Нанесение покрытий в электрическом поле

Анализ преимуществ процесса распыления заряженных частиц краски на изделие в электрическом поле. Эффективность зарядных устройств трибоэлектрических распылителей. Изучение напряженности электрического поля в слое при осаждении порошкового материала.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 10.08.2013
Размер файла 87,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нанесение покрытий в электрическом поле

1. Электроокраска

Окраска изделий является одним из технологических процессов, при котором применение электрического поля эффективно. Принципиально технология электроокраски заключается в распылении и зарядке частиц краски и осаждении заряженных частиц краски на изделии в электрическом поле.

В результате на изделии формируется равномерный тонкий слой краски.

Преимущества при окраске в электрическом поле по сравнению с пневматической окраской заключаются в:

1) уменьшении потерь краски до 10-20% вместо 50-70%;

2) уменьшении загрязнений окружающей среды;

3) повышении адгезии покрытия к поверхности изделия.

Процесс распыления жидкости в электрическом поле происходит следующим образом (рис. 1).

Рисунок 1:

Образующаяся на выходе из распылителя капля растет до тех пор, пока действующие на нее электрические силы не превысят силы поверхностного натяжения. Происходит нарушение устойчивости поверхности на вершине капли где поле максимально и, как следствие, выброс тонкой струйки. Далее эта тонкая струйка дробится на мелкие капли. Выброс тонкой струйки является условием мелкодисперсного распыления жидкости в электрическом поле.

На процесс распыления оказывают наибольшее влияние напряженность поля в непосредственной близости от распылителя, поверхностное натяжение, проводимость, вязкость жидкости, а также расход жидкости, то есть скорость ее поступления в зону распыления.

При малой напряженности поля распыление не происходит, так как электрическая сила недостаточна, чтобы преодолеть силу поверхностного натяжения. От распылителя отрываются крупные капли под действием своего веса. Для увеличения напряженности электрического поля стремятся уменьшить радиус закругления кромок сопла распылителя (Екромки 10кВ/см).

Если поверхностное натяжение велико, то возможно, что раньше, чем произойдет нарушение устойчивости поверхности капли, начнется коронный разряд, препятствующий дальнейшему увеличению напряженности поля у поверхности капли. Коэффициент поверхностного натяжения краски не должен превышать (4-5)/106 Н/см.

Проводимость краски оказывает решающее влияние на процесс накапливания заряда на капле жидкости. Жидкость с очень малой электрической проводимостью (менее 10-8 1/Ом/м) не распыляются в электрическом поле. Чем выше проводимость, тем быстрее подтекает заряд и больше сила, воздействующая на каплю. Однако при увеличении проводимости выше 10-2 1/Ом/м распыление краски опять прекращается. Это связано с возникновением коронного разряда на капле и внедрением в промежуток большого объемного заряда, снижающего напряженность электрического поля на кромке сопла распылителя. Оптимальная проводимость краски лежит в диапазоне 10-5-10-6 1/Ом/м.

Очень вязкие жидкости также плохо распыляются в электрическом поле, поскольку вязкость жидкости ограничивает возможность выброса тонкой нити. С увеличением вязкости растет диаметр нити и соответственно размер капель, на которые она дробится. Вязкость краски должна быть не более 0,07 Па/с. Оптимальный размер частиц краски составляет 15-30 мкм.

В промышленности применяются две системы окраски: электростатическая (лотковые и щелевые распылители) и окраска с механическим распылением (центробежные, гидравлические и пневматические распылители) (рис. 2).

Рисунок 2. - Конструкции электроокрасочных распылителей:

а) лотковый;

б) центробежный;

в) электропневматический.

Подача:

1 - краски;

2 - воздуха;

3 - коронирующий электрод.

Электростатическая окраска заключается в зарядке и распылении жидкости за счет электрических сил, действующих на каплю, находящуюся на кромке распылителя. В системах с механическим распылением используются центробежное, пневматическое, безвоздушное (при подаче под большим давлением) дробление краски. В этих распылителях электрическое поле используется только для перемещения и осаждения капель на изделие. Наибольшее распространение получили электропневматические распылители, которые обладают большей производительностью, лучше окрашивают полости и углубления в деталях, не предъявляют жестких требований к параметрам краски. Из-за наличия потоков воздуха потери краски несколько больше, чем у электростатических распылителей (20% вместо 5-10%), но существенно меньше, чем у пневматических распылителей.

