Кристаллы и их электрические свойства

Электрические свойства кристаллов. Классическая электронная теория электропроводности металлов. Классификация проводниковых материалов. Электропроводность полупроводников, сверхпроводимость и ее природа. Специфика применения квантовой электроники.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 16.10.2013
Размер файла 155,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • 1. Введение
  • 2. Электрические свойства кристаллов
  • 2.1 Электропроводность
  • 2.2 Проводники
  • 2.2.1 Классическая электронная теория электропроводности металлов
  • 2.2.2 Классификация проводниковых материалов
  • 2.3 Изоляторы
  • 2.4 Электропроводность полупроводников
  • 3. Сверхпроводимость и ее природа
  • 3.1 Квантовая механика
  • 3.2 Квантовый бильярд
  • 3.3 Сверхпроводимость
  • 3.4 Применение сверхпроводимости заманчиво и затруднительно
  • 4. Квантовая электроника
  • 4.1 Применение квантовой электроники
  • 5. Заключение
  • Список литературы

1. Введение

Кристаллы возникают, как продукты жизнедеятельности организмов. В морской воде растворены различные соли. Многие морские животные строят свои раковины и скелеты из кристаллов углекислого кальция - арагонита. Кристалл обычно служит символом неживой природы. Однако грань между живым и неживым установить очень трудно, и понятие "кристалл" и "жизнь" не являются взаимоисключающими.

Кристаллы и живой организм представляют собой примеры осуществления крайних возможностей в природе. В кристалле неизменными остаются не только атомы и молекулы, но также их взаимное расположение в пространстве.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах "на счастье" и "своих камнях", соответствующих месяцу рождения. Все драгоценные природные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита.

Одно из новых научно-технических направлений, сформировавшихся на наших глазах, - космическое материаловедение: получение новых веществ и материалов и улучшение их веществ в невесомости.

кристалл электрический квантовая электроника

2. Электрические свойства кристаллов

Электрические свойства кристаллов - свойства, связанные с электрической поляризацией, или самопроизвольной, или под влиянием внешних воздействий: нагревания, приложенного электрического поля, механического воздействия.

2.1 Электропроводность

Электропроводность - свойство некоторых тел проводить электрических ток. Все вещества делятся на проводящие электрический ток (проводники), полупроводники и диэлектрики (изоляторы).

В проводниках, помещенных в электрическое поле, возникает электрический ток - направленное движение заряженных частиц. Хорошими проводниками являются металлы, с повышением температуры электропроводность металлов уменьшается. В отношении электропроводности кристалл выступает как непрерывная однородная среда.

Кристаллы-диэлектрики (ионные и ковалентные) при обычных условиях не проводят электрический ток. Их можно наэлектризовать путем различных воздействий: трением, давлением, облучением, нагреванием и т.п.

2.2 Проводники

В некоторых веществах валентные электроны свободно перемещаются между атомами. Прежде всего, к этой категории относятся металлы, в которых электроны внешних оболочек буквально находятся в "общей собственности" атомов кристаллической решетки (Химические связи и Электронная теория проводимости). Если подать на такое вещество электрическое напряжение (например, подключить к двум его концам полюса аккумуляторной батареи), электроны начнут беспрепятственное упорядоченное движение в направлении южного полюса разности потенциалов, создавая, тем самым, электрический ток. Токопроводящие вещества подобного рода принято называть проводниками.

Самые распространенные в технике проводники - это, конечно же, металлы, прежде всего медь и алюминий, обладающие минимальным электрическим сопротивлением и достаточно широко распространенные в земной природе. Именно из них, в основном, изготавливаются и высоковольтные электрические кабели, и бытовая электропроводка. Имеются и другие виды материалов, обладающих хорошей электропроводностью, - это, в частности, солевые, щелочные и кислотные растворы, а также плазма и некоторые виды длинных органических молекул.

В этой связи важно помнить, что электропроводность может быть обусловлена наличием в веществе не только свободных электронов, но и свободных положительно и отрицательно заряженных ионов химических соединений. В частности, даже в обычной водопроводной воде растворено столько всевозможных солей, разлагающихся при растворении на отрицательно заряженные катионы и положительно заряженные анионы, что вода (даже пресная) является весьма хорошим проводником, и об этом нельзя забывать, работая с электрооборудованием в условиях повышенной влажности - иначе можно получить весьма ощутимый удар током.

2.2.1 Классическая электронная теория электропроводности металлов

Если металлическую пластинку, вдоль которой течет постоянный электрический ток,

поместить в перпендикулярное к ней магнитное поле, то между гранями,

параллельными направлениям тока и поля возникает разность потенциалов U=j1-j2. Она называется Холловской разностью потенциалов.

Основная идея этой теории состоит в том, что электроны в металле свободны и образуют своеобразный электронный газ, подобный идеальному газу.

При столь большой концентрации электронов их взаимодействие между собой, как и с ионами решётки металла, очень велико. Однако средняя сила, действующая на каждый электрон со стороны всех остальных электронов и ионов, равных нулю, и поэтому в известном приближении такой электрон можно рассматривать как свободный, который взаимодействует с ионами решётки только при упругих соударениях. Следовательно, электронный газ, подобно идеальному газу, обладает лишь кинетической энергией

mv2T/2=3/2kT,

где

m - масса электрона; v2T - средняя квадратичная скорость его движения; k - постоянная Больцмана; Т - абсолютная температура. Это выражение позволяет определить среднюю квадратичную скорость теплового движения электрона:

VT=vv2T=v3kT/m.

