Цикл Карно
Роль Сади Карно в исследовании КПД тепловой машины. Стадии цикла идеальной машины, превращающей тепло в механическую энергию. Характеристика процесса Карно, с точки зрения науки термодинамики. Коэффициенты изотермического сжатия и обратимости цикла.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 23.12.2013 |
Размер файла | 138,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Цикл Карно
2. Описание цикла
3. КПД цикла
4. Связь между обратимостью цикла и КПД
1. Цикл Карно
Отец Никола Леонарда Сади Карно - знаменитый французский генерал, «организатор побед Великой французской революции» Никола Карно, инженер по образованию, проявлял значительный интерес к науке и практическому применению инженерных достижений. Он занимался анализом работы тепловых машин, и Сади Карно продолжил работу своего отца. Придерживаясь теплородной теории, С. Карно, тем не менее, сумел получить результаты, имеющие непреходящее значение для развития науки.
Во-первых, С. Карно ввел понятие циклического (кругового) процесса. Наблюдая действие паровой машины, он обратил внимание, что используемый для перемещения цилиндра пар затем выпускается в среду с меньшей температурой, где он снова превращается в воду (конденсат), причем конденсат в дальнейшем более не используется. Карно ставит вопрос о возможности использования отработанного конденсата, о возможности возвращения конденсата в котел, где он вновь нагреется, превратится в пар, который при своем дальнейшем расширении вновь совершит работу над поршнем. Таким образом, вода будет проходить полный цикл - ряд процессов, в результате которых возвратится в исходное состояние.
Второй важный шаг состоял в том, что Карно установил, что подобный непрерывный циклический процесс возможен лишь при наличии двух нагревателей: нагревателя при высокой температуре Т1 и холодильника при более низкой температуре Т2.
Кроме нагревателя и холодильника необходимо рабочее тело. Рабочее тело, забирая у нагревателя количество теплоты Q1 произведя работу, для восстановления своих исходных параметров (для обеспечения непрерывности цикла) должно отдать некоторое количество теплоты Q2 холодильнику.
Основываясь на теплородной теории теплоты, Карно полагал, что «падение теплородной субстанции», обусловленное разностью температур нагревателя и холодильника, аналогично падению воды с более высокого уровня на низкий. Так что работа определяется перепадом между температурами теплорода в нагревателе и холодильнике.
Далее Карно вводит для характеристики тепловой машины понятие коэффициента полезного действия (КПД), рассматриваемого как отношение работы, совершаемой рабочим телом, к количеству теплоты Q1 взятой у нагревателя.
Основная задача, решение которой являлось целью работы Карно, состояла в определении, от чего зависит КПД тепловой машины. При этом он демонстрирует поистине научно-теоретический подход, ибо пытается определить КПД машины независимо от «какого-либо механизма», «какого-либо определенного агента», то есть предлагает рассмотреть идеальную тепловую машину. Основная особенность этой идеальной машины состоит в том, что все изменения в ней должны происходить обратимым путем.
Обратимым называется процесс, который может идти как в прямом, так и в обратном направлении, и по возвращении системы в исходное состояние не происходит никаких изменений. Любой другой процесс называется необратимым. Оказывается, если исключить из рассмотрения явления, происходящие в микромире, то в природе строго обратимых процессов не существует. Еще Лазар Карно обратил внимание на то, что для достижения наивысшего КПД при постройке и эксплуатации механического устройства следует сводить до минимума удары, трение, иными словами, все процессы, которые приводят к потере «живой силы».
Сади Карно строит свою теорию, рассматривая явление получения движения из тепла, исходя из самых общих соображений, отвлекаясь от разнообразных частных факторов в функционировании машины. Он пытается определить, от чего зависит максимальный КПД машины. Поэтому он и берет в рассмотрение идеализированную машину, существенной особенностью процесса которой является циклический и обратимый характер. В качестве рабочего тела Карно использует воздух, чтобы избежать сложностей, связанных с изменением фазы - превращением воды в пар, а затем пара - в воду. Более того, Карно приходит к верному заключению о том, что для повышения КПД надо исключить прямые контакты между нагревателем и холодильником, чтобы ни одно изменение температуры не было обусловлено прямыми потоками тепла между двумя телами, находящимися при различных температурах. Эти потоки не производили бы никакой механической работы и приводили бы к снижению КПД.
Рассуждая подобным образом, Карно разделил цикл идеальной тепловой машины на четыре стадии:
1-я стадия. Рабочее тело, обладающее температурой нагревателя T1, приводится в контакт с нагревателем и получает у него количество теплоты Q1, которое целиком расходуется на работу по расширению рабочего тела. Никакая часть от полученной теплоты не расходуется на увеличение внутренней энергии рабочего тела, не теряется зря вследствие равенства температур рабочего тела и нагревателя в начале цикла. 1-я стадия цикла протекает при постоянной температуре Т1, изотермически;
2-я стадия. Рабочее тело изолируется от источника, тепло не поступает и не уходит из системы. То есть количество теплоты не поглощается и не тратится. Говорят, что процесс на 2-й стадии протекает адиабатически, то есть без теплообмена. При этом рабочее тело продолжает расширяться, и работа по его расширению происходит за счет резервов внутренней энергии рабочего тела. Внутренняя энергия рабочего тела при его расширении уменьшается, и рабочее тело охлаждается. Такое адиабатическое расширение рабочего тела продолжается до тех пор, пока температура его не станет равной температуре холодильника;
3-я стадия. И вот тут-то рабочее тело с температурой Т2 подается в холодильник с такой же температурой Т2. Опять достигается экономия: теплота не растрачивается зря, так как нет переноса тепла между рабочим телом и холодильником, связанного с разностью их температур. Тем не менее, рабочее тело отдает некоторое количество теплоты Q2 холодильнику, вследствие чего уменьшается объем рабочего тела, оно сжимается. Процесс сжатия рабочего тела необходим для обеспечения цикличности работы машины, ибо при этом уменьшается объем рабочего тела. Вспомним, что в нагреватель на 1-й стадии рабочее тело поступало с меньшим объемом и только потом расширялось, совершая работу;
4-я стадия. И, наконец, на 4-й стадии рабочее тело адиабатически сжимается до первоначального объема. При этом внутренняя энергия его увеличивается. Процесс этот продолжается до тех пор, пока температура рабочего тела не становится равной температуре нагревателя Т1.