2. Нанесение порошковых покрытий

Процесс нанесения порошковых полимерных материалов в электрическом поле заключается в зарядке частиц порошка, переносе их потоками воздуха к напыляемому изделию, осаждении частиц под действием электрического поля на поверхность изделия и оплавлении слоя порошка в электропечах с образованием сплошного полимерного покрытия на поверхности изделия. Достоинства метода:

почти 100% использование материала после улавливания не осевшего на изделие порошка и повторного его применения при напылении покрытия;

незначительное количество растворителей в материале краски (не более 5%) по сравнению с жидкими красками, где растворителя содержится до 50%, а значит существенно меньшее загрязнение окружающей среды газовыми выбросами;

получение покрытий с уникальными свойствами (фторопласт, полиамид, полиуретан);

получение толстых покрытий (до нескольких миллиметров) на изделиях сложной формы (для изоляционных конструкций и в химической промышленности).

Зарядку частиц порошкового материала в установках для напыления осуществляют, используя следующие два метода:

- ионную зарядку - осаждение ионов из объема газа с полем коронного разряда и статическую электризацию;

- обмен зарядами между частицами и между частицами и элементами конструкции распылителя при контакте между ними.

Для используемых при нанесении покрытий порошковых материалов с радиусами частиц а > 1 мкм ионная зарядка происходит преимущественно за счет движения ионов коронного разряда в электрическом поле и осаждения их на поверхность частиц («ударная зарядка»).

Статическая электризация осуществляется путем обмена зарядами за счет разности в работе выхода электронов у материала частиц и материала стенок в зарядном устройстве или при обмене зарядами между частицами из-за различий в химическом составе примесей, температуре, фазовом состоянии, структуре поверхности и т. д.

На практике для оценки знака зарядов статической электризации используют правило Коэна, в соответствии с которым при приведении в контакт и разъединении двух диэлектриков вещество с наибольшей относительной диэлектрической проницаемостью заряжается положительно.

Существуют два варианта устройств для нанесения порошковых полимерных покрытий в электрическом поле: с помощью распылителей (рис. 3) и с помощью камер с электрическим кипящим слоем (рис. 4).

Рисунок 3. - Нанесение покрытия с помощью распылителя:

Рисунок 4. - Нанесение покрытия в камере с кипящим слоем:

При нанесении покрытий распылителем (рис. 3) порошковый материал забирается из загрузочного бункера (2) дозирующим эжектором и во взвешенном состоянии в потоке воздуха по гибкому трубопроводу подается к распылителю (1), который выполняет две функции: формирует порошковое облако вокруг изделия и осуществляет зарядку частиц порошка. Зарядка частиц осуществляется в поле коронного разряда между иглой (4), которая соединена с источником постоянного напряжения, и заземленным изделием (3). Если частицы приобретают избыточный заряд внутри корпуса распылителя, то он называется распылителем с внутренней зарядкой. Зарядка может осуществляться как в поле коронного разряда, создаваемого внутри корпуса распылителя, так и путем статической электризации частиц порошка при трении о внутренние стенки полостей в корпусе распылителя (который в этом случае называется трибоэлектрическим распылителем).

При осуществлении зарядки частиц в поле коронного разряда внутри корпуса распылителя должны учитываться следующие два фактора:

- запирание коронного разряда ионами, осевшими на внутренние стенки камеры, в которой создается коронный разряд;

- осаждение заряженных частиц порошка на заземленный электрод зарядного устройства, что приводит к возникновению обратного коронного разряда в образующемся слое порошка на электроде и к ухудшению зарядки частиц порошка.

Рисунок 5. - Распылитель с внутренней зарядкой:

На рис. 5 показано зарядное устройство, в котором неблагоприятные факторы решаются, во-первых, увеличением объема межэлектродного пространства и, во-вторых, созданием дополнительных воздушных потоков через пористый заземленный электрод - 2, препятствующих осаждению частиц на не коронирующий электрод. Кроме того, поток порошкового материала, подающийся в поле коронного разряда по диэлектрической трубке - 3, обжимается чистым потоком воздуха и направляется узкой струей на кончик коронирующей иглы - 1, способствуя приобретению частицами порошка зарядов в области с высокой напряженностью электрического поля.

