Теория дифференциальных уравнений с частными производными
Основные положения математической физики и теории дифференциальных уравнений. Поперечные колебания. Начальные и граничные условия. Метод разделения переменных или метод Фурье. Нахождение функций, описывающих собственные колебания прямоугольных мембран.
Рубрика | Физика и энергетика |
Предмет | Физика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | incognito |
Дата добавления | 11.11.2013 |
Размер файла | 458,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные положения математической физики и теории дифференциальных уравнений. Поперечные колебания. Метод разделения переменных или метод Фурье. Однородные линейные уравнения второго порядка с постоянными коэффициентами.
дипломная работа [365,5 K], добавлен 08.08.2007Современная общая теория дифференциальных уравнений. Обзор основных понятий и классификации дифференциальных уравнений в частных производных. Уравнение теплопроводности. Начальные и граничные условия. Численное решение уравнений математической физики.
курсовая работа [329,9 K], добавлен 19.12.2014Уравнения гиперболического типа с частными производными 2-го порядка, решение равенства свободных колебаний струны методом разделения переменных. Описание дифференциальных уравнений теплопроводности для полубесконечного стержня в виде интеграла Пуассона.
курсовая работа [480,7 K], добавлен 05.05.2011Изучение понятия математической физики. Действительная и комплексная формы интеграла Фурье. Оригинал, изображение и операция над ними. Основные свойства преобразования Лапласа. Применение интегральных преобразований при интегрировании уравнений матфизики.
курсовая работа [281,3 K], добавлен 05.04.2014Особенности вывода дифференциальных уравнений осесимметрических движений круглой цилиндрической оболочки. Построение частного волнового решения основной системы уравнений гидроупругости вещества. Метод решения уравнения количества движения для жидкости.
курсовая работа [125,7 K], добавлен 27.11.2012Содержание классического метода анализа переходных процессов в линейных цепях: непосредственное интегрирование дифференциальных уравнений, описывающих электромагнитное состояние цепи. Два закона коммутации при конечных по величине воздействиях в цепи.
презентация [679,0 K], добавлен 28.10.2013Расчет переходного процесса классическим методом и решение дифференциальных уравнений, описывающих цепь. Схема замещения электрической цепи. Определение производной напряжения на емкости в момент коммутации. Построение графиков переходных процессов.
контрольная работа [384,2 K], добавлен 29.11.2015Общая характеристика законов динамики, решение задач. Знакомство с основными видами сил. Особенности дифференциальных уравнений движения точки. Анализ способов решения системы трех дифференциальных уравнений второго порядка, рассмотрение этапов.
презентация [317,7 K], добавлен 28.09.2013Основные формы уравнений Максвелла, дифференциальная форма уравнений. Свойства уравнений Максвелла. Общие представления о колебательных и волновых процессах. Гармонические колебания, их характеристики и использование. Теоремы векторного анализа.
презентация [114,1 K], добавлен 24.09.2013Основная задача динамики, применение законов Ньютона. Применение основного закона динамики и дифференциальных уравнений движения материальной точки при решении задач. Основные свойства внутренних и внешних сил механической системы. Вычисление работы сил.
курсовая работа [347,8 K], добавлен 11.05.2013