Жидкие кристаллы
Представления современной физики о жидких кристаллах. Воздействие электромагнитных полей на жидкокристаллические образцы, явление динамического рассеивания света, связанное с анизотропией их электропроводящих, диэлектрических и вязкостных свойств.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 06.08.2013 |
Размер файла | 762,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
"Сибирский государственный технологический университет"
Кафедра физики
Курсовая работа
Жидкие кристаллы
Выполнил: cт.гр.06.08
Болоболов Иван Алексеевич
Проверил: зав. кафедрой физики
д.ф-м.н., проф.
Ю.В. Захаров
Красноярск 2012
Содержание
Введение
1. Исторические сведения
2. Постановка задачи
3. Основные научные принципы
4. Технологическое применение
5. Основы технологии MVA
6. Альтернативные модели
7. Описание и сравнение технологических возможностей
8. Типы жидких кристаллов
9. Состояние в России и за рубежом
Заключение
Библиографический список
Введение
Необычное сочетание слов "жидкие кристаллы", вероятно, многим уже знакомо, хотя далеко не все себе представляют, что же стоит за этим странным и, казалось бы, противоречивым понятием.
Жидкие кристаллы обладают двойственными свойствами, сочетая в себе свойство жидкостей (текучесть) и свойство кристаллических тел (анизотропию). Их поведение не всегда удается описать с помощью привычных методов и понятий. Но именно в этом и заключена их привлекательность для исследователей, стремящихся познать еще неизведанное.
В то же время, вероятно, каждый второй (ну, может быть третий!) человек носит при себе жидкокристаллические (ЖК) индикаторы и по несколько десятков раз в день посматривает на свои электронные часы.
ЖК-циферблат которых аккуратно отсчитывает часы, минуты, секунды, а иногда и доли секунд. Именно ЖК-индикаторы являются основой современных калькуляторов, портативных компьютеров "Notebooks", миниатюрных плоских экранов телевизоров, словарей-переводчиков, пейджеров и многих других современных электронных технических и бытовых приборов и устройств.
Мировое производство ЖК-индикаторов и дисплеев исчисляется миллиардами, и по прогнозам будет увеличиваться и дальше. Уже сейчас без преувеличения можно сказать, что прогресс и развитие ряда отраслей науки и техники немыслимы без развития исследований в области жидких кристаллов. Не меньший интерес представляют собой жидкие кристаллы с точки зрения биологии и процессов жизнедеятельности. Функционирование клеточных мембран и ДНК, передача нервных импульсов, работа мышц, формирование атеросклеротических бляшек - вот далеко неполный перечень процессов, протекающих в ЖК-фазе, с присущими этой фазе особенностями - склонностью к самоорганизации и сохранении высокой молекулярной подвижности.
Мир жидких кристаллов бесконечно велик и охватывает широчайший круг природных и синтетических объектов, привлекая внимание не только ученых - физиков, химиков и биологов, но и исследователей-практиков, работающих в самых разнообразных отраслях современной техники.
Цель курсовой работы - исследование физические свойства жидких кристаллов, описание видов жидких кристаллов, получение жидких кристаллов, сравнение жидких кристаллов, применение жидких кристаллов.
Мир жидких кристаллов бесконечно велик и охватывает широчайший круг природных и синтетических объектов, привлекая внимание не только ученых - физиков, химиков и биологов, но и исследователей-практиков, работающих в самых разнообразных отраслях современной техники (электронике, оптоэлектронике, информатике, голографии и т. п.).
1. Исторические сведения
Со времени открытия жидких кристаллов прошло более 100 лет. Впервые их обнаружил австрийский ботаник Фридрих Рейнитцер, наблюдая две точки плавления сложного эфира холестерина - холестерилбензоата
Первое ЖК-соединение - холестерилбензоат и диаграмма, иллюстрирующая температурную область существования ЖК-фазы.
При температуре плавления (Tпл), 1450C, кристаллическое вещество превращалось в мутную, сильно рассеивающую свет жидкость, которая при 1790C становилась прозрачной. В отличии от точки плавления температуру, при которой происходило просветление образца, Рейнитцер назвал точкой просветления (Tпр).
Пораженный этим необычайным явление, свидетельствующим как будто о двойном плавлении, Рейнитцер отправил свои препараты немецкому кристаллографу Отто Леману с просьбой помочь разобраться в странном поведении холестерилбенозоата. Исследуя их при помощи поляризационного микроскопа, Леман установил, что мутная фаза, наблюдаемая Рейнитцером, является анизотропной. Поскольку свойства анизотропии присуще твердому кристаллу, а вещество в мутной фазе было жидким, Леман назвал его жидким кристаллом.
С тех пор вещества, способные в определенном температурном интервале выше точки плавления сочетать одновременно свойства жидкостей (текучесть, способность к образованию капель) и свойства кристаллических тел (анизотропии), стали называться жидкими кристаллами или жидкокристаллическими. ЖК-вещества часто называют мезоморфными, а образуемую ими ЖК-фазу - мезофазой (от греч. "мезос" - промежуточный).
Такое состояние является термодинамическим стабильным фазовым состоянием и по праву на ряду с твердым, жидким и газообразным может рассматриваться как четвертое состояние вещества.
Однако понимание природы ЖК-состояния веществ установление и исследование их структурной организации приходит значительно позднее. Серьезное недоверие к самому факту существования таких необычных соединений в 20 - 30-х годах сменилось их активным исследованием. Работы Д. Форлендера в Германии во многом способствовали синтезу новых
ЖК-соединений. Достаточно сказать, что под его руководством было выполнено 85 диссертаций по жидким кристаллам.
