имеют то же строение, что и спиральные, но в них отсутствует спиральная структура. Обозначаются S0. Если линзовидную галактику видно сбоку, то она отличается от эллиптической более сильным сжатием и наличием тёмного пылевого слоя.

3. Состав галактик

Распределение газа в галактике может сильно отличаться от распределения звезд. Иногда газ прослеживается до значительно больших расстояний от центра галактики, чем звезды, наглядно демонстрируя, что галактика может продолжаться дальше своих оптических границ. Относительная доля массы, приходящаяся на межзвездный газ, в среднем растет от Е- к Irr-галактикам. Для таких галактик, как наша, она составляет несколько процентов, а в Е-галактиках газа содержится менее 0,1% (хотя есть и исключения из этого правила). Межзвездный газ состоит, в основном, из водорода и гелия с небольшой примесью более тяжелых элементов. Эти тяжелые элементы образуются в звездах и вместе с газом, теряемым звездами, оказываются в межзвездном пространстве. Поэтому содержание тяжелых элементов важно знать для изучения эволюции галактики (рис. 5).

В спиральных галактиках газ концентрируется к плоскости звездного диска, а внутри диска его плотность больше всего в спиральных ветвях, а также в центральной области галактики. Но газ наблюдается и в эллиптических галактиках, где нет ни звездных дисков, ни спиральных ветвей. В этих галактиках газ представляет собой горячую разреженную среду, заполняющую весь объем звездной системы. Из-за высокой температуры (сотни тысяч градусов Кельвина) его можно наблюдать в рентгеновских лучах. Газ в S- и Irr-галактиках находится в трех основных состояниях, или фазах. Во-первых, это облака холодного (менее 100 К) молекулярного газа. Такой газ не излучает света, но его присутствие позволяет обнаружить радионаблюдения, поскольку различные молекулы в разреженной среде излучают на определенных, хорошо известных длинах волн. Именно в облаках холодного газа зарождаются звезды. Во-вторых, это атомарный, или нейтральный, газ, образующий облака и более разреженную межоблачную среду. Такой газ также не излучает света. Атомарный водород был открыт по радиоизлучению на частоте 1420 МГц . Как правило, в этом состоянии находится основная масса межзвездного газа. В-третьих, в лучах видимого света обычно наблюдаются многочисленные яркие области, образованные газом, ионизованным ультрафиолетовым излучением звезд и нагретым до температуры около 10 000 К. Это области ионизованного газа. Как правило, источником нагрева и ионизации являются молодые массивные звезды, поэтому большое количество ионизованного газа свидетельствует об интенсивном звездообразовании в галактике. В газовой среде межзвездного пространства содержится и мелкодисперсный твердый компонент - межзвездная пыль. Она проявляет себя двояко. Во-первых, пыль поглощает видимый и ультрафиолетовый свет, вызывая общее ослабление яркости и покраснение галактики. Наиболее непрозрачные (из-за пыли) участки галактики видны как темные области на светлом ярком фоне. Особенно много непрозрачных областей вблизи плоскости звездного диска - именно там концентрируется холодная межзвездная среда. Поэтому, если смотреть на диск галактики «с ребра - № 1, с. 345», то обычно бывает хорошо заметна пылевая полоса, пересекающая галактику по диаметру. Во-вторых, пыль излучает сама, отдавая накопленную энергию света в форме далекого инфракрасного излучения (в диапазоне длин волн 50-1000 мкм). Поэтому полная энергия излучения пыли бывает, сопоставима с энергией видимого излучения, приходящего к нам от всех звезд галактики.

Суммарная масса пыли сравнительно невелика: она в несколько сотен раз меньше, чем полная масса межзвездного газа. Особенно мало пыли в Е-галактиках, где холодный газ также практически отсутствует; а также в карликовых галактиках, где газа может быть много, но среда содержит мало тяжелых элементов, необходимых для формирования пылинок. Пыль в галактиках является продуктом эволюции звезд.

