Классификация автоматических систем по назначению

Изучение схем искрогашения на контактах электромагнитного реле. Устройство и принцип работы электромагнитного реле переменного тока. Принцип действия и область применения индуктивного датчика. Рассмотрение структурной схемы телемеханических систем.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 10.12.2013
Размер файла 710,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Вопрос № 1. Классификация автоматических систем по назначению

Вопрос №2. Устройство, принцип действия и область применения индуктивного датчика

Вопрос № 3. Начертить и описать устройство и принцип работы электромагнитного реле переменного тока

Вопрос № 4. Вычертить и описать схемы искрогашения на контактах электромагнитного реле

Вопрос № 5. Определение телемеханики. Описать структурную схему телемеханических систем

Список используемой литературы

Вопрос № 1. Классификация автоматических систем по назначению

Системы автоматики предназначены для получения информации о ходе управляемого процесса, ее обработки и использования при формировании управляющих воздействий на процесс. В зависимости от назначения различают следующие автоматические системы.

Системы автоматической сигнализации предназначены для извещения обслуживающего персонала о состоянии той или иной технической установки, о протекании того или иного процесса.

Системы автоматического контроля осуществляют без участия человека контроль различных параметров и величин, характеризующих работу какого-либо технического агрегата или протекание какого-либо процесса.

Системы автоматической блокировки и защиты служат для предотвращения возникновения аварийных ситуаций в технических агрегатах и установках.

Системы автоматического пуска и остановки обеспечивают включение, остановку (а иногда и реверс) различных двигателей и приводов по заранее заданной программе.

Системы автоматического управления предназначены для управления работой тех или иных технических агрегатов либо теми или иными процессами.

Важнейшими и наиболее сложными являются системы автоматического управления. Управлением в широком смысле слова называется организация какого-либо процесса, обеспечивающая достижение поставленной цели.

Вопрос № 2. Устройство, принцип действия и область применения индуктивного датчика

Дифференциальные индуктивные датчики представляют собой совокупность двух одинарных (нереверсивных) датчиков с общим якорем. Предназначены дифференциальные индуктивные датчики для получения реверсивной статической характеристики и для компенсации электромагнитной силы притяжения якоря.

а) Устройство индуктивного датчика:

1. Генератор обеспечивает зону чувствительности индуктивного датчика.

2. Триггер обеспечивает необходимую крутизну фронта сигнала переключения и значение гистерезиса.

3. Усилитель увеличивает амплитуду выходного сигнала до необходимого значения.

4. Светодиодный индикатор показывает включенное/выключенное состояние индуктивного датчика, обеспечивает контроль работоспособности, оперативность настройки и ремонта оборудования.

5. Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды.

6. Корпус обеспечивает монтаж индуктивного датчика, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями

б) Принцип работы индуктивного датчика.

Принцип работы индуктивного датчика достаточно прост - определяется индуктивность замкнутого металлического контура. Если металлический предмет проходит сквозь контур или появляется вблизи него датчик срабатывает за счет изменения индуктивности.

После подачи напряжения питания, перед активной поверхностью бесконтактного индуктивного выключателя образуется электромагнитное поле, создаваемое катушкой индуктивности генератора. При внесении управляющего объекта в зону чувствительности индуктивного датчика, снижается добротность колебательного контура и соответственно амплитуда колебаний. Это вызывает срабатывание триггера и изменение коммутационного состояния индуктивного датчика. В качестве коммутационных элементов используются мощные рпр и прп транзисторы.

в) Индуктивные датчики. Применение и особенности эксплуатации

Индуктивные датчики с малым диаметром контура могут применяться для регистрации обрыва тонких проволок, контур большого размера используют для контроля прохождения металлических узлов по конвейеру. Индуктивные датчики наиболее эффективно использовать в качестве конечных выключателей в автоматических линиях, станках и т.п., т.к. они срабатывают только на проводящие материалы и не чувствительны ко всем остальным. Это увеличивает их защищенность от помех - введение в зону чувствительности индуктивного датчика рук оператора, эмульсии, воды, смазки и т.д. не приведет к ложному срабатыванию. В качестве управляющего объекта для индуктивного датчика используются такие металлические конструктивы, как зубья шестерен, кулачки, ползуны; часто это металлическая пластина, прикрепленная к соответствующей детали оборудования. Для настройки расстояния воздействия применяют пластину из стали, толщиной 1 мм. Пластина имеет форму квадрата со стороной более или равной значению диаметра индуктивного датчика.