Французский ученый Ж. Фридель предложил первую классификацию жидких кристаллов, голландец С. Озеен и чех Х. Цохер создали теорию упругости, русские ученые В.К. Фредерикс и В.Н. Цветков в СССР в 30-х годах впервые исследовали поведение жидких кристаллов в электрических и магнитных полях. Однако то 60-х годов изучение жидких кристаллов не представляло существенного практического интереса, и все научные исследования имели достаточно ограниченный, чисто академический интерес.
Ситуация резко изменилась в середине 60-х годов, когда в связи с бурным развитием микроэлектроники и микроминиатюризации приборов потребовались вещества, способные отражать и передавать информацию, потребляя при этом минимум энергии. И вот здесь на помощь пришли жидкие кристаллы, двойственный характер которых (анизотропия свойств и высокая молекулярная подвижность) позволили создать управляемые внешним электрическим полем быстродействующие и экономичные ЖК-индикаторы, являющиеся по существу основным элементом многомиллионной "армии" часов, калькуляторов, плоских экранов телевизоров и т. д.
Жидкокристаллический бум, в свою очередь, стимулировал активную научную деятельность, созывались международные симпозиумы и конференции по жидким кристаллам, организовывались школы для молодых ученых, выпускались сборники и монографии.
2. Постановка задачи
жидкий кристалл анизотропия электромагнитный
Все чаще на страницах научных, а последнее время и научно-популярных журналов появляется термин "жидкие кристаллы" (в аббревиатуре ЖК) и статьи, посвященные жидким кристаллам. В повседневной жизни мы сталкиваемся с часами, термометрами на жидких кристаллах. Что же это за вещества с таким парадоксальным названием "жидкие кристаллы" и почему к ним проявляется столь значительный интерес? В наше время наука стала производительной силой, и поэтому, как правило, повышенный научный интерес к тому или иному явлению или объекту означает, что это явление или объект представляет интерес для материального производства. В этом отношении не являются исключением и жидкие кристаллы. Интерес к ним прежде всего обусловлен возможностями их эффективного применения в ряде отраслей производственной деятельности. Внедрение жидких кристаллов означает экономическую эффективность, простоту, удобство.
Прежде чем рассказывать о конкретных областях применения жидких кристаллов, необходимо сказать несколько общих слов о том, что же это все-таки такое - жидкие кристаллы. Тем более, что этому пока что не учат ни в школе, ни в вузе, а ожидается, что в ближайшее время изделия, содержащие жидкокристаллические элементы, будут так же широко распространены, как устройства, содержащие электронные лампы или транзисторы.
Жидкий кристалл - это специфическое агрегатное состояние вещества, в котором оно проявляет одновременно свойства кристалла и жидкости. Сразу надо оговориться, что далеко не все вещества могут находиться в жидкокристаллическом состоянии. Большинство веществ может находиться только в трех, всем хорошо известных агрегатных состояниях: твердом или кристаллическом, жидком и газообразном. Оказывается, некоторые органические вещества, обладающие сложными молекулами, кроме трех названных состояний, могут образовывать четвертое агрегатное состояние - жидкокристаллическое. Это состояние осуществляется при плавлении кристаллов некоторых веществ. При их плавлении образуется жидкокристаллическая фаза, отличающаяся от обычных жидкостей. Эта фаза существует в интервале от температуры плавления кристалла до некоторой более высокой температуры, при нагреве до которой жидкий кристалл переходит в обычную жидкость. Чем же жидкий кристалл отличается от жидкости и обычного кристалла и чем похож на них? Подобно обычной жидкости, жидкий кристалл обладает текучестью и принимает форму сосуда, в который он помещен. Этим он отличается от известных всем кристаллов. Однако, несмотря на это свойство, объединяющее его с жидкостью, он обладает свойством, характерным для кристаллов. Это - упорядочение в пространстве молекул, образующих кристалл. Правда, это упорядочение не такое полное, как в обычных кристаллах, но тем не менее оно существенно влияет на свойства жидких кристаллов, чем и отличает их от обычных жидкостей. Неполное пространственное упорядочение молекул, образующих жидкий кристалл, проявляется в том, что в жидких кристаллах нет полного порядка в пространственном расположении центров тяжести молекул, хотя частичный порядок может быть. Это означает, что у них нет жесткой кристаллической решетки. Поэтому жидкие кристаллы, подобно обычным жидкостям, обладают свойством текучести.
Обязательным свойством жидких кристаллов, сближающим их с обычными кристаллами, является наличие порядка" пространственной ориентации молекул. Такой порядок в ориентации может проявляться, например, в том, то все длинные оси молекул в жидкокристаллическом образце ориентированы одинаково. Эти молекулы должны обладать вытянутой формой. Кроме простейшего названного упорядочения осей молекул, в жидком кристалле может осуществляться более сложный ориентационный порядок молекул.
В зависимости от вида упорядочения осей молекул жидкие кристаллы разделяются на три разновидности: нематические, смектические и холестерические.