Хаотическое тепловое движение электронов и непрерывные столкновения с ионами кристаллической решётки приводят к тому, что нельзя указать преимущественного направления движения заряда - в проводнике нет электрического тока.

Следовательно, ток может появиться лишь при наличии электрического поля, сообщающего всем электронам некоторую добавочную, "дрейфовую" скорость, направленную вдоль поля.

Одним из успехов классической электронной теории является также объяснения связи между электропроводностью металлов и их теплопроводностью.

Действительно, обладая энергией теплового движения, электроны проводимости участвуют в переносе тепла в металле и, чем выше концентрация электронов, от которой зависит электропроводность, тем больше и теплопроводность металла.

Прямая пропорциональная зависимость электропроводности и теплопроводности была установлена опытным путём И. Видеманом и Р. Францем ещё в 1853 г.

Открытый ими закон имеет вид:

x/г=AT,

х - коэффициент теплопроводности; Т - абсолютная температура; А-константа. На основе электронной теории Лоренца вычислил величину этой константы. В 1901 г. Физик Э. Рике поставил следующий опыт. Через три металлических цилиндра (медный, алюминиевый, медный), одинакового радиуса, которые плотно соприкасались друг с другом хорошо отшлифованными торцевыми поверхностями, в течении очень долгого времени пропускали ток. При этом через цилиндры прошёл заряд 3,5*10 - 6к. тщательное взвешивание цилиндров до опыта и

после него показало, что масса их не изменилась. Это позволило установить, что электропроводность металлов обусловлена перемещением таких заряжённых частиц, которые являются общими для всех металлов.

В 1912 году советские физики Л.И. Мандельштам и Н.Д. Папалекси на опыте по наблюдению инерционного движения заряжённых частиц в металлическом проводнике подтвердили, что в металле имеются такие частицы, которые слабо связаны с кристаллической решёткой.

2.2.2 Классификация проводниковых материалов

Проводники делятся на:

электронные (металлы; полупроводники);

ионные (электролиты);

смешанные, где имеет место движение как электронов, так и ионов (напр., плазма).

По признаку - удельное электрическое сопротивление (р):

высокоэлектропроводные (низкоомные) проводниковые материалы - используются в качестве проводников;

высокоомные (резистивные) проводниковые материалы - используются в качестве различного рода сопротивлений и резистивных элементов;

(иногда выносят в отдельную группу) материалы, имеющие особенности изменения сопротивления под действием внешних возмущений - терморезистивные (под действием температуры), тензорезистивные (под действием упругих деформаций и напряжений), фоторезистивные (под действием излучения).

По роду применения проводниковые материалы подразделяются на группы:

проводники с высокой проводимостью - металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры и пр.;

конструкционные материалы - бронзы, латуни, алюминиевые сплавы и т.д., применяемые для изготовления различных токоведущих частей;

сплавы высокого сопротивления - предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т.п.;

контактные материалы - применяемые для пар неразъемных, разрывных и скользящих контактов;

материалы для пайки всех видов проводниковых материалов.

2.3 Изоляторы

Во многих других веществах (в частности, в стекле, фарфоре, пластмассах) электроны прочно привязаны к атомам или молекулам и не способны к свободному перемещению под воздействием приложенного извне электрического напряжения. Такие материалы называются изоляторами.

Чаще всего в современной технике в качестве электроизоляторов используются различные пластмассы. По сути, любой пластик состоит из полимерных молекул - то есть очень длинных цепочек органических (водородно-углеродных) соединений, - которые, к тому же, образуют сложные и весьма прочные взаимные переплетения. Проще всего структуры полимера представить себе в виде тарелки перепутавшейся и слипшейся длинной и тонкой лапши. В таких материалах электроны прочно привязаны к своим сверхдлинным молекулам и не способны покинуть их под воздействием внешнего напряжения. Хорошими изоляционными свойствами обладают и аморфные вещества, такие как стекло, фарфор или резина, не имеющие жесткой кристаллической структуры. Они также нередко используются в качестве электроизоляторов.

В 1880 г. французские учёные-физики Пьер и Жак Кюри открыли пьезоэлектрический эффект.

Пьезоэлектрический эффект заключается в следующем.

Если из кристалла кварца (кварц-диэлектрик) вырезать определённым образом пластинку поместить её между двумя электродами, то при сжатии кварцевой пластинки на электродах появятся равные по величине, но различные по знаку заряды.

Если изменить направление силы, действующей на пластинку (вместо того чтоб сдавить кварц его будут растягивать), то изменяются и знаки зарядов на

электродах: на том электроде, где при сжатии возникал положительный заряд, при растяжении появится отрицательный. При этом, чем больше сила сжимающая или растягивающая пластинку, тем больше и величина зарядов, возникающая на электродах.

В середине XIX в. были также обнаружены диэлектрики, которые назвали электретами.

Самое характерное свойство электретов - способность нести на своих

противоположных сторонах заряды различного знака, которые могут сохраняться в течение весьма длительного времени. Так, для электретов из карнаубского воска и его смесей это время составляет годы, керамические электреты сохраняют заряд в течение двух лет, электреты из полимеров имеют время жизни месяцы.