В случае применения конструктивов не из стали, а из других металлов, вводятся поправочные коэффициенты:

Чугун-1,1

Хром-никель-0,9

Латунь-0,4

Алюминий-0,35

При установке индуктивного датчика в реальную конструкцию, следует учитывать влияние окружающих неподвижных металлических элементов и других индуктивных выключателей.

Схемы подключения индуктивного датчика

Выходной транзистор РNР-типа с открытым коллектором. Нагрузка подключается между выходом и общим, минусовым, проводом. Выполняется функция замыкающего контакта (в исходном состоянии нагрузка отключена). Выпускаются две модификации: кабельное соединение и разъемное соединение.

Выходной транзистор РNР-типа с открытым коллектором. Нагрузка подключается между выходом и общим, минусовым, проводом. Выполняется функция размыкающего контакта (в исходном состоянии нагрузка подключена), Выпускаются две модификации: кабельное соединение и разъемное соединение

Два выходных транзистора РNР-типа с открытым коллектором. Нагрузки подключается между выходами и общим, минусовым, проводом, Одновременно выполняются функции замыкающего и размыкающего контактов (в исходном состоянии одна нагрузка отключена, другая - подключена). Выпускаются две модификации: кабельное соединение и разъемное соединение.

Выходной транзистор NРN-типа с открытым коллектором. Нагрузка подключается между выходом и общим, плюсовым, проводом. Выполняется функция замыкающего контакта (в исходном состоянии нагрузка отключена). Выпускаются две модификации: кабельное соединение и разъемное соединение.

Выходной транзистор NРN-типа с открытым коллектором. Нагрузка подключается между выходом и общим, плюсовым, проводом. Выполняется функция замыкающего контакта (в исходном состоянии нагрузка отключена). Выпускаются две модификации: кабельное соединение и разъемное соединение.

Выходной транзистор NРN-типа с открытым коллектором. Нагрузка подключается между выходом и общим, плюсовым, проводом. Выполняется функция размыкающего контакта (в исходном состоянии нагрузка подключена). Выпускаются две модификации: кабельное соединение и разъемное соединение.

Два выходных транзистора NРN-типа с открытым коллектором. Нагрузки подключается между выходами и общим, плюсовым, проводом. Одновременно выполняются функции замыкающего и размыкающего контактов (в исходном состоянии одна нагрузка отключена, другая - подключена). Выпускаются две модификации: кабельное соединение и разъемное соединение.

Коммутационный элемент - тиристор или высоковольтный транзистор. Нагрузка включается в разрыв одного из проводов. Выполняется функция замыкающего контакта (в исходном состоянии нагрузка отключена). Корпус имеет отдельный заземляющий вывод. Выпускаются две модификации: кабельное соединение и разъемное соединение

Коммутационный элемент o тиристор или высоковольтный транзистор. Нагрузка включается в разрыв одного из проводов. Выполняется функция размыкающего контакта (в исходном состоянии нагрузка подключена). Корпус имеет отдельный заземляющий вывод. Выпускаются две модификации; кабельное соединение и разъемное соединение. BR>

Вопрос № 3. Начертить и описать устройство и принцип работы электромагнитного реле переменного тока

В системах автоматики одним из наиболее распространенных элементов является реле -- устройство, в котором при плавном изменении входного (управляющего) сигнала осуществляется скачкообразное изменение (переключение) выходного сигнала.

В электромеханических реле изменение (переключение) выходного сигнала осуществляется посредством контактов, а усилие, перемещающее контакты, создается электромеханическим преобразователем электрической энергии в механическую. Простейшим из таких преобразователей является электромагнит. Поэтому из электромеханических реле наибольшее распространение получили электромагнитные реле.

В тех случаях, когда основным источником энергии является сеть переменного тока, желательно применять реле, обмотки которых питаются переменным током. При подаче в обмотку реле переменного тока якорь будет притягиваться к сердечнику так же, как и при постоянном токе. При одинаковых конструктивных размерах реле и равных значениях максимальной индукции среднее значение электромагнитного усилия у реле переменного тока вдвое меньше, чем у реле постоянного тока.

Электромагнитное усилие меняется (пульсирует) с удвоенной частотой 2щ, обращаясь в нуль дважды за период питающего напряжения. Следовательно, якорь реле может вибрировать, периодически оттягиваться от сердечника возвратной пружиной, что вызывает дрожание якоря и, как следствие, износ оси якоря.