Исследования по физике жидких кристаллов и их применениям в настоящее время ведутся широким фронтом во всех наиболее развитых странах мира. Отечественные исследования сосредоточены как б академических, так и отраслевых научно-исследовательских учреждениях и имеют давние традиции. Широкую известность и признание получили выполненные еще в тридцатые годы в Ленинграде работы В.К. Фредерикса к В.Н. Цветкова. В последние годы бурного изучения жидких кристаллов отечественные исследователи также вносят весомый вклад в развитие учения о жидких кристаллах в целом и, в частности, об оптике жидких кристаллов. Так, работы И.Г. Чистякова, А.П. Капустина, С.А. Бразовского, С.А. Пикина, Л.М. Блинова и многих других советских исследователей широко известны научной общественности и служат фундаментом ряда эффективных технических приложений жидких кристаллов [1-4].
Об успехах отечественной промышленности в освоении выпуска продукции, в которой существенным элементом являются жидкие кристаллы, говорит присуждение в 1983 году Государственной премии СССР большой группе работников науки и техники за разработку и внедрение в народное хозяйство индикаторных устройств. Основными элементами этих индикаторных устройств, совершенные технические характеристики которых послужили основанием для присуждения премии, являются жидкокристаллические вещества. Присуждение этой премии символизирует плодотворный союз науки и производства в деле технических приложений жидких кристаллов. Тут же следует сказать, что среди лауреатов, представителей науки, - В.Н. Цветков, ветеран научных исследований жидких кристаллов.
Одно из важных направлений использования жидких кристаллов -- термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы -- сильно нагретые или холодные, неработающие - сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.
С помощью жидких кристаллов обнаруживают пары? вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ -- информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.
3. Основные научные принципы
По способу получения различают термотропные и лиотропные жидкие кристаллы. Лиотропные жидкие кристаллы образуются при растворении твердых кристаллов в определенных растворителях. К ним относятся многие коллоидные системы. Существует много типов лиотропных жидкокристаллических текстур. Их многообразие объясняется различной внутренней молекулярной структурой, которая является более сложной, чем у термотропных жидких кристаллов. Структурными единицами здесь являются не молекулы, а молекулярные комплексы - мицеллы. Мицеллы могут быть пластинчатыми, цилиндрическими, сферическими или прямоугольными.
Термотропные жидкие кристаллы - это вещества, для которых мезоморфное состояние характерно в определенном интервале температур. Ниже этого интервала вещество является твердым кристаллом, выше - обычной жидкостью. Такие жидкие кристаллы образуются при нагревании некоторых твердых кристаллов (мезогенных): сначала происходит переход в жидкий кристалл, причем может происходить последовательно переход из одной модификации в следующую, т. е. в жидких кристаллах проявляется полиморфизм. Каждая мезофаза существует в определенном температурном интервале. У разных веществ этот интервал различен. В настоящее время известны соединения, имеющие жидкокристаллическую фазу в интервале от отрицательных температур до 300-400 оС. Структурные переходы всегда осуществляются по схеме: твердокристаллическая фаза - смектическая - нематическая - аморфно-жидкая. Термотропные жидкие кристаллы можно получить также в результате охлаждения изотропной жидкости. Эти переходы являются фазовыми переходами первого рода (с выделением теплоты фазового перехода). Теплота перехода жидкого кристалла в аморфную жидкость в десятки раз меньше теплоты плавления органических твердых кристаллов.
Взаимное расположение молекул в жидких кристаллах является промежуточным между твердыми кристаллами, где существует трехмерный координационный дальний порядок (упорядоченность в расположении центров тяжести молекул) и ориентационный дальний порядок (упорядоченность в ориентации молекул), и аморфными жидкостями, в которых дальний порядок полностью отсутствует. В макроскопических образцах жидких кристаллов образуются области размером от 10-5 до 10-2 см с соответствующей данному жидкому кристаллу упорядоченностью. В жидком кристалле возникает совокупность областей с однородной молекулярной ориентацией доменов, ориентированных хаотически или закономерно, т. е. образуется жидкокристаллическая текстура.
В жидкокристаллическом состоянии могут находиться некоторые органические вещества, состоящие из молекул удлиненной формы (в виде палочек или вытянутых пластинок), имеющие параллельную укладку таких молекул. Значительную часть жидких кристаллов составляют соединения ароматического ряда, т. е. соединения, молекулы которых содержат бензольные кольца. Существуют "застеклованные" жидкие кристаллы, получающиеся в результате переохлаждения. В настоящее время известно несколько тысяч органических соединений, способных находиться в мезоморфном состоянии. Среди них есть и такие вещества, у которых температурный интервал существования включает комнатную температуру.
В большом объеме жидкие кристаллы интенсивно рассеивают свет и выглядят мутными. Это обусловлено рассеянием света на неоднородностях - ориентационных флуктуациях, а также границах доменов и дисинклинациях (аналог дислокаций в твердых кристаллах). Если применить ориентирующее воздействие на тонкий слой жидкого кристалла, то можно получить один большой домен.
Молекулярные силы, обеспечивающие упорядоченную структуру жидкого кристалла, малы. Поэтому жидкие кристаллы легко изменяют структуру под действием различных внешних факторов (температуры, давления, излучения, электрических и магнитных полей и т. д.), что приводит к изменению их оптических, электрических и других свойств. Эта зависимость, в свою очередь, открывает богатые возможности при разработке индикаторных устройств различного назначения. В отличие от твердых кристаллов, у которых для управления, например, оптическими свойствами используются напряжения в сотни и тысячи вольт, в жидких кристаллах достаточно использование напряжения порядка 2-20 в. Жидкие кристаллы являются диамагнитными материалами. В магнитном поле напряженностью H у них возникает магнитный момент I, направленный противоположно H. По электрическим свойствам жидкие кристаллы относятся к полярным диэлектрикам с невысоким удельным сопротивлением (r=~106-1010 Ом.м).