Объяснить этот обширный экспериментальный материал об электрических свойствах диэлектриков стало возможным тогда, когда появилась теория, объясняющая строение твёрдых тел, связи между их структурными частицами.

Есть такие твёрдые тела, у которых центры положительных и отрицательных зарядов отдельных атомов или молекул совпадают.

Если такие вещества поместить в электрическое поле, то возникает "электрическая деформация" структурных частиц, т.е. электрическое поле смещает электрические заряды, входящие в состав диэлектрика, от тех положений, которые они занимали в отсутствие поля. Так, например, если диэлектрик состоит из нейтральных атомов, то в присутствии поля их электронные оболочки смещаются относительно положительно заряжённых ядер.

Если кристаллическая решётка твёрдого тела состоит из положительно и отрицательно заряжённых ионов, например, решетка NaCl, то в электрическом поле ионы равных знаков смещаются относительно друг друга. В результате упругого смещения каждой пары зарядов образуется система, обладающая некоторым дополнительным моментом p=ql, а весь диэлектрик поляризуется.

Помимо неполярных диэлектриков, существует большой класс диэлектриков, молекула которых и при отсутствии внешнего электрического поля обладают дипольным моментом. Постоянный дипольный момент могут иметь многие молекулы, у которых центры симметрии составляющих их положительных и отрицательных зарядов не совпадают друг с другом. Типичными представителями полярного твёрдого диэлектрика служат лед, твердая соляная кислота, органическое стекло и др.

Поляризация неполярного диэлектрика.

При помещении полярного диэлектрика в электрическое поле происходит ориентация полярных молекул так, чтобы их оси совпадали с направлением линий напряжённости электрического поля. Однако тепловое движение частиц вещества препятствует такой ориентации. В результате действия поля и теплового движения устанавливается равновесное состояние, при котором полярные молекулы приобретают в среднем некоторую направленную ориентацию, а весь диэлектрик благодаря этому приобретает дипольный момент в направлении поля, т.е. поляризуется.

Ориентационный механизм поляризации полярного диэлектрика.

Рассмотренный вид поляризации называют ориентационной или дипольной. В этом виде поляризации, в отличие от поляризации смещения, существенную роль играет температура диэлектрика.

Диэлектрическая проницаемость полярных диэлектриков больше, чем у неполярных, так как у них по существу наблюдаются оба вида поляризации: ориентационная и упругая поляризация смещения.

Если внешнее поле убрать, то полярные и неполярные диэлектрики деполяризуются, т.е. поляризация их практически исчезает.

Существует третий тип диэлектриков, у которых наблюдается самопроизвольная поляризация. В этом случае внутри диэлектрика, без какого бы то ни было воздействия внешнего поля, самопроизвольно возникают однородно поляризованные области, так называемые домены. В отсутствии внешнего поля направления дипольных моментов областей различны. При наложении поля происходит "ориентация" доменов и весь диэлектрик поляризуется. Так как каждый домен имеет большой дипольный момент, то диэлектрическая проницаемость таких диэлектриков обычно очень велика, порядка 104.

Диэлектрики такого типа называют сегнетоэлектриками.

Сегнетоэлектрики отличаются от других диэлектриков рядом специфических свойств. Сегнетоэлектрики применяют при изготовлении лазеров и в запоминающих устройствах электронно-вычислительных машин.

И проводники, и изоляторы играют важную роль в нашей техногенной цивилизации, использующей электричество в качестве основного средства передачи энергии на расстоянии. По проводникам электроэнергия поступает от электростанций в наши дома и на всевозможные производственные предприятия, а изоляторы обеспечивают нашу безопасность, ограждая от губительных последствий прямого контакта человеческого организма с высоким электрическим напряжением.

2.4 Электропроводность полупроводников

Наконец, имеется малочисленная категория химических элементов, занимающих промежуточное положение между металлами и изоляторами (самые известные из них - кремний и германий). В кристаллических решетках этих веществ все валентные электроны, на первый взгляд, связаны химическими связями, и свободных электронов для обеспечения электрической проводимости, казалось бы, оставаться не должно. Однако на деле ситуация выглядит несколько иначе, поскольку часть электронов оказывается выбитой со своих внешних орбит в результате теплового движения по причине недостаточной энергии их связи с атомами. В результате при температуре выше абсолютного нуля они все-таки обладают определенной электропроводностью под воздействием внешнего напряжения. Коэффициент проводимости у них достаточно низкий (тот же кремний проводит электрический ток в миллионы раз хуже меди), но какой-то ток, пусть и незначительный, они все-таки проводят. Такие вещества называют полупроводниками.

Как известно, полупроводник - это твёрдое тело с ковалентной связью между атомами. При абсолютном нуле температуре все связи между атомами заполнены, в веществе нет зарядов, способных перемещаться под действием приложенного электрического поля. При увеличении температуры в полупроводнике возникают носители зарядов двух типов: электроны и дырки.

Как выяснилось в результате исследований, электрическая проводимость в полупроводниках, однако, обусловлена не только движением свободных электронов (так называемой n-проводимостью за счет направленного движения отрицательно заряженных частиц).