Реле переменного тока имеют худшие параметры, чем реле постоянного тока, так как при одинаковых размерах имеют меньшее электромагнитное усилие и менее чувствительны. Кроме того, они сложнее и дороже, поскольку необходимо иметь шихтованный магнитопровод (набранный из отдельных листов, а также применять специальные меры для устранения вибрации якоря - явление, которое нежелательно, так как может привести к обгоранию контактов, прерыванию электрической цепи и др. поэтому для ослабления вибрации принимают специальные конструктивные меры.

Рассмотрим три способа устранения вибрации якоря реле переменного тока.

1. Применение утяжеленного якоря

Утяжеленный якорь благодаря большой инерции не может вибрировать с удвоенной частотой (2щ), т. е. он не успевает отходить от сердечника в те моменты времени, когда ток в обмотке реле переходит через нуль. Вибрация якоря в этом случае уменьшается. Однако применение утяжеленного якоря вызывает увеличение его размеров, что приводит к уменьшению чувствительности реле. Кроме того, габариты, вес и стоимость реле увеличивается. Этот способ находит применение в том случае, если исполнительный механизм, связанный с якорем реле, обладает большой инерцией.

2. Применение двухфазного реле

Двухфазное реле переменного тока (рис. 4.5) имеет две обмотки, расположенные на двух сердечниках ЭМ1 и ЭМ2, имеющих общий якорь. Обмотки реле соединены параллельно относительно друг друга. В цепь одной из обмоток включен конденсатор С, благодаря чему токи в обмотках реле оказываются сдвинутыми по фазе на угол р/2. так как токи в обмотках проходят через нуль в разные моменты времени, то результирующее тяговое усилие, действующее на якорь, никогда не обращается в нуль и имеет постоянное значение, т. е. не содержит переменной составляющей (при сдвиге токов в обмотках двух электромагнитов на угол р/2).

3. Применение короткозамкнутого витка (экрана)

Короткозамкнутый виток, охватывающий часть конца сердечника (расщепленный сердечник), является более эффективным способом.

На рис. 4.6 изображена схема реле переменного тока с короткозамкнутым витком. Конец сердечника, обращенный к якорю, расщеплен (пропилен) на две части, на одну из которых надета короткозамкнутая обмотка - экран Э (один или несколько витков).

Магнитопровод выполнен из отдельных листов для уменьшения потерь.

Рис. 4 Двухфазное реле переменного тока: 1 - магнитопровод; 2 - катушка; 3 - якорь

Рис. 6 Реле переменного тока с короткозамкнутым витком

Принцип работы реле заключается в следующем. Переменный магнитный поток Фосн основной обмотки щосн, проходя через разрезанную часть сердечника, делится на две части. Часть потока Ф2 проходит через экранированную половину полюса сечением Sд2, в которой размещается короткозамкнутая обмотка, а другая часть потока Ф1 проходит через неэкранированную половину полюса сечением Sд1. Поток Ф2 наводит в короткозамкнутом витке эдс(екз), которая создает ток iкз. При этом возникает еще один магнитный поток Фкз, который воздействует на магнитный поток Ф2 и вызывает отставание этого потока по фазе относительно потока Ф1 на угол ц=60-80 0С. Благодаря этому результирующее тяговое усилие Fэ никогда не доходит до нуля, так как оба потока проходят через нуль в разные моменты времени.

Вопрос № 4. Вычертить и описать схемы искрогашения на контактах электромагнитного реле

Контакты, являясь важнейшим элементом реле, определяют надежность и срок их службы. По характеру работы контакты подразделяются назамыкающие (при отсутствии сигнала в обмотке реле они разомкнуты, а при наличии тока в управляющей обмотке они замыкаются) и размыкающие (при отсутствии сигнала они замкнуты и размыкаются при наличии сигнала в обмотке реле). В процессе работы реле контакты могут находиться в следующих состояниях: замкнутом, в процессе размыкания, разомкнутом и в процессе замыкания.

К тяжелым условиям работы контактов, при которых происходит наибольший износ, относятся их замкнутое состояние, когда через контакты течет весь ток нагрузки, и процесс размыкания, когда между контактами возникает дуга.

По мере увеличения усилия FK, действующего на контакты, увеличивается площадь их соприкосновения, а переходное сопротивление уменьшается. При наличии на поверхности контактов окисной пленки необходимо, чтобы механическое давление в точках контакта было достаточным для ее разрушения.