3.1 Ядра галактик

Центральная область галактики, называемая ее ядром, представляет собой наиболее плотную часть звездной системы. На изображении галактики ядро выделяется своей высокой яркостью. Ядра можно заметить у галактик всех типов, кроме неправильных и большинства карликовых галактик. Помимо звезд, в пределах примерно тысячи световых лет от центра галактики, часто концентрируется межзвездный газ и многочисленные области молодых звезд, образующие вращающийся околоядерный диск. Наиболее удивительное свойство ядер, не объясняемое присутствием только обычных звезд и газа в ядре - это их активность, которая ярко выражена у нескольких процентов галактик высокой светимости. В активных ядрах наблюдаются нестационарные процессы, связанные с выделением большого количества энергии. В некоторых случаях мощность выделения энергии в ядре превышает 1037 Вт, что сопоставимо или превышает суммарную мощность излучения всех звезд галактики вместе взятых, хотя обычно она все же на 1-2 порядка ниже.

Форма выделения энергии в ядрах, как и наблюдаемые признаки активности, могут быть различными. Это быстрое движение газа со скоростями в тысячи км/с, мощное нетепловое излучение незвездной природы в различных областях спектра - от рентгеновской до радио, образование направленных плазменных струй (джетов), выбросы высокоэнергичных элементарных частиц, ответственные за мощное радиоизлучение галактики. Общей особенностью активных ядер галактик является переменность излучения на самых различных интервалах времени: от нескольких суток или даже часов до нескольких лет (рис. 5).

Галактики, обладающие активными ядрами, принято разделять на несколько типов. Различают галактики Сейферта, радиогалактики, квазары и лацертиды. Проявление активности ядер в каждом из этих типов галактик имеет свои наблюдаемые особенности. Однако во всех случаях источник мощной энергии ядра имеет крошечный размер по сравнению с размером галактики (существенно меньше светового года). «Сердцевиной» такого источника предположительно является сверхмассивная черная дыра, на которую падает, разгоняясь при падении до околосветовых скоростей, первоначально разреженная среда, находившаяся в ее окрестности (такой средой может быть межзвездный газ околоядерного диска или газ, входивший в состав звезд, разорванных гравитационном полем черной дыры). Это предположение подтверждается открытием в ядрах крупных галактик всех типов массивных объектов (по-видимому, черных дыр), не обладающих заметным излучением, но создающих очень сильное гравитационное поле. Их массы составляют от нескольких миллионов до нескольких миллиардов масс Солнца. Теоретически, кинетическая энергия падения вещества, сообщаемая ему гравитационным полем черной дыры, может в десятки раз превосходить энергию, которую способны дать любые термоядерные реакции в этом веществе. С этой точки зрения, активность ядра связана с различными механизмами преобразования энергии падающего вещества в другие формы. При этом ядро галактики может находиться в активном или спокойном состоянии в зависимости от наличия потоков вещества на черную дыру.

Ядро нашей Галактики, как и соседней с нами Туманности Андромеды, находится в сравнительно спокойном состоянии, несмотря на то, что в самом центре этих галактик обнаружено существование объектов, по-видимому, являющихся массивными черными дырами (рис. 6). Ближайшая к нам спиральная галактика с активным ядром - галактика Сейферта NGC 1068, находящаяся на расстоянии около 50 млн. св. лет в созвездии Кита. Ближайшая пекулярная эллиптическая галактика с активным ядром - радиогалактика NGC 5128 в созвездии Центавра Расстояние до нее в несколько раз меньше.