Имеется и второй механизм электропроводности - при этом весьма необычный. При высвобождении электрона из кристаллической решетки полупроводника за счет теплового движения на его месте образуется так называемая дырка - положительно заряженная ячейка кристаллической структуры, которая может в любой момент оказаться занятой отрицательно заряженным электроном, перескочившим в нее с внешней орбиты соседнего атома, где, в свою очередь, образуется новая положительно заряженная дырка. Такой процесс может продолжаться сколь угодно долго и выглядеть со стороны (в макроскопическом масштабе), всё будет так, что электрический ток под внешним напряжением обусловлен не движением электронов (которые всего лишь перескакивают с внешней орбиты одного атома на внешнюю орбиту соседнего атома), а направленной миграцией положительно заряженной дырки (дефицита электрона) в направлении отрицательного полюса приложенной разности потенциалов.

В итоге в полупроводниках наблюдается и второй тип проводимости (так называемая дырочная или p-проводимость), обусловленная также движением отрицательно заряженных электронов, но, с точки зрения макроскопических свойств вещества, представляющаяся направленным током положительно заряженных дырок к отрицательному полюсу.

Явление дырочной проводимости проще всего проиллюстрировать на примере дорожной пробки. По мере продвижения вперед машины, застрявшей в ней, на ее месте образуется свободное пространство, которое тут же занимает следующая машина, место которой сразу же занимает третья машина и т.д. Этот процесс можно представить себе двояко: можно описывать редкое продвижение отдельных машин из числа стоящих в длинной пробке; проще, однако, характеризовать ситуацию с точки зрения эпизодического продвижения в противоположном направлении немногочисленных пустот между застрявшими в пробке машинами.

Именно руководствуясь подобной аналогией, физики и говорят о дырочной проводимости, условно принимая за данность, что электрический ток проводится не благодаря движению многочисленных, но редко трогающихся с места отрицательно заряженных электронов, а благодаря движению в противоположном направлении положительно заряженных пустот на внешних орбитах атомов полупроводников, которые они условились называть "дырками".

Таким образом, дуализм электронно-дырочной проводимости носит чисто условный характер, поскольку с физической точки зрения ток в полупроводниках, в любом случае, обусловлен исключительно направленным движением электронов.

Рассмотрим электропроводность полупроводника с энергетической точки зрения.

Чистый полупроводник при абсолютном нуле температуры и при отсутствии внешнего воздействия описывает энергетической диаграммой, в которой валентная зона полностью заполнена, а в свободной зоне нет электронов. Полупроводник подобен диэлектрику. Если к такому проводнику подводить энергию извне, то часть электронов, находящихся в валентной зоне, получив дополнительную энергию, равной ширине запрещённой зоны, попадёт в свободную зону. Благодаря наличию большого количества свободных уровней в свободной зоне свободные электроны легко изменяют свою энергию под действием электрического поля. Это движение свободных электронов и представляет собой электрический ток в полупроводнике.

Кроме этого, с уходом электронов из валентной зоны в свободную, создаются условия для перемещение электронов в самой валентной зоне. При этом оказывается, что движение в такой почти полностью заполненной зоне эквивалентно может быть описано движением "пустых" мест - "дырок", если им приписать положительный знак. Под действием электрического поля энергия "дырок" тоже изменяется, и общий ток в полупроводнике равен I=Iэл+Iдыр.

Так как в чистом полупроводнике число электронов равно числу дырок, то и те и другие принимают участие в электропроводности в равной мере. Такую электропроводность полупроводников называют собственной.

Полупроводники нашли широкое практическое применение в современной радиоэлектронике и компьютерных технологиях именно благодаря тому, что их проводящие свойства легко и точно контролируются посредством изменения внешних условий.

3. Сверхпроводимость и ее природа

3.1 Квантовая механика

Так называется наука, которая заняла видное место в физике в 1920-х гг. Под квантовой механикой мы понимаем здесь нерелятивистскую квантовую теорию, изучающую законы движения микрочастиц при скоростях, гораздо меньших скорости света. Эти законы "работают" в основном на атомных масштабах расстояний, однако в некоторых случаях проявляются и в макромире. Можно назвать несколько квантовых явлений, которые наблюдаются почти без приборов, - сверхпроводимость, лазерный свет, магнитное упорядочение атомов ферромагнетика и др. Хотя эта наука уже полностью разработана, ее законы до сих пор непривычны для людей.

Рассказывая о сверхпроводимости, нужно обязательно вступать в царство квантовой механики. Без этого обойтись нельзя, так как само явление сверхпроводимости существенно квантовое, и его не удавалось понять, пока не было в основном завершено построение квантовой механики.

Для того чтобы придать механизму сверхпроводимости наглядность, надо рассматривать поведение электронов в кристаллах.

Если бы это были частицы, подчиняющиеся обычной механике, то было бы удобно уподобить их бильярдным шарам.

Бильярдный шар находится где-то на бильярдном столе, он движется с какой-то скоростью. Мы привыкли, что его положение, скорость и энергия могут быть любыми, уж во всяком случае, они никак не зависят от размеров бильярдного стола и высоты его бортов. Попробуем устроить на бильярде "твердое тело" - расставим шары правильными рядами. Это будет "кристаллическая решетка", шары изображают тяжелые атомные остовы. Атомные остовы, или ионы, действительно намного тяжелее электрона. Напомним, что каждый протон и нейтрон, из которых составлено ядро атома, почти в 2000 раз тяжелее электронов.