Зависимость переходного сопротивления от контактного давления следующая:

где а - коэффициент, зависящий от свойств контактного материала и шероховатости контактной поверхности; Fk - контактное усилие; b - коэффициент, характеризующий форму контактов.

Контакты по форме контактирующих поверхностей и в зависимости от тока, на который они рассчитаны, делят на три основные группы (рис. 11.14):

точечные - конус и плоскость или полусфера и плоскость (теоретически с соприкосновением в одной точке), рассчитаны на небольшие токи;

плоскостные - плоскость и плоскость, рассчитаны на средние токи;

линейные - с соприкосновением по линии, рассчитаны на большие токи.

В реле малой и средней мощностей наибольшее распространение имеет точечный контакт, как обеспечивающий надежное электрическое соединение при небольшом контактном давлении. Контакты при этом закрепляются на упругих плоских пружинах. Существуют контакты специальных типов: вакуумные и ртутные.

Типы контактов реле: а - точечные; б - плоскостные; в - линейные 11,14

К материалам, из которых изготовляются контакты, предъявляются особые требования: они должны быть механически прочными, твердыми, иметь высокие значения температуры плавления, обладать хорошей тепло- и электропроводностью, легко обрабатываться, быть устойчивыми против коррозии и эрозии, а также дешевыми.

На практике при выборе материала контактов пользуются следующими соображениями:

малые давления - 0,01... 0,03 Н (высокочувствительные реле) - платина;

давления от 0,05 до 1 Н (при малой частоте срабатывания) - серебро;

давления от 0,3 до 1 Н (при большей частоте срабатывания) - металлокерамические материалы;

давление свыше 1 Н (большая частота срабатывания) - вольфрам.

Основной причиной разрушения контактов, определяющей срок их службы, является дуговой разряд, возникающий при их размыкании. Причиной интенсивного разряда является наличие в управляемой цепи реактивного сопротивления. Если оно имеет емкостный характер, то интенсивное искрение наблюдается при замыкании контактов. Если же управляемая цепь содержит значительную индуктивность, то особенно сильный и затяжной разряд возникает при разрыве этой цепи из-за образующегося перенапряжения на контактах. В большинстве случаев управляемая цепь содержит индуктивность.

Применяются два основных метода искро- и дугогашения: шунтирование индуктивности разрываемой цепи и шунтирование контактов. В обоих случаях, пока контакты замкнуты, в магнитном поле индуктивности накапливается энергия, которая при размыкании контактов расходуется не в дуге, а в шунтирующем устройстве. Методы искрогашения сводятся к созданию замедленного исчезновения тока.

На рис. 11.15 изображены основные схемы искрогашения. В схеме, представленной рис. 11.15, а, применяется метод шунтирования индуктивной нагрузки последовательным включением емкости с сопротивлением Rm. В момент размыкания контактов в контуре, образованном нагрузкой и шунтом, под действием энергии, запасенной в магнитном поле, возникает ток переходного процесса, который протекает еще некоторое время после размыкания контактов, предотвращая тем самым наведение высоких значений ЭДС самоиндукции.

Схемы искрогашения в контактах: а - шунтирование нагрузки ёмкостью и сопротивлением; б - шунтирование нагрузки диодом; в - шунтирование контактов

Энергия магнитного поля переходит в теплоту, которая выделяется на сопротивлении шунта Rm. Наличие конденсатора в схеме исключает прохождение тока нагрузки при замкнутых контактах, и, следовательно, исключаются потери энергии в сопротивлении шунта.

Для того чтобы в контуре LH - RH - С - Rш не возникли автоколебания тока, емкость выбирают из условия RH + Rm > 2vLH/C.

В схеме на рис. 1.15, б диод производит аналогичное действие, т. е. шунтирует индуктивную нагрузку и пропускает ток переходного процесса I, который создает ЭДС самоиндукции в момент разрыва управляемой цепи. При замкнутых контактах диод заперт напряжением сети и не пропускает ток нагрузки.

На рис. 11.15, в изображена схема шунтирования контактов емкостью с сопротивлением. Здесь емкость исключает протекание тока нагрузки в шунтирующей цепи при разомкнутых контактах. Кроме того, устраняется расход энергии как в цепи нагрузки, так и в шунтирующем сопротивлении, поскольку конденсатор не пропускает постоянный ток.