4. Общие свойства галактик

Галактики - сложные по составу и структуре системы. Самые маленькие из них по числу звезд сопоставимы с большими звездными скоплениями в нашей Галактике, однако по размерам они значительно их превосходят: диаметр даже самых маленьких галактик составляет несколько тысяч св. лет. Размеры гигантских галактик в сотни раз больше. Галактики не имеют резких границ, их яркость постепенно спадает с удалением от центра наружу, поэтому понятие размера не является строго определенным. Видимый размер галактик зависит от возможности телескопа выделить их внешние области, имеющие низкую яркость, на фоне свечения ночного неба, которое никогда не бывает абсолютно черным. В его слабом свете «тонут» периферийные части галактик. Современная техника позволяет регистрировать области галактик с яркостью менее 1% от яркости ночного неба. Для объективной оценки размеров галактик за их границу условно принимается определенный уровень поверхностной яркости, или, как говорят, определенная изофота - № 4, с. 67. (так называют линию, вдоль которой поверхностная яркость имеет постоянное значение). Часто в качестве такого порогового значения яркости принимается 25 звездная величина с квадратной угловой секунды в фотографической области спектра. Соответствующая ей яркость в десятки раз ниже яркости ночного, ничем не «подсвеченного» неба. Яркость центральных областей галактик может быть в несколько сотен раз выше порогового значения.

Светимость галактик (т.е. полная мощность излучения) меняется в еще больших пределах, чем их размер - от нескольких миллионов светимостей Солнца (Lc) у самых маленьких галактик до нескольких сотен миллиардов Lc для галактик-гигантов. Эта величина примерно соответствует общему количеству звезд в галактике или ее полной массе. Светимость галактик такого типа как наша Галактика составляет несколько десятков миллиардов светимостей Солнца. Однако у одной и той же галактики она может сильно различаться в зависимости от диапазона спектра, в котором ведется наблюдение. Поэтому очень важную роль в изучении галактик играют наблюдения в различных интервалах длин волн. Вид галактик неузнаваемо меняется при переходе от одного спектрального диапазона к другому - от радиоволн к гамма-лучам (рис. 5) . Это связано с тем, что основной вклад в излучение галактик на различных длинах волн вносят объекты различной природы. Массы галактик, как и их светимости, также могут различаться на несколько порядков - от значений, характерных для крупных шаровых звездных скоплений (миллионы масс Солнца) до тысячи миллиардов масс Солнца у некоторых эллиптических галактиках.

Помимо звезд с разными массами, химическим составом и возрастом, каждая галактика содержит разреженную и слегка намагниченную межзвездную среду (газ и пыль), пронизываемую высокоэнергичными частицами (космическими лучами). Относительная масса, приходящаяся на долю межзвездной среды, как и мощность радиоизлучения, также относятся к важнейшим наблюдаемым характеристикам галактик. Полная масса межзвездного вещества сильно меняется от одной галактики к другой и обычно составляет от нескольких десятых долей процента до 50% суммарной массы звезд (в редких случаях газ может даже преобладать по массе над звездами). Содержание газа в галактике - это очень важная характеристика, от которой во многом зависит активность происходящих в галактиках процессов и, прежде всего, - процесс образования звезд.

5. Звездообразование

Звездообразование -- крупномасштабный процесс в галактике, при котором из межзвёздного газа массово начинают формироваться звёзды. Спиральные ветви, общая структура галактики, звёздное население, светимость и химический состав межзвёздной среды -- результаты данного процесса. Размер области, охваченной звездообразованием, как правило, не превышает 100 пк. Однако встречаются комплексы со вспышкой звездообразования, называемые сверхассоциациями, размерами сопоставимые с неправильной галактикой . В нашей и нескольких ближайших галактиках возможно непосредственное наблюдение процесса. В таком случае признаками происходящего звездообразования являются:

- наличие звёзд спектральных классов O-B-A и связанных с ними объектов (области HII, вспышки новых и сверхновых звёзд);

- инфракрасное излучение, как от нагретой пыли, так и от самих молодых звёзд;

- радиоизлучение газопылевых дисков вокруг формирующихся и новорождённых звёзд;

- доплеровское расщепление молекулярных линий во вращающемся диске вокруг звёзд;

- доплеровское расщепление молекулярных линий тонких быстрых струй (джетов), вырывающихся из этих дисков (с их полюсов) со скоростью примерно 100 км/с;

- наличие ассоциаций, скоплений и звёздных комплексов с массивными звёздами (массивные звёзды почти всегда рождаются большими группами);

- наличие глобул.