Понятием "жидкие кристаллы" обычно называют большое количество жидкокристаллических фаз с различными структурой и свойствами. По признаку общей симметрии все жидкие кристаллы подразделяются на три типа: смектические, нематические и холестерические. Тип кристаллов характеризует их строение на молекулярном уровне. Нематическим и смектическим жидким кристаллам свойственно параллельное расположение молекул. Известны некоторые промежуточные типы упорядоченности между смектическими и нематическими типами. Например, жидкие кристаллы из дискообразных молекул, уложенных стопками в столбики, образующие двухмерную жидкую кристаллическую структуру.
Жидкие кристаллы, которые образуются при нагревании твердого вещества, называются термотропными. Область их существования имеет определенный температурный интервал, ограниченный двумя точками плавления вещества. В одной точке происходит переход твердого вещества в жидкий кристалл, в другой - жидкого кристалла в изотропную жидкость. Для одних веществ температурный интервал довольно большой. Так, для n-пропил-n-азоксициннамата он находится в пределах 123 ... 243 "С. Для других, как например, для метилбензаль-n-аминобензол-n-оксибензоата, не превышает нескольких градусов (примерно 3 °С).
Как известно, в момент плавления вещество усиленно потребляет энергию. У термотропных кристаллов есть своя особенность. В точке плавления твердого вещества энергии поглощается во много раз больше, чем на границе перехода жидкий кристалл - изотропная жидкость. Например, для n-азоксианизола удельная теплота плавления твердого кристалла составляет 1,2?105 Дж/кг, а жидкого кристалла - только 2,9?103 Дж/кг.
В семействе термотропных кристаллов есть свои "странные дети". Они рождаются в необычных условиях - при охлаждении изотропной жидкости. К ним относится холестерилацетат. Его твердые кристаллы плавятся при температуре 114 °С, сразу превращаясь в изотропную жидкость. Но если изотропный расплав быстро охладить до температуры 90 °С, он приобретает свойства жидкого кристалла. Интересно, что при медленном охлаждении жидкокристаллическая фаза не возникает.
Известны вещества, способные переходить в жидкокристаллическое состояние только при участии молекул растворителя. Это лиотропные кристаллы. Они, как правило, представляют собой сложную систему из двух и более компонентов. К лиотропным кристаллам относятся водные растворы многих видов мыл. В быту иногда используется жидкое калийное мыло. Этот водноспиртовой раствор алеата калия также принадлежит к семейству жидких кристаллов.
Что же определяет необычные свойства жидкокристаллических веществ? Ответ можно получить, исследуя их структуры. Молекулы жидких кристаллов имеют удлиненную форму. Это позволяет для их описания воспользоваться моделью жесткого стержня. В зависимости от плотности компоновки и ориентации молекул-стержней структуры жидких кристаллов делятся на несколько групп: нетематическую, холестерическую и смектическую.
4. Технологическое применение
Расположение молекул в жидких кристаллах изменяется под действием таких факторов, как температура, давление, электрические и магнитные поля; изменения же расположения молекул приводят к изменению оптических свойств, таких, как цвет, прозрачность и способность к вращению плоскости поляризации проходящего света. (У холестерически-нематических жидких кристаллов эта способность очень велика.) На всем этом основаны многочисленные применения жидких кристаллов. Например, зависимость цвета от температуры используется для медицинской диагностики. Нанося на тело пациента некоторые жидкокристаллические материалы, врач может легко выявлять затронутые болезнью ткани по изменению цвета в тех местах, где эти ткани выделяют повышенные количества тепла. Температурная зависимость цвета позволяет также контролировать качество изделий без их разрушения. Если металлическое изделие нагревать, то его внутренний дефект изменит распределение температуры на поверхности. Эти дефекты выявляются по изменению цвета нанесенного на поверхность жидкокристаллического материала.
Тонкие пленки жидких кристаллов, заключенные между стеклами или листками пластмассы, нашли широкое применение в качестве индикаторных устройств (прикладывая низковольтные электрические поля к разным частям соответствующим образом выбранной пленки, можно получать видимые глазом фигуры, образованные, например, прозрачными и непрозрачными участками). Жидкие кристаллы широко применяются в производстве наручных часов и небольших калькуляторов. Создаются плоские телевизоры с тонким жидкокристаллическим экраном. Сравнительно недавно было получено углеродное и полимерное волокно на основе жидкокристаллических матриц.
Одно из важных направлений использования жидких кристаллов - термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы - сильно нагретые или холодные, неработающие - сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.
С помощью жидких кристаллов обнаруживают пары вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ - информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя ничтожное количество энергии от малогабаритного аккумулятора или батарейки.
В дисплеях, сделанных по технологии TN+Film, жидкие кристаллы выравниваются перпендикулярно подложке, так же, как и в обычных TFT- дисплеях. Плёнка на верхней поверхности позволяет увеличить угол обзора.
С технической точки зрения решение TN+Film является наиболее простым для реализации. Производители плоскопанельных дисплеев используют относительно старую технологию TFT (Twisted Nematic), который мы уже описывали в Части
Специальная плёнка наносится на верхнюю поверхность панели, при этом угол обзора по горизонтали увеличивается от 90° до 140°. Однако плохая контрастность и низкое время реакции остаются неизменными. Метод TN+Film не является наилучшим решением, но это несомненно самый дешёвый метод, т.к. при этом производственный выход наиболее высок (примерно равен выходу обычных ЖК-дисплеев).