Цепочка Rш - С создает путь мимо контактов для убывающего после их разрыва тока нагрузки и для рассеяния энергии, запасенной в магнитном поле цепи нагрузки. После размыкания контактов ток по мере заряда конденсатора от нуля до напряжения питания U постепенно уменьшается до нуля (т.е. резкого увеличения напряжения на контактах не возникает). Напряжение на контактах, как и на емкости, постепенно увеличивается до значения U. Ток в этом случае проходит мимо контактов через цепочку Rш - С и дуговой разряд не возникает. Так как на практике емкость конденсатора выбирают в пределах 0,5... 2 мкФ, то зарядка конденсатора будет происходить медленно и, следовательно, напряжение на контактах будет также нарастать достаточно медленно.

искрогашение электромагнитный реле схема

Вопрос № 5. Определение телемеханики. Описать структурную схему телемеханических систем

Определение телемеханики - называется отрасль науки и техники, охватывающая теорию и принципы построения устройств, преобразующих информацию в сигналы и передающих их на расстояния по линии связи для измерения, сигнализации и управления без непосредственного участия человека.

Телемеханическая система - система телемеханики, комплекс технических средств для передачи на расстояние по каналам радиосвязи или проводным линиям связи команд от оператора или управляющей вычислительной машины к объектам управления, а также контрольной информации в обратном направлении (см. Телемеханика). Т. с. включает пункт управления (ПУ), где находится оператор (диспетчер), один или несколько контролируемых пунктов (КП), где располагаются объекты управления (контроля), и линии связи (каналы передачи данных), соединяющие ПУ с КП. В сложных Т. с. может быть несколько ПУ -- равноправных либо подчинённых Друг другу в соответствии с иерархическим принципом.

Различают Т. с. для сосредоточенных объектов (находящихся в пределах одного КП; рис. а) и Т с. для рассредоточенных объектов (расположенных группами на нескольких КП либо рассеянных по одному на большой территории; рис. б, в). Пример Т. с. первого вида -- система управления отдельным строительным краном, самолётом, насосной станцией и т. д. Характерные примеры Т. с. второго вида -- системы управления газо- и нефтепроводами, энергосистемами, ж. -д. узлами, шахтами и заводами, где управление осуществляется с одного диспетчерского пункта.

В Т. с. информация о состоянии и параметрах объектов управления, поступающая на ПУ, обычно воспринимается человеком-оператором, который на основании полученных данных принимает решения и подаёт команды управления. На ПУ имеется Диспетчерский щит, оснащенный соответствующими устройствами представления контрольной информации, и Диспетчерский пульт с органами управления телемеханической аппаратурой (с кнопками, ключами, тумблерами и т. п.) и устройствами формирования сигналов управления объектами. При больших объёмах информации её обработка и преобразование к виду, наиболее удобному для принятия решений оператором, производятся автоматическими устройствами или ЭВМ.

В Т. с. могут передаваться все или только некоторые виды контрольной и управляющей информации. При передаче информации лишь о значениях параметров объектов Т. с. называется системой телеизмерения (ТИ); в системе телесигнализации (ТС) передаётся преимущественно информация о том, в каком из возможных состояний (обычно из двух) находится контролируемый объект; в системе телеуправления (ТУ) передаются только команды управления. В комбинированных Т. с. осуществляется передача информации нескольких видов, например измерительной и сигнализирующей (ТИ--ТС), управляющей и сигнализирующей (ТУ-- ТС). В комплексных Т. с. возможна передача контрольной и управляющей информации всех видов (ТУ -- ТС -- ТИ).

Основные характеристики Т. с.: набор выполняемых функций и видов информации, тип расположения объектов, дальность действия, число обслуживаемых объектов, быстродействие, достоверность передачи информации, надёжность, структура и тип каналов связи.

Аппаратура Т. с. в простейшем случае состоит из передающего и приёмного полукомплектов, с помощью которых осуществляется передача телемеханической информации. Т. с. часто включают в себя автоматические устройства (например, для циклического опроса объектов, передачи команд по заданной программе, сравнения текущих значений контролируемых параметров с заданными, диагностики повреждений), облегчающие работу оператора или повышающие надёжность и эффективность передачи информации по каналу связи. Т. с. -- сложный технический комплекс, в состав которого входят разнообразные устройства и приборы, насчитывающие десятки и сотни тысяч различных элементов. В начальный период развития телемеханики (начало 20 в.) аппаратура Т. с. была преимущественно релейно-контактной; в 50-х гг. 20 в. релейно-контактная аппаратура была вытеснена бесконтактными элементами (магнитными, полупроводниковыми и др.); в 70-х гг. происходит переход на микроэлектронные элементы и агрегатный метод построения Т. с. Так, разработанная в СССР агрегатная система средств телемеханики (АССТ) представляет собой набор унифицированных функциональных блоков, выполненных на интегральных схемах (См. Интегральная схема), и ряд телемеханических устройств, построенных из этих блоков. АССТ входит в Государственную систему промышленных приборов и средств автоматизации -- ГСП.