Зарядные устройства трибоэлектрических распылителей должны удовлетворять следующим трем условиям необходимым для эффективной зарядки напыляемого материала:

- обеспечивать многократные и эффективные соударения частиц порошка с трибоэлектризующим элементом;

- производить снятие поверхностного заряда с трибоэлектризующего элемента;

- обеспечивать стабильность процесса трибозарядки.

Увеличение числа и эффективности актов соударения частиц с поверхностью зарядного устройства достигается турбулизацией несущего частицы потока воздуха, изменением направления его движения и увеличением скорости потока, а также подбором материала трибоэлектризующего элемента по отношению к материалу наносимого порошка. Часто трибоэлектризующие устройства выполняются в виде изогнутых трубок, спиралей, винтовых каналов в цилиндре, электродов и т. д. Трибоэлектризующий элемент обычно выполняется из диэлектрического материала. В связи с этим при работе на поверхности трибоэлектризующего элемента накапливается заряд по знаку противоположный заряду частиц, что ухудшает эффективность статической электризации. Снятие поверхностного заряда с внутренней поверхности каналов достигается или введением заземленного цилиндрического электрода с малым радиусом закругления, или вводом через стенки множества заземленных игл во внутреннюю полость каналов. Стабильность процесса статической электризации обеспечивается поддержанием неизменной влажности осушенного воздуха, используемого для транспортировки порошка, на уровне - 10С точки росы.

Если зарядка частиц порошка осуществляется в поле коронного разряда, создаваемого между коронирующими электродами, расположенными в области выходного сопла распылителя, и заземленным изделием, то такое устройство называется распылителем с внешней зарядкой. В качестве коронирующих электродов может использоваться одна или несколько игл, коронирующая кромка.

Величина заряда частиц, приобретаемого в поле коронного разряда, определяется предельным зарядом и степенью не зарядки:

Где:

qm - предельный заряд.

В соответствии:

Где:

j = en0kE - плотность тока.

Видно, что для увеличения заряда частиц необходимо увеличивать напряженность электрического поля и плотность тока коронного разряда. Наличие заряженного дисперсного материала в промежутке между распылителем и изделием вызывает запирание (уменьшение) тока коронного разряда, а значит увеличивает степень не зарядки частиц. Причем, с увеличением расхода порошка через распылитель степень не зарядки продолжает уменьшаться.

Поэтому для улучшения зарядки частиц порошка следует стремиться увеличить плотность тока короны. Однако здесь существует ограничение, связанное с быстрым возникновением обратной короны в слое порошка, осевшем на изделии, которая ухудшает процесс зарядки. В настоящее время считается, что оптимальным значением тока коронного разряда является величина 5-10 мкА.

Распылители с внешней зарядкой обладают наибольшей эффективностью зарядки порошкового материала, так как время пребывания частиц в поле коронного разряда, по сравнению с другими устройствами, здесь максимально.

Второй вариант устройств для нанесения покрытий представляет собой камеру с электрическим кипящим слоем, в которую помещается изделие - 1 (рис. 4). Камера делится пористой перегородкой - 2 на две части. В верхнюю часть на пористую перегородку насыпается порошковый материал - 3, а в нижнюю - подается сжатый воздух.

При определенной скорости воздуха, проходящего через пористую перегородку, порошок переводится во взвешенное состояние, при котором частицы как бы витают в восходящем потоке воздуха. Из-за хаотичности движения частиц происходит их соударение между собой, что приводит к статической электризации частиц и зарядка их как отрицательным, так и положительным зарядом.