При подаче напряжения молекулы выравниваются параллельно подложке.
IPS или "In-Plane Switching" изначально была разработана фирмой Hitachi, однако такие фирмы, как NEC и Nokia в настоящее время также используют данную технологию. Различие по отношению к обычным ЖК-дисплеям (TN или TN+Film) состоит в том, что молекулы жидких кристаллов выравниваются параллельно подложке.
Эта технология позволяет достичь прекрасных значений угла обзора - до 170°, примерно таких же, как у ЭЛТ-мониторов. Однако эта технология также имеет недостаток: из-за параллельного выравнивания жидких кристаллов электроды могут не разместиться на стеклянных поверхностях, как в случае с ЖК- дисплеями с закрученными кристаллами. Вместо этого они должны быть выполнены в виде гребёнки на нижней стеклянной поверхности. Это в конце концов приводит к снижению контрастности и тогда требуется более интенсивная подсветка для увеличения яркости до требуемого уровня. Время реакции и контрастность вряд ли могут быть увеличены по сравнению с обычными TFT-дисплеями.
Технология MVA фирмы Fujitsu. С технической точки зрения это наилучший компромисс для получения широких углов обзора и малого времени реакции.
По нашему мнению компания Fujitsu нашла идеальный компромисс. Технология MVA позволяет достичь углов зрения до 160° - достаточно хороший показатель - а также высоких значений контрастности и малого времени реакции пиксела.
5. Основы технологии MVA
Буква M в MVA означает "Мulti-domains" - "многодоменный". Домен - это совокупность молекул. На рис.3 показано несколько доменов, которые формируются при помощи электродов. Компания Fujitsu в настоящее время производит дисплеи, в которых каждая цветовая ячейка содержит до четырёх доменов.
VA означают "Vertical Alignment"-"Вертикальное Выравнивание" - это термин, который немного неверен, т.к. молекулы жидких кристаллов (в статическом состоянии) не полностью вертикально выровнены из-за наличия бугоркообразных электродов (см. рисунок, состояние "Off", т.е. тёмное изображение). При приложении напряжения и образования электрического поля кристаллы выравниваются по горизонтали, и свет от подсветки при этом может проходить сквозь различные слои. Технология MVA позволяет достичь более малых значений времени реакции, чем технологии IPS и TN+Film, что является важным фактором для воспроизведения видеоизображений и игр. Контрастность обычно получается лучше, однако она может несколько меняться в зависимости от угла зрения.
Технология MVA обеспечивает улучшенное время реакции и хорошие значения угла обзора, однако рыночная доля технологии Fujitsu до сих пор достаточно мала.
Решение TN+Film не обеспечивает значительных улучшений такого показателя как время реакции пиксела. При этом такие системы недороги, позволяют обеспечить достаточный производственный уровень и увеличить угол обзора до приемлемых значений. Доля рынка таких дисплеев со временем должна уменьшиться.
IPS уже завоевали значительную долю рынка, т.к. их производят несколько компаний, например Hitachi и NEC, которые поддерживают данную технологию.
Решающими факторами успеха этих дисплеев является высокое значение угла зрения (до 170°) и приемлемое время реакции.
С технической точки зрения, технология MVA является наилучшим решением.
Углы зрения до 160° - это почти такой же хороший показатель, как у ЭЛТ- мониторов. Время реакции, равное примерно 20 мс, также подходит и для воспроизведения видео. Доля рынка таких дисплеев до сих пор мала, хотя она постепенно растёт.
6. Альтернативные модели
В предыдущих статьях цикла "Китайские фонарики" мы обсудили проблемы выбора и состояние рынка классических ЭЛТ-мониторов. Теперь пришла пора поговорить об альтернативных моделях на TFT-матрицах.
Рискнем предположить, что подавляющая часть наших читателей дома или на работе пользуется самыми обычными мониторами с электронно-лучевой трубкой.
Но постепенно, всё более и более популярными становятся так называемые жидкокристаллические дисплеи. Преимущества последних перед первыми очевидны: ЖК-экран занимает мало места на рабочем столе, он легкий, потребляет значительно меньше электроэнергии, по сравнению с ЭЛТ-монитором, и менее опасен для здоровья человека. Но все же главным недостатком всех экранов, работающих с применением жидких кристаллах, на сегодняшний день, является их ограниченный размер. То есть получается, что чем меньше ЖК экран, тем более он выгоден по соотношению цена/качество: дешевыми электронными часами с небольшим дисплеем удивить кого-либо очень сложно. С другой стороны, при производстве 15-дюймовой ЖК-матрицы используются те же самые физические свойства жидких кристаллов, что и при изготовлении самых обычных наручных часов. Но создать цветную ЖК-матрицу имеющую порядка трехсот тысяч точек (при разрешении 800х 600), обойдется на много дороже, нежели монохромный дисплей сотового телефона.
Как раз в этом-то и заключается самая большая проблема ЖК-матриц - чем больше диагональ матрицы, тем менее надежным, более сложным и, что самое важное, дорогим получается конечный продукт. Сейчас уже просто не выгодно делать большие экраны данного типа: покупателю намного проще и дешевле установить тяжелый, но относительно недорогой ЭЛТ-монитор.