С увеличением расстояния уменьшается и видимый угловой размер объекта, и, начиная с некоторого момента, разглядеть отдельные объекты внутри галактики не представляется возможным. Тогда критериями протекающего в далёких галактиках звездообразования служат:

- высокая светимость в эмиссионных линиях, в частности, в Hб;

- повышенная мощность в ультрафиолетовой и голубой части спектра, за которую непосредственно отвечает излучение массивных звёзд;

- повышенное излучение на длинах волн вблизи 8 мкм (ИК диапазон);

- повышенная мощность теплового и синхротронного излучения в радиодиапазоне;

- повышенная мощность рентгеновского излучения, связанная с горячим газом.

В общем виде процесс звездообразования можно разделить на несколько этапов: формирование крупных газовых комплексов (с массой 107 М?), появление в них гравитационно связанных молекулярных облаков, гравитационное сжатие наиболее плотных их частей до возникновения звёзд, нагрев газа излучением молодых звёзд и вспышки новых и сверхновых, уход газа. Чаще всего области звездообразования можно найти:

- в ядрах крупных галактик,

- на концах спиральных рукавов,

- на периферии неправильных галактик,

- в наиболее яркой части карликовой галактики.

Звездообразование является саморегулирующимся процессом: после формирования массивных звёзд и их короткой жизни происходит ряд мощных вспышек, уплотняющих и нагревающих газ. С одной стороны, уплотнение приводит к ускорению сжатия сравнительно густых облачков внутри комплекса, но с другой стороны нагретый газ начинает покидать область звездообразования, и чем больше его нагревают, тем быстрее он уходит.

6. Перерождение галактик

«Квазары - космические объекты чрезвычайно малых угловых размеров, имеющие, значит, красные смещения линий в спектрах, что указывает на их большую удаленность от Солнечной системы, достигающую нескольких тысяч Мпк. Квазары излучают в десятки раз больше энергии, чем самые мощные галактики. Источник их энергии точно не известен - № 3, с. 12».

В свою очередь, всякое насильственное объединение, как известно, носит не естественный, а искусственный характер и потому обладает различной степенью жизнестойкости. Устойчивость легких элементов надежно гарантирована тем, что их внутриатомное строение основано на энергетической выгоде возникающих при их образовании связей между входящими в их состав легчайшими элементами. Для разрушения таких связей требуются значительные внешние усилия. Искусственно созданный четвертый, наименее плотный, слой атомной эфирной оболочки, обеспечивающей удержание легких элементов в составе тяжелых, не только гораздо более уязвим от внешних воздействий, но у целого ряда тяжелых элементов подвержен неизбежному разрушению и под влиянием собственных внутриатомных движений. В результате этого в недрах ядра галактики начинает скапливаться все большее и большее количество принципиального нового вида вещества, располагающего энергией естественного радиоактивного распада.

С учетом колоссальной массивности ядра эллиптической галактики, исчисляемой миллиардами звездных масс, выделяющаяся при радиоактивном распаде кинетическая энергия движения продуктов распада (дополнительно приобретенная веществом за счет переработки потенциальной энергии того эфира, который вошел в состав четвертого слоя атомных оболочек) оказывается надолго заточенной в его сверхуплотненных недрах. Но всему есть предел. В конце концов, этой избыточной внутренней энергии ядра становится настолько много, что она преодолевает давление внешних слоев и вырывается наружу. Поскольку весьма массивное и весьма компактное ядро по обыкновению обладает стремительным вращением, а сверхплотное и сверхтемпературное вещество ядра находится в плазменном состоянии, вся эта перенасыщенная различными видами энергии конструкция обладает, в том числе и мощнейшим магнитным полем. Под воздействием этого поля выбрасываемая радиоактивной энергией из недр ядра плазма, в составе которой в изобилии содержатся ионы всевозможных химических элементов и свободные электроны, приобретает высокоскоростное движение в двух противоположных направлениях. Так начинается судьбоносное для дальнейшего развития Вселенной перерождение той или иной эллиптической галактики в спиральную. То, что к настоящему времени на долю эллиптических галактик приходится всего лишь 26% всех наблюдаемых во Вселенной галактических миров означает, что практически на три четверти этот процесс уже завершился.