Электрическое поле, создаваемое между высоковольтным электродом, размещенным в порошковом слое, и заземленным изделием, вызывает разделение частиц в кипящем слое по знакам заряда. При приложении отрицательного напряжения к высоковольтным электродам положительно заряженные частицы накапливаются вокруг высоковольтного электрода, а отрицательно заряженные - в верхней части кипящего слоя порошка. Частицы, имеющие достаточно большой отрицательный заряд, выносятся электрическим полем из кипящего слоя и направляются к изделию. Из-за большой концентрации частиц в кипящем слое коронный разряд у поверхности высоковольтных электродов находится в полностью запертом состоянии. По мере накопления положительно заряженных частиц вокруг высоковольтных электродов происходит разряд и импульсное локальное отпирание коронного разряда, при котором осуществляется перезарядка частиц. Таким образом, в электрическом кипящем слое зарядка частиц носит сложный характер, сочетающий статическую электризацию частиц и зарядку в газовом разряде.

Процесс транспортировки частиц порошка к напыляемому изделию осуществляется в потоке воздуха. При этом соотношение аэродинамических и электрических сил, действующих на частицу, сильно отличается для разных устройств, используемых для нанесения покрытий. Если для распылителей с внутренней зарядкой транспортировка частиц осуществляется исключительно потоком воздуха, то в камерах с электрическим кипящим слоем направление движения частиц к изделию создается в основном электрическим полем. Для распылителей с внешней зарядкой перемещение частиц к изделию в равной мере определяется аэродинамическими и электрическими силами.

При осаждении порошка на поверхность изделия, как видно из схем устройств напыления, представленных на рисунках 3 и 4, на частицу действует электрическая сила в направлении к поверхности изделия и аэродинамический поток воздуха, направленный вдоль поверхности, который способствует скорее отрыву частиц, чем осаждению. Электрическое поле у изделия в общем случае является суммой полей от напряжения на высоковольтных электродах и от объемного заряда частиц. Причем напряженность электрического поля объемного заряда порошка может иметь значительную величину, а при большой концентрации частиц даже превышать напряженность поля коронного разряда, достигая значений 10 кВ/см. Для распылителей с внутренней зарядкой электрическое поле у изделия создается исключительно объемным зарядом частиц. Поэтому, с точки зрения увеличения напряженности электрического поля, целесообразным является увеличение расхода порошка через распылитель. Особенно эффективно использовать большой (до 20 кг/ч) расход порошка при нанесении покрытий на изделия сложной формы с внутренними за экранированными полостями, в которые внешнее поле не проникает.

Однако с увеличением расхода порошка эффективность зарядки частиц снижается, а значит уменьшается электрическая сила, действующая на частицу, что приводит к снижению потока частиц, осаждающихся на поверхность изделия.

Интенсивность процесса осаждения обычно характеризуется величиной плотности потока массы порошка:

Где:

m - масса порошка, осевшего на поверхность изделия площадью S;

t - время напыления.

В результате снижения потока частиц коэффициент осаждения порошка на изделие уменьшается. Коэффициент осаждения определяется как доля порошкового материала, осажденного на изделие, по отношению к общему расходу материала через распылитель.

По мере нарастания толщины слоя порошка на поверхности изделия напряженность электрического поля в слое возрастает до пробивных значений.

Возникающие разрядные явления в слое порошка носят название «обратный коронный разряд». Время возникновения обратной короны находится из условия накопления заряда в слое и вычисляется по формуле:

Не оплавленный слой:

Так как в полученном выражении для времени возникновения обратной короны пробивная напряженность слоя Епр зависит от плотности тока на изделие, была получена другая формула для времени возникновения обратного коронного разряда:

Где:

j в мкА/м2;

t в секундах.

При обратном коронном разряде из порошкового слоя внешним электрическим полем в пространство над слоем порошка вытягиваются ионы, противоположные по знаку зарядам осаждающихся частиц. Ионы обратной короны разряжают подлетающие к изделию частицы, в результате падает плотность потока массы порошка, осаждающегося на изделие, и замедляется рост толщины слоя (рис. 6). При обработке экспериментальных результатов, полученных разными авторами, установлено, что спад плотности потока массы после возникновения обратной короны соответствует экспоненциальному закону:

Где: F0 - плотность потока массы до возникновения обратной короны.

Полученное выражение позволяет определить плотность потока массы порошка, осаждающегося на изделие, для любого момента времени вплоть до бесконечно больших значений времени, когда существует развитая обратная корона и практически прекращается осаждение порошка на изделие.