К счастью, прогресс не стоит на месте и уже сейчас не нужно быть миллионером, чтобы купить плоский телевизор с диагональю 40 дюймов
(хотя и придется выложить достаточно круглую сумму). Подобные устройства принято называть "плазменными". Главное достоинство плазменного дисплея - низкая стоимость матрицы большого диаметра. Здесь ситуация повторяет случай с ЖК-мониторами с точностью до наоборот: чем больше размеры матрицы, тем выгоднее производителю ее создавать. Судите сами: подавляющая часть всех телевизоров и мониторов с диагональю более 21 дюйма - плазменные. Поэтому не стоит удивляться, тому, что плазменный телевизор с диагональю, например, 24 дюйма не намного дешевле (а иногда и дороже), телевизора с 40-дюймовой матрицей. В этом случае цену определяет начинка каждой конкретной модели, возможность подключения к компьютеру, наличие не только цифрового, но и аналогового разъема.
Принцип работы любого плазменного экрана (PDP - Plasma Display Panel) состоит в управляемом холодном разряде разряженного газа (как правило, используется ксенон или неон), находящегося в ионизированном состоянии. Все это носит название "холодная плазма" - отсюда и взялось и название.
Способность определенных газов светиться при пропускании через них разряда электрического тока до сих пор широко применяется в так называемых вывесках неоновой рекламы. Для этого создаются герметичные сосуды определенной формы (как правило, изображающие рекламируемый товар или в виде букв), после чего емкость заполняется газом. Если подавать на контакты электрический ток, то газ внутри рекламы начинает светиться. При прекращении подачи тока газ светиться перестает. Цвет свечения вывески зависит от того, в какой пропорции будут смешиваться определенные газы.
Аналогичный принцип используется и в создании плазменных дисплеев для компьютеров и телевизоров с большой диагональю. Только размеры сосуда, в котором храниться газ в тысячи раз меньше, а сами сосуды, которых насчитывается десятки миллионов, образуют матрицу, формирующую изображение на экране.
Минимальной единицей изображения на экране, как и везде, является точка, или пиксель. В плазменном мониторе для формирования цвета каждой отдельно взятой точки используется комбинация из трех субпикселей, каждый из которых отвечает за один из трех основных цветов RGB (Red Green Blue - Красный, Зеленый, Голубой). Ячейки находятся между двумя стеклами, расстояние между которыми 0,1 мм (100 микрон). Во время подачи электрического импульса на электроды часть заряженных ионов начинают излучать кванты света в ультрафиолетовом диапазоне. Диапазон излучения, в большинстве случаев, зависит от применяемого газа, в каждой конкретной модели. Ультрафиолетовые лучи действуют на специальное флюоресцирующее покрытие, которое в свою очередь излучает свет, видимый человеческим глазом. Кстати, ультрафиолетовые лучи очень опасны для глаз человека, но в данном случае бояться нечего - до 97% вредного излучения поглощает наружное стекло.
Яркость и насыщенность цветов можно регулировать простым изменением величины управляющего напряжения: чем оно больше, тем больше квантов света выделяет газ, тем сильнее светится флюоресцирующая пленка, тем ярче мы получаем картинку на экране.
Данная технология самая молодая из всех, что применяются в серийном производстве офисной техники, но, что интересно, разрабатывается уже относительно давно. Так еще в далекие советские времена в НПО "Плазма" пытались воплотить в жизнь идею получения более-менее качественного изображения на табло, состоящим из элементов, наполненных специальным газом. Но специалисты не смогли создать пиксели малых размеров, из-за этого экран получался слишком большим, тяжелым, ненадежным, а изображение - слишком расплывчатым.
Всерьез разработкой технологии создания плазменных дисплеев занялись в 1966 году в одном американском университете в штате Иллинойс. Вскоре после завершения исследований, в начале 70-х годов, небольшая компания Owens-Illinois смогла запустить проект в коммерческое использование.
Тогда спрос на плазменные панели был очень небольшим. Главным образом отсутствие спроса объяснялось тем, что экраны были монохромными (отображали только два цвета), очень дорого стоили (даже для крупных организаций) и были практически бесполезны для использования их в быту. Первую партию дисплеев заказала Нью-йоркская Фондовая Биржа - ей были необходимы экраны большой площади, способные информировать огромное количество людей об изменении котировок акций, а качества изображения было не столь критично.
Современные плазменные дисплеи претерпели большое количество изменений, их качество заметно изменилось, если сравнивать с теми, что производили много лет назад. Сейчас изображение на плазменном экране считается самым ярким (до 500 кд/мІ) и контрастным (400:1), даже лучше чем у классических ЭЛТ- мониторов. Сравните: яркость и контрастностью дорогого монитора - 350 кд/мІ и 200:1 соответственно.
Благодаря особенностям исполнения плазменные экраны не боятся электромагнитных полей. Возможно, владельцы мощных колонок замечали изменение цвета рабочего стола на своем ЭЛТ-мониторе, когда пытались устанавливать аудио-систему рядом с компьютером. У PDP-мониторов такой проблемы не может существовать в принципе: внутри просто нет элементов, на которые могло бы повлиять магнитное поле. Поэтому рядом с плазменным телевизором всегда можно спокойно устанавливать самые хорошие, мощные колонки и наслаждаться качественным звуком не отходя от любимого ПК.