Естественно, что извержение из ряда огромных масс вещества носит взрывной характер и сопровождается излучением огромного числа фотонов. Ослепительно вспыхнувшее мириадами огней компактное ядро галактики - это и есть квазар. Затмевая своей исключительной яркостью мерцающее свечение постаревших водородно-гелиевых звезд, он производит впечатление самостоятельного, не имеющего отношения к галактике объекта. Современные оценки расстояний до квазаров, производимые из того расчета, что фактически наблюдаемое красное смещение линий спектра исходящих от квазара фотонных излучений вызывается эффектом Доплера, дают потрясающие человеческое воображение результаты: квазары оказываются самыми удаленными от нас объектами и продолжают удаляться с огромными, порою околосветовыми скоростями. Однако, если мы учтем, что квазары (то есть взорвавшиеся ядра галактик) являются чрезвычайно компактными объектами с радиусами в десятые, а возможно и сотые доли парсека и с массами, мало чем отличающимися от массы галактик, и подставим эти величины в формулу V2 = (2MG/R)1/2 - № 6, с. 2, то увидим, что для обладания наблюдаемыми красными смещениями квазарам совсем не нужно бежать от нас со скоростью света. Их сверхмощное гравитационное поле и без того обеспечивает такое торможение излучаемых фотонов, что линии спектров этих фотонных излучений претерпевают весьма ощутимые сдвиги. И при этом квазарам совсем не нужно быть на дальних окраинах Вселенной. Они размещены точно так же, как и все остальные галактики, то есть разбросаны там и сям по всему вселенскому пространству.

Выброшенные из недр галактического ядра облака газопылевой смеси быстро остывают и становятся оптически невидимыми ветвями будущей спиральной галактики. Наиболее легкие из выброшенных частиц свободные электроны, разогнанные магнитным полем ядра до релятивистских скоростей, становятся естественным продолжением этих газопылевых ветвей, простирающимся далеко за пределы звездного мира галактики. Мощное магнитное поле не только направляет поступательное движение электронов, но и ориентирует их так, чтобы оси их вихревого вращения находились строго параллельно друг другу. Энергетическое взаимодействие упорядоченных таким образом потоков электронов между собой приводит к образованию сильно поляризованного синхротронного радиоизлучения. Протянувшиеся на миллионы световых лет электронные ветви превращаются в своеобразные радиоантенны. Для внешнего наблюдателя все это и представляет собой типичную радиогалактику.

По мере затухания активных энергетических процессов в ядре его блеск ослабевает, оно перестает быть квазаром, и старые водородно-гелиевые звезды эллиптической галактики вновь становятся оптически видимыми. Одновременно с этим, под воздействием гравитационной энергии эфира, выброшенные из ядра, облака газа и пыли начинают уплотняться и, достигнув звездной стадии, становятся оптически видимыми объектами. Таким образом, в бывшей эллиптической галактике протекает сразу несколько параллельных процессов: затухание энергетической активности ядра; рождение в двух противоположно выброшенных ветвях тяжелоэлементных звезд нового поколения; последовательное ослабевание мощности и рассинхронизация радиоизлучения, сопровождающиеся возникновением в радио ветвях немых участков. В связи с этим перерождающаяся эллиптическая галактика сначала принимает вид галактики Сейферт 2, характеризующейся еще достаточно сильным радиоизлучением, но пока что слабой светимостью спиральных ветвей, а затем преобразуется в галактику типа Сейферт 1, в которой синхротронное излучение становится еле заметным, а оптическая светимость ветвей, наоборот, все более ощутимой.