Итак, цикл оказывается обратимым. Две изотермические стадии (1-я и 3-я) при постоянных температурах (соответственно, Т1 - на 1-й стадии и Т2 - на 3-й стадии) связаны между собой двумя адиабатическими стадиями.
И хотя Сади Карно не определил величину КПД идеальной обратимой машины, и сама его книга «О движущей силе огня и о машинах, способных развивать эту силу» содержит в себе всего 45 страниц, основные принципы, выдвинутые автором в этом труде оказались фундаментальным вкладом в генезис и развитие термодинамики. Карно пришел к совершенно верному выводу о том, что КПД идеальной машины зависит только от температур нагревателя и холодильника, а КПД любой другой машины всегда меньше КПД идеальной тепловой машины.
2. Описание цикла
механический энергия термодинамика
В термодинамике цикл Карно или процесс Карно - это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой - холодильником.
Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году.
Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно. Цикл Карно состоит из четырёх стадий:
1. Изотермическое расширение (на рисунке - процесс A>Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается;
2. Адиабатическое (изоэнтропическое) расширение (на рисунке - процесс Б>В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника;
3. Изотермическое сжатие (на рисунке - процесс В>Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX;
4. Адиабатическое (изоэнтропическое) сжатие (на рисунке - процесс Г>А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.
При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия, поскольку:
Всегда при дQ = 0.
Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия). Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).
3. КПД цикла
Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно:
Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику:
Отсюда коэффициент полезного действия тепловой машины Карно равен:
Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100% только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины, будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно.
4. Связь между обратимостью цикла и КПД
Для того, чтобы цикл был обратимым, из него должна быть исключена передача тепла при наличии разности температур (так как такие процессы необратимы в силу постулата Томсона). Значит, передача тепла должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того, чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.
Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД. механический энергиям термодинамика
Если же в цикле возникает передача тепла при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше чем КПД цикла Карно.
Размещено на Allbest.ru
Подобные документы
История открытия цикла Карно, его физическое описание. Особенности прямого и обратного цикла Карно. Экспериментальное определение коэффициента полезного действия лабораторной установки, демонстрирующей цикл Карно. Примеры применения цикла Карно.
реферат [85,8 K], добавлен 14.05.2014Коэффициент полезного действия тепловой машины. Цикл Карно идеального газа. Цикл Отто, Дизеля и Тринкеля. Второе начало термодинамики. Энтропия обратимых и необратимых процессов. Термодинамическая вероятность состояния. Тепловая смерть Вселенной.
презентация [111,6 K], добавлен 29.09.2013Характеристика основных типов идеального газа. Описание изохорического, изобарического и изотермического процессов. Изучение первого и второго законов термодинамики. Принцип действия тепловых машин. Описание цикла Карно. Расчет сил Ван-дер-Ваальса.
реферат [255,0 K], добавлен 25.10.2015Содержание и основные этапы теоретического цикла Карно, Ренкина. с промперегревом. Влияние повышения давления на влажность в последней ступени. Определение эффективности теплоэлектрической установки. Пути совершенствования термодинамического цикла.
презентация [2,8 M], добавлен 08.02.2014Суперсверхкритическое давление. Теоретический цикл Карно. Теоретический цикл Ренкина на сверхкритические параметры и с промперегревом. Влияние повышения давления на влажность в последней ступени. Пути совершенствования термодинамического цикла.
презентация [1,7 M], добавлен 08.02.2014Передача энергии от одного тела к другому. Внутренняя энергия и механическая работа. Первое начало термодинамики. Формулировки второго закона термодинамики. Определение энтропии. Теоремы Карно и круговые циклы. Процессы, происходящие во Вселенной.
реферат [136,5 K], добавлен 23.01.2012Главные особенности алгебраического минимизирования логической функции. Правила склеивания карты Карно, общий вид для четырех алгоритмов. Последовательность преобразования целого десятичного числа в двоичный, восьмеричный и шестнадцатеричный код.
контрольная работа [61,0 K], добавлен 15.11.2012Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013Определение состава газовой смеси в массовых и объемных долях; ее плотности и удельного объема, процессных теплоемкостей и показателя адиабаты. Изменение внутренней энергии, энтальпии и энтропии в процессах, составляющих цикл. Термический КПД цикла Карно.
контрольная работа [38,9 K], добавлен 14.01.2014Проектирование цикла тепловых электрических станций: паросиловой цикл Ренкина, анализ процесса трансформации. Регенеративный цикл паротурбинной установки, техническая термодинамика и теплопередача, установки со вторичным перегреванием пара, цикл Карно.
курсовая работа [360,0 K], добавлен 12.06.2011