Из недостатков такого типа дисплеев стоит отметить очень высокое энергопотребление. Чтобы зажечь один пиксель на экране плазменного телевизора электроэнергии требуется незначительное количество, но матрица состоит из миллионов точек, каждой из которых приходится гореть до нескольких десятков часов подряд. Частично из-за этого плазменным дисплеям закрыт путь в область портативной техники: ноутбук от собственных аккумуляторов с таким экраном вряд ли проработает даже час: применение плазменного экрана само собой подразумевает наличие электрической розетки в радиусе нескольких метров. Но даже если решить проблему с источником питания, изготавливать плазменные матрицы с диагональю менее двадцати дюймов не выгодно экономически: представьте себе карманный компьютер ценой несколько тысяч долларов работающий только от сети, но имеющий очень контрастный и яркий экран. Не думаем, что подобная модель будет пользоваться ажиотажным спросом на рынке, тем более, что и ЖК-экраны с каждым днем становятся все лучше и лучше, да к тому же они значительно более бережливо относятся к источнику питания.
Также плазменные экраны имеют относительно небольшой срок эксплуатации, по крайней мере, по сравнению с аналогами, - порядка 10 тысяч часов непрерывной работы. Хотя многим и этого будет вполне достаточно, ведь эти 10 тысяч часов истекут только через шесть лет функционирования аппарата при 4-5 часах ежедневного просмотра телепередач (если дисплей использовать в качестве телевизора). Правда с каждым днем этот недостаток становится все менее и менее актуальным - многие производители уже сегодня предлагают довольно эффективные пути решения этой проблемы.
Во многом плазменные экраны напоминают жидкокристаллические. Разница состоит лишь в способе формирования цвета отдельной точки. У плазменного дисплея, как и у ЖК, нет никаких проблем ни со сведением лучей, ни проблем с геометрией экрана, ни с фокусировкой. Они не страдают от вибрации (если у вас дома системный блок стоит рядом с ЭЛТ-монитором, то вы, наверное, замечали легкую вибрацию на экране, когда активно работает жесткий диск или привод компакт-дисков), все PDP имеют абсолютно плоскую внешнюю поверхность.
Кажется, что плазменные матрицы унаследовали у своих предшественников только достоинства - они лишены недостатков присущих ЖК. Так, плазменные дисплеи имеют малое время отклика (чем до сих пор не могут похвастаться многие дисплеи дешевых КПК и ноутбуков), то есть время между посылкой сигнала и фактической сменой картинки на экране достаточно небольшое. Этот факт позволяет без проблем использовать PDP в качестве телевизоров и играть в быстрые игры, при подключении дисплея к компьютеру. Плазменные экраны полностью цифровые, аналоговый выход для подключения к настольному компьютеру - это скорее исключение, нежели правило. Возможно, многие знают, что главным недостатком ЖК-мониторов является значительное ухудшение качества изображения на экране при смене угла просмотра. Плазменные экраны, обладая всеми достоинствами ЖК, лишены этого недостатка. Здесь они могут дать фору даже самым дорогим и качественным ЭЛТ-экранам: у многих моделей угол видимости достигает 160 градусов.
7. Описание и сравнение технологических возможностей
Сейчас известно уже около сотни тысяч органических веществ, которые могут находиться в ЖК-состоянии, и число таких соединений непрерывно растет. Если первые десятилетия после открытия жидких кристаллов основными представителями этих соединений являлись только вещества, состоящие из асимметрических молекул стержнеобразной формы, - так называемые каламитики (от греч. "каламис" - тростник), то в последствии было обнаружено, что в ЖК-состояние могут переходить самые разнообразные вещества, имеющие молекулы более сложной формы (диски, пластины и др.). Молекулы ЖК-соединений очень часто называют мезогенами, а группировки или фрагменты малеку, способствующие формированию ЖК-фазы, - мезогенными группами. В таблице 1 приведены примеры стержнеобразных мезогенов - каломитиков, а также химические формулы дискообразных (дискотики) и планкообразных мезогенов (санидики) (от греч. "санидис" - планка).
Как видно из таблицы 1, среди мезогенных групп чаще всего встречаются бензольные кольца, связанные непосредственно друг с другом с помощью различных химических группировок(-CH=CH-, -CH=N-, -NH-CO и др.). Характерной особенностью всех ЖК-соединений является асимметричная форма малеку, обеспечивающая анизотропию поляризуемости и тенденцию к расположению молекул преимущественно параллельно друг другу вдоль их длинных (каламитики и санидики) и коротких (дискотики) осей.
Типичные примеры химических соединений, образующих ЖК-фазу.
8.Типы жидких кристаллов
В то время существование жидких кристаллов представлялось каким-то курьезом, и никто не мог предположить, что их ожидает почти через сто лет большое будущее в технических приложениях. Поэтому после некоторого интереса к жидким кристаллам сразу после их открытия о них через некоторое время практически забыли.
В конце девятнадцатого - начале двадцатого века многие очень авторитетные ученые весьма скептически относились к открытию Рейнитцера и Лемана. Дело в том, что не только описанные противоречивые свойства жидких кристаллов представлялись многим авторитетам весьма сомнительными, но и в том, что свойства различных жидкокристаллических веществ (соединений, обладавших жидкокристаллической фазой) оказывались существенно различными. Так, одни жидкие кристаллы обладали очень большой вязкостью, у других вязкость была невелика. Одни жидкие кристаллы проявляли с изменением температуры резкое изменение окраски, так что их цвет пробегал все тона радуги, другие жидкие кристаллы такого резкого изменения окраски не проявляли. Наконец, внешний вид образцов, или, как принято говорить, текстура, различных жидких кристаллов при рассматривании их под микроскопом оказывался совсем различным. В одном случае в поле поляризационного микроскопа могли быть видны образования, похожие на нити, в другом - наблюдались изображения, похожие на горный рельеф, а в третьем - картина напоминала отпечатки. Стоял также вопрос, почему жидкокристаллическая фаза наблюдается при плавлении только некоторых веществ?