Ну и, наконец, когда синхротронное излучение совсем пропадает, а количество молодых звезд в отходящих от ядра ветвях становится достаточно большим, перерождение эллиптической галактики в спиральную можно считать практически завершенным. Дальнейшая ее эволюция происходит в рамках спиральной стадии существования и состоит в последовательном росте числа тяжело элементных звезд и постепенном закручивании отходящих от ядра ветвей в живописную спираль. Кстати, по закрученности ветвей можно судить с той или иной точностью о времени существования галактики в спиральной стадии.

Заключение

В процессе работы над проектом я выяснила:

1. К концу XVIII столетия Шарль Мессье составил каталог, содержащий 109 ярких туманностей.

2. Современная картина нашей Галактики появилась в 1930 году, когда Роберт Джулиус Трюмплер измерил эффект поглощения света, изучая распределение рассеянных звёздных скоплений, концентрирующихся в плоскости Галактики.

3. Галактика-- гравитационно-связанная система из звёзд, межзвёздного газа, пыли и тёмной материи.

4. Галактики классифицируются на: эллиптические, спиральные, иррегулярные, линзовидные галактики.

5. В спиральных галактиках газ концентрируется к плоскости звездного диска, а внутри диска его плотность больше всего в спиральных ветвях, а также в центральной области галактики.

6. Газ в S- и Irr-галактиках находится в трех основных состояниях, или фазах:

- Во-первых, это облака холодного (менее 100 К) молекулярного газа.

- Во-вторых, это атомарный, или нейтральный, газ, образующий облака и более разреженную межоблачную среду.

- В-третьих, в лучах видимого света обычно наблюдаются многочисленные яркие области, образованные газом, ионизованным ультрафиолетовым излучением звезд и нагретым до температуры около 10 000 К.

7. Форма выделения энергии в ядрах- это быстрое движение газа со скоростями в тысячи км/с, мощное нетепловое излучение незвездной природы в различных областях спектра - от рентгеновской до радио, образование направленных плазменных струй (джетов), выбросы высокоэнергичных элементарных частиц, ответственные за мощное радиоизлучение галактики.

8. Звездообразование -- крупномасштабный процесс в галактике, при котором из межзвёздного газа массово начинают формироваться звёзды.

9. Ослепительно вспыхнувшее мириадами огней компактное ядро галактики - это и есть квазар.

10. Перерождение галактик происходит в несколько этапов:

а) В недрах ядра галактики начинает скапливаться все большее и большее количество принципиального нового вида вещества, располагающего энергией естественного радиоактивного распада.

б) Внутренней энергия ядра становится настолько много, что она преодолевает давление внешних слоев и вырывается наружу.

в) Под воздействием этого поля выбрасываемая радиоактивной энергией из недр ядра плазма, в составе которой в изобилии содержатся ионы всевозможных химических элементов и свободные электроны, приобретает высокоскоростное движение в двух противоположных направлениях.

г) Происходит извержение из ряда огромных масс вещества, которое носит взрывной характер и сопровождается излучением огромного числа фотонов

д) Под воздействием гравитационной энергии эфира, выброшенные из ядра, облака газа и пыли начинают уплотняться и, достигнув звездной стадии, становятся оптически видимыми объектами

е) Когда синхротронное излучение совсем пропадает, а количество молодых звезд в отходящих от ядра ветвях становится достаточно большим, перерождение эллиптической галактики в спиральную можно считать практически завершенным.

Список литературы

1. Маров М. Я. Планеты солнечной системы. - М., Наука, 1986.

2. Новиков И. Д. Как взорвалась Вселенная. - М., Наука, 1988.