Теперь пустим на бильярдный стол небольшой шарик, который будет сталкиваться с большими шарами. При этом энергия почти не будет теряться, если отношение их масс велико. Будем считать, что движение маленького шарика тормозится только за счет трения о сукно стола. И трение, и столкновения с большими шарами важны для понимания поведения электрона в кристалле. Конечно, в кристалле и то и другое свойство относятся к рассеянию электрона на ионах. При столкновении электрона с ионом изменяется направление его движения (как и при столкновении большого шара с очень маленьким). И те же столкновения обеспечивают "трение" - потерю энергии (трение о сукно).

Однако и после этого разъяснения "бильярдная" модель твердого тела вызывает недоумение. Решетка из больших бильярдных шаров отнюдь не кажется удобным "сосудом", "трубой" для движения шариков электронов. Попробуйте "включить ток" - толкнуть "электрон" сквозь "решетку". Если в "решетке" достаточно много шаров, протолкнуть электрон будет очень нелегко, сколько бы ни вмешиваться в его движение. Конечно, опытный игрок сможет пустить электрон точно между рядами шаров, но в металлическом кристалле ток течет отнюдь не только вдоль граней!

Таким образом, эта модель не годится для описания твердого тела.

3.2 Квантовый бильярд

Для устройства такого бильярда возьмем обычное плоское корыто, наполненное водой, волны на поверхности воды будут "электронами". Для нашей модели необходимо возбуждать волны с помощью длинной линейки, частицы изображаются плоскими бегущими волнами, а не круговыми волнами от упавшего в воду камешка.

К сожалению, весьма сложно создать в домашних условиях довольно большой полигон, чтобы спокойно наблюдать движение волны "электрона". После того как волна дойдет до стенки и отразится, возникнет рябь (интерференция), и надо будет ждать, пока вода успокоится для следующего опыта.

На квантовом бильярде можно попробовать устроить "кристаллическую решетку". Прикрепим к дну установленные правильными рядами палочки или что-нибудь еще в этом роде, так, чтобы они выступали над водой. Пустим на "кристаллическую решетку" плоскую волну "электрон". Она будет рассеиваться на каждой палочке - "атоме". От каждой палочки будут расходиться круги, которые затем, однако, сложатся, и мы увидим необычный результат: волна "электрон" пройдет через "кристалл". Конечно, на нашем кустарном бильярде она окажется искаженной, но можно доказать такое утверждение: если бы мы всё сделали совершенно точно, то и волна прошла бы без искажений.

Был проиллюстрирован один из результатов квантовой механики: электрон проходит через правильную кристаллическую решетку, "не замечая" ее. Но это справедливо только для идеальной решетки. Любое отклонение от идеальности нарушает движение электронов и тем самым вносит вклад в электрическое сопротивление. Отклонения от идеальности возникают по двум причинам.

Первая причина - фононы. Атомы решетки всё время колеблются и отклоняются от средних положений - тем больше, чем выше температура. Именно отсюда возникает температурная зависимость электрического сопротивления.

Вторая причина - дефекты. Это примеси - "чужие" атомы в узлах решетки; вакансии - отсутствие атома там, где он должен быть;

"разрывы" решетки, которые называются дислокациями, и т.д. Видов дефектов набирается довольно много, они отвечают за остаточное электрическое сопротивление - с0.

3.3 Сверхпроводимость

Явление сверхпроводимости было открыто голландским физиком Камерлинг-Оннесом в 1911 году. Камерлинг-Оннесу первому удалось получить жидкий гелии, и он использовал его для создания криостатов - приборов, в которых можно поддерживать очень низкую температуру. В частности, он решил проверить правильность существовавших в то время представлений о поведении электрического сопротивления при низких температурах. Измеряя сопротивление ртути, Камерлинг-Оннес обнаружил, что оно скачком обращается в нуль при температуре около 4 К.

Рисунок скопирован с одной из первых работ Оннеса, посвященной сверхпроводимости. По современным данным, график надо сдвинуть на 0,05 К - у Оннеса была неточная шкала температур.

Это явление было названо сверхпроводимостью, а температура перехода в сверхпроводящее состояние - критической. В настоящее время известно много сверхпроводников с самыми разными критическими температурами, от долей градуса до 100 К.

Создание макроскопической теории сверхпроводимости относится к 1957 - 1958 гг.

Объяснение механизма сверхпроводимости невозможно в рамках классических концепций, так что оно является триумфом квантовой теории. Сущность дела состоит в том, что между электронами действуют силы кулоновского отталкивания, тем не менее в твердых телах возникают на ярду с ними также и силы притяжения между электронами, обусловленные тем, что электроны могут обмениваться фононами, т.е. квантами упругих колебаний тела. Это притяжение приводит к образованию вблизи энергетической поверхности Ферми связанных пар электронов.

Квантовые закономерности приводят к тому, что эти пары образуют так называемый Бозе-конденсат, обладающий свойствами сверхтекучести. Поскольку эти пары электронов обладают электрическим зарядом, то их сверхтекучесть равносильна сверхпроводимости.

Так в чем же заключается явление сверхпроводимости, которое смогла полностью объяснить лишь квантовая теория.