Структурная схема телемеханической системы: а -- для сосредоточенных объектов; б, в -- для рассредоточенных объектов (цепочечная и древовидная); ПУ -- пункт управления (диспетчерский пункт); КП -- контролируемый пункт; ЛС -- линия связи; 1, 2, 3,..., n -- объекты управления (контроля).

Список используемой литературы

1. Келим Ю. М. Электромеханические и магнитные элементы систем автоматики. -- М.: Высшая школа, 1991г.

2. Келим Ю.М. Типовые элементы систем автоматического управления. Учебное пособие для студентов учреждений среднего профессионального образования -- М.: ФОРУМ: ИНФРА-М , 2002г.

3. Основы автоматики. Учебное пособие для техникумов. М., «Энергия», 1977г. Чевкаскин А.Н.

4. Большая советская энциклопедия. -- М.: Советская энциклопедия. 1969--1978г.г.

Размещено на Allbest.ru


Подобные документы

  • Устройство, принцип действия, пригодность и электрическая схема реле РТ-40/0,6. Динамика сопротивления реостата при увеличении и уменьшении тока в цепи. Методика определения значения коэффициента возврата и погрешности (отклонения) тока срабатывания реле.

    лабораторная работа [23,7 K], добавлен 12.01.2010

  • Реле управления в электрических цепях. Схема устройства поляризованного реле. Параметры электромагнитного реле. Напряжение (ток) втягивания и отпадения. Воспринимающий, промежуточный и исполнительный орган реле. Устройство и принцип действия геркона.

    контрольная работа [2,1 M], добавлен 07.12.2013

  • Изучение свойств и схемы реле, принцип его действия и назначение. Порядок испытания реле напряжения РН-54/160, критерии определения его пригодности. Заключение о пригодности реле путем сравнивания полученных результатов вычислений со справочными данными.

    лабораторная работа [140,6 K], добавлен 12.01.2010

  • Понятие и назначение релейной защиты, принцип ее работы и основные элементы. Технические характеристики и особенности указательного реле РУ–21, промежуточного реле РП–341, реле прямого действия ЭТ–520, реле тока РТ–80, реле напряжения и времени.

    практическая работа [839,9 K], добавлен 12.01.2010

  • Электромагнитные реле являются распространенным элементов многих систем автоматики, в том числе они входят в конструкцию реле постоянного тока. Расчет магнитной цепи сводится к вычислению магнитной проводимости рабочего и нерабочего воздушных зазоров.

    курсовая работа [472,4 K], добавлен 20.01.2009

  • Понятие и разновидности электромагнитных систем, применение системы с поперечным движением якоря. Изучение принципа действия и конструктивных особенностей электромагнитных реле максимального тока РТ-40 и напряжения РН-50. Основные характеристики реле.

    лабораторная работа [999,6 K], добавлен 12.01.2012

  • Создание выдержки времени при передаче электрических сигналов в системах автоматики и телемеханики с помощью реле времени. Подача сигнала на сцепление двигателя с редуктором. Особенности реле времени постоянного тока и с электромагнитным замедлением.

    практическая работа [78,0 K], добавлен 12.01.2010

  • Классификация реле. Реле, реагирующее на одну электрическую величину (ток, напряжение, время), реле с интегральными микросхемами. Электромеханические системы с втягивающим, поворотным и поперечным движением якоря. Электрические контакторы реле.

    лекция [1,2 M], добавлен 27.07.2013

  • Ознакомление с историей создания генераторов электромагнитного излучения. Описание электрической схемы и изучение принципов работы полупроводникового лазера. Рассмотрение способов применения лазера для воздействия на вещество и для передачи информации.

    курсовая работа [708,7 K], добавлен 08.05.2014

  • Расчет показателей чувствительности и инерционности датчиков. Электрические принципиальные схемы вращающегося трансформатора, индуктосина, сельсина и тахогенератора. Понятие и классификация реле; правила их обозначения на схемах и принцип действия.

    презентация [1,1 M], добавлен 30.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.