3. Новиков И. Д. Эволюция Вселенной. - М., Наука, 1983.

4. Стрелков В. Г. Бытие или сознание? - Москва, 1997.

5. Стрелков В. Г. Физика и логика эфирной вселенной. - М., 2000.

6. Шкловский И. С. Проблемы современной астрофизики. - М., Наука, 1982.

Приложение

Рис. 1 Объект M31, галактика Андромеда. Рисунок Мессье

Рис. 2. Эллиптическая галактика

Рис. 3. Спиральная галактика

Рис. 4. Неправильная галактика

Рис. 5. Ядро галактики

Рис. 6. Ядро нашей галактики

Размещено на Allbest.ru


Подобные документы

  • Физический вакуум: понятие, его частицы. Сущность космологического принципа. Закон всеобщего разбегания галактик. Общий вид закона Хаббла. Поперечная и продольная составляющая волны. Ненулевые эталоны параметров. Двухмерность и трёхмерность величин.

    статья [23,6 K], добавлен 04.09.2013

  • Сущность и основное содержание теории большого взрыва, история ее разработок и оценка популярности на современном этапе. Выдающиеся отечественные и зарубежные ученые, внесшие вклад в развитие данного учения. Закон разбегания галактик и его нелинейность.

    реферат [891,6 K], добавлен 25.01.2014

  • Последовательность проведения опыта, применяемое оборудование и материалы. Свободное падение как движение под действием силы тяжести, при отсутствии сопротивления воздуха. Первое исследование свободного падения тел ученым Галилеем, расчет ускорения.

    презентация [544,7 K], добавлен 25.02.2014

  • Магнитные поля и химический состав звёзд (гелиевых, Si- и Am–звёзд, SrCrEu-звёзд). Магнитные поля звёзд-гигантов, "белых карликов" и нейтронных звёзд. Положения теории реликтового происхождения поля и теории динамо-механизма генерации магнитного поля.

    курсовая работа [465,3 K], добавлен 05.04.2016

  • Электрическое поле Земли. Атмосферики, радиоизлучения Солнца и галактик. Физические основы взаимодействия электромагнитных полей с биологическими объектами. Главные преимущества и недостатки лазеротерапии. Глубина проникновения волн в различные ткани.

    курсовая работа [179,2 K], добавлен 16.05.2016

  • Первый прибор для наблюдений за изменениями температуры, созданный Галилео Галилеем. Преобразование воздушного термоскопа в спиртовой флорентийским ученым Торричелли. Изготовление в 1714 г. Фаренгейтом ртутного термометра, его усовершенствование Цельсием.

    презентация [2,7 M], добавлен 23.09.2014

  • Особенности протекания экзотермических и экзоэргических процессов. Понятие материи как сущности мира и того общего, что входит в состав всех объектов природы. Исследование двойственной корпускулярно-волновой сущности микрочастиц. Теория "кипения" вакуума.

    контрольная работа [24,8 K], добавлен 08.09.2009

  • Изучение биографии Майкла Фарадея. Изобретения английского физика-экспериментатора и химика. Открытие ученым бензина и сжижения газов, электромагнитной индукции, исследование индукционных токов и конструирование совершенных электротехнических устройств.

    презентация [3,6 M], добавлен 26.03.2015

  • Бесконечное и неделимое. Обсуждение Галилеем природы пустоты и возможности ее присутствия в телах. Сходство его теории с идеями Н. Кузанского. Теория движения Галилея. Представитель физики импетуса Дж. Бенедетти. Изменение античного понятия материи.

    реферат [35,7 K], добавлен 16.11.2013

  • Пространство - единственная объективно существующая не материальная субстанция. Материальные субстанции - вещество, энергия, эфир. Время - последовательность изменения расположения материи. Магнетизм и электричество. Строение звезды. Черная дыра.

    статья [18,0 K], добавлен 07.03.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.