Сопротивление всех чистых (лишённых примесей) металлов при приближении к абсолютному нулю температуры стремится к нулю, но в некоторых металлах изменение это происходит не плавно: при некоторой определённой температуре сопротивление внезапно (скачком) падает до нуля или, во всяком случае, до неизмеримо малой величины. Резкость этого скачка характеризуется тем, что в некоторых металлах он происходит при изменении Т всего лишь на 0,001°.

Температура скачка называется критической температурой, а состояние металла ниже этой температуры, характеризуемое отсутствием сопротивления постоянному току, называется сверхпроводящим состоянием.

Последующие исследования сверхпроводников позволили обнаружить многие их замечательные свойства. Оказалось, что сверхпроводимость разрушается магнитным полем. Критическое поле, при котором это происходит зависит от температуры. Далее обнаружилось, что сверхпроводимость исчезает и в том случае, когда по образцу пропускают достаточно большой ток.

Наконец, был обнаружен так называемый эффект Мейснера.

О его наблюдении сообщили немецкие физики В. Мейснер и Р. Оксенфельд в 1933 году.

До сих пор сверхпроводимостью называли исчезновение электрического сопротивления. Однако сверхпроводимость - нечто более сложное, чем просто отсутствие сопротивления. Это еще и определенная реакция на внешнее магнитное поле. Эффект Мейснера заключается в следующем:

если поместить металл в не очень сильное магнитное поле и понижать температуру, то при переходе металла в сверхпроводящее состояние силовые линии поля вытолкнутся из него.

Последующее изучение показало, что на самом деле при таком переходе у поверхности сверхпроводника возникает небольшой слой толщиной 10-5-10-6 см, в котором циркулируют токи, полностью экранизирующие внутренние области образца от внешнего поля. Толщина этого слоя называется глубиной проникновения.

3.4 Применение сверхпроводимости заманчиво и затруднительно

Знакомство с удивительными свойствами сверхпроводящих материалов сразу вызывает мысль о необходимости их применения в технике. Этой задачей стали заниматься еще в 1920-х гг. Очень заманчиво не тратить энергию на потери в проводах. Стоит только напомнить, что в современных воздушных линиях электропередачи теряется до 10% передаваемой энергии и еще больше потери энергии на преобразование тока.

Однако не так-то просто заменить все провода на сверхпроводящие. Первая и очевидная трудность - нужны низкие температуры. Подбираться к абсолютному нулю температур непросто и недешево. Многие стоящие на этом пути трудности уже преодолены. Скажем, затраты на собственно охлаждение не очень велики. Более существенным препятствием является сложность соответствующей аппаратуры, для создания и обслуживания которой требуются "высокая" технология и высокая квалификация.

Все работающие сверхпроводящие устройства должны быть тщательно изолированы от внешней среды. Гелий - дорогой и редкий материал, поэтому для уменьшения его потерь применяется дополнительное внешнее охлаждение жидким азотом. Такое двойное охлаждение сильно усложняет аппарат. Уже отсюда ясно, почему столь большое внимание уделялось повышению критической температуры сверхпроводимости, и почему столь большой отклик вызвали во второй половине 1980-х гг. открытия ВТСП-материалов.

(ВТСП - высокотемпературная сверхпроводимость или высокотемпературные сверхпроводники. Так обычно именуются материалы, чья критическая температура больше, чем температура кипения азота (Tb = 77,4 К). Соответственно наблюдать сверхпроводимость можно с использованием лишь жидкого азота, без гелия. В 90-х годах ХХ века стала употребляться и аббревиатура НТСП - низкотемпературная сверхпроводимость или низкотемпературные сверхпроводники, до этого в эксперименте они все были низкотемпературными).

Реализовать идею линии электропередачи без потерь пока не удалось. В настоящее время технически сложно создать столь протяженное и равномерно охлаждаемое устройство. Пока работают лишь компактные сверхпроводящие устройства, которые удобно охлаждать и защищать.

Первые такие устройства появились в 1960-х гг. после того, как были открыты материалы, пригодные для изготовления проводов. По большому счету, два главных вида применений сверхпроводимости в технике - магниты с обмоткой из сверхпроводящего провода и СКВИДы.

4. Квантовая электроника

Квантовая электроника - область электроники, охватывающая изучение и разработку методов и средств усиления и генерации электромагнитных колебаний на основе эффекта вынужденного излучения атомов, молекул и твердых тел.

Часто под термином "Квантовая электроника" понимают совокупность квантовых электронных приборов и устройств - молекулярных генераторов и квантовых усилителей, оптических квантовых генераторов (лазеров) и др., - в которых используется вынужденное излучение.

К квантовой электронике относят также вопросы нелинейного взаимодействия мощного лазерного излучения с веществом и применение такого взаимодействия в устройствах преобразования частоты лазерного излучения.

Наиболее крупным прикладным разделом квантовой электроники является лазерная техника, связанная с созданием лазеров различных типов, исследованием свойств лазерного изучения и его использованием для решения различных практических задач.

Квантовая электроника сформировалась и развивалась как самостоятельная область науки и техники во второй половине ХХ века.

История квантовой электроники неразрывно связана с радиоспектроскопией, исследующей свойства вещества с помощью избирательного (резонансного) поглощения радиоволн СВЧ диапазона. Именно в радиоспектроскопии зародилась идея о том, что путём создания инверсии населённостей энергетических уровней в среде можно добиться усиления радиоволн. Если же какая-либо система усиливает радиоизлучение, то при соответствующей обратной связи она может и генерировать это излучение.