Рисунок 6. - Зависимость тока и плотности потока осаждающихся на изделие частиц наносимого порошка от времени напыления:

Кроме того, появление развитого обратного коронного разряда вызывает образование кратеров в порошковом слое, что ухудшает качество получаемого оплавленного покрытия. Исходя из этого, было определено время нанесения покрытия, при достижении которого еще не происходит заметного снижения осаждения порошка на изделие и ухудшения качества конечного покрытия. Рациональное время напыления равно:

tрац = tок + 0,5 = 1,6 * tок

Зная рациональное время напыления и зависимость для плотности потока массы, интегрированием вычисляется масса осевшего порошка и при известной плотности материала определяется толщина получаемого качественного оплавленного покрытия:

hопл = 1,47 * F0tок

Отличие при нанесении порошковых покрытий распылителями с внешней зарядкой состоит в том, что по сравнению с распылителями с внутренней зарядкой и камерами с электрическим кипящим слоем в факеле распыленного порошка присутствуют как заряженные частицы, так и газовые ионы, создаваемые при коронном разряде. Поэтому, как только на поверхности изделия образуется сплошной порошковый слой, сразу происходит его подзарядка ионами, движущимися к изделию под действием электрического поля. Подзарядка слоя током коронного разряда существенно сокращает время образования обратной короны, что ограничивает качественное окрашивание за экранированных участков изделия сложной формы. заряженный трибоэлектрический распылитель

Одним из путей уменьшения подзарядки слоя порошка током коронного разряда является согласование распределения концентрации частиц в факеле распыленного порошка с плотностью тока коронного разряда на поверхности изделия (рис. 7). Видно, что при согласованном факеле наблюдается примерно одинаковая плотность тока коронного разряда по всему отпечатку факела на поверхности изделия, и отсутствуют участки с повышенной подзарядкой током прямой короны.

Рисунок 7. - Распределение плотности тока по отпечатку факела:

При условиях:

а) отсутствии подачи порошка через распылитель;

б) согласованном факеле порошка;

в) широком факеле;

г) узком факеле порошка.

Размещено на Allbest.ru


Подобные документы

  • Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

    контрольная работа [27,3 K], добавлен 20.12.2012

  • Изучение электростатического поля системы заряженных тел, расположенных вблизи проводящей плоскости. Определение емкости конденсатора на один метр длины. Описание зависимости потенциала и напряженности в электрическом поле, составление их графиков.

    контрольная работа [313,2 K], добавлен 20.08.2015

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

  • Явление перемещения жидкости в пористых телах под действием электрического поля. Электрокинетические явления в дисперсных системах. Уравнение Гельмгольца–Смолуховского для электроосмоса. Движение частиц дисперсной фазы в постоянном электрическом поле.

    реферат [206,2 K], добавлен 10.05.2009

  • Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.

    лекция [894,8 K], добавлен 19.10.2014

  • Способы модифицирования перфторированных мембран. Преимущества проведения синтеза полианилина в матрице в условиях внешнего электрического поля. Параметры, позволяющие провести экономическую оценку эффективности данных мембран в электрическом поле.

    курсовая работа [124,4 K], добавлен 18.07.2014

  • Движение электронов в вакууме в электрическом и магнитном полях, между плоскопараллельными электродами в однородном электрическом поле. Особенности движения в ускоряющем, тормозящем полях. Применение метода тормозящего поля для анализа энергии электронов.

    курсовая работа [922,1 K], добавлен 28.12.2014

  • Понятие и принцип работы ускорителей, их внутреннее устройство и основные элементы. Ускорение пучков частиц с высокой энергией в электрическом поле как способ их получения. Типы ускорителей и их функциональные особенности. Генератор Ван де Граафа.

    контрольная работа [276,8 K], добавлен 18.09.2015

  • Изучение электромагнитного взаимодействия, свойств электрического заряда, электростатического поля. Расчет напряженности для системы распределенного и точечных зарядов. Анализ потока напряженности электрического поля. Теорема Гаусса в интегральной форме.

    курсовая работа [99,5 K], добавлен 25.04.2010

  • Силовые линии напряженности электрического поля для однородного электрического поля и точечных зарядов. Поток вектора напряженности. Закон Гаусса в интегральной форме, его применение для полей, созданных телами, обладающими геометрической симметрией.

    презентация [342,6 K], добавлен 19.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.