Первый прибор квантовой электроники - молекулярный генератор на аммиаке, созданный в 1955 одновременно в СССР (Басов и Прохоров) и США (Ч. Таунс и др.), по существу, является радиоспектроскопом, который, однако, устроен так, что молекулы аммиака не поглощают, а излучают радиоволны. В конце 50-х гг. В СССР и США малошумящие парамагнитные квантовые усилители, в которых активной средой служили парамагнитные кристаллы, находящиеся при температуре жидкого гелия (4,2 К) и возбуждаемые вспомогательным источником СВЧ излучения. В эти же годы широко исследовалась возможность создания приборов квантовой электроники оптического диапазона длин волн.

В 1960 первый такой прибор - рубиновый лазер - создан в США. Кристалл рубина возбуждается импульсной ксеноновой лампой. В последующие годы лазеры на диэлектрических кристаллах, возбуждаемые внешним источником оптической накачки, получили широкое распространение и составляют одну из важнейших разновидностей лазеров. Усиление в таких лазерах осуществляется за счет вынужденных переходах в электронных оболочках ионов-активаторов (хром в кристаллах рубина, неодим в стекле и алюминиевом гранате).

В 1960 создан (США) первый газовый лазер на смеси атомов неона и гелия, возбуждаемых электрическим разрядом в газе низкого давления. Маломощные гелий-неоновые и мощные лазеры на CO2 стали наиболее распространёнными представителями семейства газовых лазеров, охватывающих широкий спектральный диапазон - от глубокого ультрафиолетового (0,12 мкм) до инфракрасного, смыкающегося с субмиллиметровым (1 нм).

В 1959 Басов с сотрудниками теоретически обосновали возможность создания полупроводникового лазера; первые такие лазеры созданы в 1962-63 гг. (СССР и США).

4.1 Применение квантовой электроники

Приборы квантовой электроники имеют ряд характерных особенностей, отличающих их от электронных приборов других типов. Так молекулярные генераторы СВЧ диапазона обладают исключительно высокой стабильностью частоты колебаний ~10-13 (например, часы на основе такого генератора "уйдут" на 3 секунды за 1 млн. Лет). Квантовые парамагнитные усилители СВЧ имеют рекордно низкий уровень собственных шумов (не св. 10 К) по сравнению с усилителями других типов и поэтому применяются в устройствах радиоастрономии, системах дальней космической связи. На основе лазеров возникли новые области науки и техники: нелинейная оптика, лазерная химия, лазерная технология, голография, лазерная медицина, лазерная интерферометрия и др. Мощный направленный лазерный пучок, сфокусированный на поверхности любого вещества, способен расплавить и испарить его. Это явление лежит в основе многих технологических применений лазеров. Лазерный луч служит незаменимым инструментом интерферометрических измерений с высокой точностью, примерно сравнимой с размерами атомов и молекул. Способность активной среды некоторых лазеров накапливать энергию возбуждения и затем излучать её в виде короткого (10-7-10-9) импульса с недостижимой прежде мощностью (109-1010Вт) легла в основу лазерной импульсной локации и дальнометрии. Чрезвычайно малая расходимость лазерного излучения (примерно на 4 порядка меньше, чем у СВЧ излучения при сравнимых диаметрах антенных систем) делает возможным его передачу на огромные расстояния, недостижимые для радиолокации. Инжекционные ПП лазеры, непосредственно преобразующие электрический ток в когерентное оптическое излучение, являются самыми миниатюрными приборами квантовой электроники, на основе которых развиваются такие важные направления электроники, как оптоэлектроника, системы записи и считывания информации.

Лазеры активно вторглись в технологию современной микроэлектроники (процессы подгонки резисторов, контроля микросхем, скрайбирования и отжига кремниевых пластин, фотолитографии и т.д.). Лазеры получили применение и в военном деле.

Промышленность выпускает различные типы лазеров, которые используются не только как эффективный инструмент научных исследований, но и для решения разного рода практических задач. Основные преимущества лазерного воздействия - малая область распространения тепла, отсутствие переноса электрических зарядов и механического контакта, возможность работать внутри вакуумных баллонов и в агрессивных газах.

Одним из первых применений лазеров было измерение расстояния до Луны с большей точностью, чем это было сделано радиофизическим методом. После того как на Луне был установлен уголковый отражатель, расстояние до неё было измерено с точностью до 1,5 м. Существует лазерная локационная служба расстояния Земля - Луна.

Новые возможности открыло применение лазеров в оптических линиях связи. Развитие оптических линий связи с их задачами модуляции колебаний, детектирования, гетеродинирования, преобразования частоты световых колебаний потребовало переноса в оптику методов радиофизики и теории колебаний.

Возникла нелинейная оптика, изучающая нелинейные оптические эффекты, характер которых зависит от интенсивности света (самофокусировка света, генерация оптических гармоник, вынужденное рассеяние света, параметрическая генерация света, самопросветление или самозатемнения света). Методами нелинейной оптики создан новый класс перестраиваемых по частоте источников когерентного излучения в ультрафиолетовом диапазоне. Нелинейные явления в оптике существуют только в узком диапазоне интенсивностей лазерного излучения. При малых интенсивностях нелинейные оптические эффекты отсутствуют, затем по мере роста интенсивности они возникают, возрастают, но уже при потоках интенсивности 1014 вт/см2 все известные вещества разрушаются лазерным лучом и превращаются в плазму.

Получение и исследование лазерной плазмы является одним из наиболее интересных применений лазеров. Осуществлен термоядерный синтез, инициируемый лазерным излучением.

Благодаря высокой концентрации электромагнитной энергии в пространстве и по спектру лазеры находят широкое применение в микробиологии, фотохимии, химическом синтезе, диссоциации, катализе. Квантовая электроника привела к развитию голографии - метода получения объёмных изображений предметов восстановлением структуры световой волны, отражённой предметом.

Производство приборов квантовой электроники в промышленно развитых странах сформировалось в крупную отрасль промышленности.

5. Заключение

Квантовая механика - волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений.

Квантовая механика позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников).

Только на основе квантовой механики удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы квантовой механики непосредственно проявляются в поведении макроскопических объектов.

Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах квантовой механики. Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантово-механическая теория излучения. Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Таким образом, квантовая механика становится в значительной мере "инженерной" наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

Сегодня физики твердо верят в то, что наш мир един и познаваем. Все разнообразие природных явлений просто обязано описываться в рамках некоего единого универсального подхода. Другое дело, что человек пока еще не до конца сумел понять глубинную сущность законов природы и пределы познаваемости мира.

Однако большинство физиков убеждены в том, что, если идти по пути, указанном квантовой механикой и квантовой теорией поля, будет открыт тот самый свод законов и правил, который и правит нашим удивительно красивым миром.

Список литературы

1. Банн Ч. Кристалл. Их роль в природе и науке. - М., 1970 г.

2. Уэрт Ч., Томсон Р. Физика твёрдого тела. - М., 1989 г.

3. Виталий ГИНЗБУРГ, Евгений АНДРЮШИН

Сверхпроводимость, Альфа-М, 2006 г.

4. Академик А.А. Абрикосов, Журнал "Квант" (№6, 1988 год), Редактирование, оцифровка: KRЫSA. "

5. Гинзбург В.Л. О науке, о себе и о других. М.: Физматлит, 2003 (гл.6 и 7 в этой книге посвящены сверхпроводимости и сверхтекучести).

6. Гинзбург В.Л. О сверхпроводимости и сверхтекучести. Автобиография. М.: Физматлит, 2006.

7. Шмидт В.В. Введение в физику сверхпроводников. М.: МЦНМО, 2000.

8. Ярив А., Квантовая электроника, пер. с англ., 2 изд., М., 1980.

Размещено на Allbest.ru


Подобные документы

  • Сведения о полупроводниках их классификация. Собственная и примесная проводимость полупроводников. Характеристика группы органических полупроводников. Электропроводность низкомолекулярных органических полупроводников. Электрические свойства полимерных.

    курсовая работа [779,2 K], добавлен 24.07.2010

  • Основные свойства полупроводников. Строение кристаллов. Представления электронной теории кристаллов. Статистика электронов в полупроводниках. Теория явлений переноса. Гальваномагнитные и термомагнитные явления. Оптический свойства полупроводников.

    книга [3,8 M], добавлен 21.02.2009

  • Классификация материалов по электропроводности. Сегнетоэлектрические материалы, их физические свойства и особенности применения в технике. Кристаллическая структура и физические свойства титаната бария. Зонная структура и электропроводность.

    дипломная работа [6,6 M], добавлен 26.03.2012

  • Исследование металлов, хорошо проводящих электрический ток. Полупроводники - твердые тела с промежуточной электропроводностью. Проявление различия полупроводников и металлов в характере зависимости электропроводности от температуры. Уравнение Шредингера.

    реферат [338,7 K], добавлен 18.02.2009

  • Поглощение света свободными носителями заряда. Электрография и фотопроводимость полупроводников. Влияние сильных электрических попей на электропроводность полупроводников. Подвижность носителей в ионных кристаллах и полупроводниках с атомной решеткой.

    реферат [1,6 M], добавлен 28.03.2012

  • Строение твердого тела. Понятие об энергетических уровнях. Классификация тел по электропроводности. Механизм образования электронной и дырочной проводимости. Примесные и собственные полупроводники. Области применения полупроводниковых материалов.

    курсовая работа [475,6 K], добавлен 12.02.2014

  • Закон Ома электропроводности металлов. Состояние металла, возникающее в процессе электропроводности. Уравнение энергетического баланса процесса электропроводности в металлах. Деформационная поляризация металлов под действием электрического тока.

    реферат [56,3 K], добавлен 26.01.2008

  • Сущность магнитного поля, его основные характеристики. Понятия и классификация магнетиков - веществ, способных намагничиваться во внешнем магнитном поле. Структура и свойства материалов. Постоянные и электрические магниты и области их применения.

    реферат [1,2 M], добавлен 02.12.2012

  • История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие [1,1 M], добавлен 14.12.2010

  • Электрические методы исследования электрофизических и фотоэлектрических свойств полупроводников. Метод нестационарной спектроскопии глубоких уровней, фотопроводимость. Шумовые свойства фоторезисторов при совместном действии напряжения и фоновой засветки.

    дипломная работа [1,1 M], добавлен 02.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.