Время шло, факты о жидких кристаллах постепенно накапливались, но не было общего принципа, который позволил бы установить какую-то систему в представлениях о жидких кристаллах. Как говорят, настало время для классификации предмета исследований. Заслуга в создании основ современной классификации жидких кристаллов принадлежит французскому ученому Ж. Фриделю. В двадцатые годы Фридель предложил разделить все жидкие кристаллы на две большие группы. Одну группу жидких кристаллов Фридель назвал нематическими, другую смектическими. Он же предложил общий термин для жидких кристаллов - "мезоморфная фаза". Этот термин происходит от греческого слова "мезос" (промежуточный), а вводя его, Фридель хотел подчеркнуть, что жидкие кристаллы занимают промежуточное положение между истинными кристаллами и жидкостями, как по температуре, так и по своим физическим свойствам. Нематические жидкие кристаллы в классификации Фриделя включали уже упоминавшиеся выше холестерические жидкие кристаллы как подкласс.
Самые "кристаллические" среди жидких кристаллов - смекатические. Для смекатических кристаллов характерна двумерная упорядоченность. Молекулы размещаются так, чтобы их оси были параллельны. Более того, они "понимают" команду "равняйся" и размещаются в стройных рядах, упакованных на смекатических плоскостях, и в шеренгах - на нематических. Смекатическим жидким кристаллам свойственно многое из того, о чем пойдет речь ниже, и нечто особенное - долговременная память. Записав, например, изображение на такой кристалл, можно затем долго любоваться "произведением". Однако эта особенность смекатических кристаллов для воспроизводящих элементов индикационных устройств, телевизоров и дисплеев не слишком удобна. Тем не менее, они находят применение в промышленности, к примеру, в индикаторах давления.
Упорядоченность нематических сред ниже, чем у смекатических. Молекулам дозволено смещаться относительно длинных осей, поэтому упорядоченность становится "односторонней", а реакция на внешнее воздействие относительно быстрой, память - короткой. Смекатические плоскости отсутствуют, а вот нематические сохраняются.
Термин "холестерические жидкие кристаллы" не случаен, поскольку наиболее характерным и на практике самым используемым кристаллом этого класса является холестерин. Молекулы холестерина и аналогов размещаются в нематических плоскостях. Особенность молекул холестерического типа в том, что при достаточно сильном боковом притяжении их вершины отталкиваются. Холестерин - доступный и достаточно дешевый материал, сырьем для которого богата любая скотобойня. Очень сложные жидкокристаллические структуры образуют растворы мыла в воде. Здесь можно получить слоистые, дисковые и даже шарообразные структуры. Словом, выбор материала широк.
В достаточно больших объемах кристаллической жидкости образуются домены, физические свойства которых подобны кристаллам. Однако в целом она проявляет свойства, подобные обычным жидкостям. Доменная структура жидких кристаллов образуется по тем же причинам и законам, что в сегнетоэлектриках и ферромагнетиках. Ситуация резко меняется в пленках, толщина которых сопоставима с радиусом взаимодействия молекул жидкости и пластин, формирующих слой. Это важно подчеркнуть, поскольку именно взаимодействие жидкого кристалла и формообразующих элементов создает тот легко управляемый прибор, который столь активно встраивается в современную электронную технику.
В зависимости от характера расположения молекул согласно кл ассификац ии, предложенной еще Фриделем, различают три основных типа структур ЖК-соединений: смектический, нематический и холестерический. Указанные типы структур относятся к так называемым термотропным жидким кристаллам, образование которых осуществляется только при термическом воздействии на вещ ество (нагревание или охлаждение). На рис. 3 показаны схемы распол ожения стержне - и дискообразных мол екул в трех перечисл енных структурных модификациях жидких кристаллов.
Смектический тип жидких кристаллов (смектики - от греч. слова "смегма" - мыло) ближе всего к истинно кристаллическим телам. Молекулы располагаются в слоях, и их центры тяжести подвижны в двух измерениях (на смектическо й плоскости). При этом длинные оси молекул в каждом слое могут располагаться как перпендикулярно плоскости слоя (ортогональные смектики), так и под некоторым углом (наклонные смектики). Направление преимущественной ориентации осей молекул принято называть директором, который обычно обозначается вектором n (рис. 3, а).
Нематический тип жидких кристаллов (нематики от греч. "нема" - нить) характеризуется наличием только одномерного ориентационного порядка длинных (каламитики) или коротких (дискотики) осей молекул (рис. 3 б и 3 г соответственно). При этом центры тяжести молекул расположены в пространстве хаотично, что свидетельствует об отсутствии трансляционного порядка.
Наиболее сложный тип упорядочения молекул жидких кристаллов холестерический (холестерики), образуемый хиральными (оптически акт ивными) молекулами, содержащими асимметрический атом углерода. Это означает, что такие мо лекулы являются зеркально-несимметричными в отличие о т зе ркально-симметричных молекул нематиков. Впервые холестерическая мезофаза наблюдалась для производных холе стерина, откуда и произошло ее название. Холестерики во многих отнош ениях по добны нематикам, в которых реализуется од номерный ориентационный порядок; они образуются также при добавлении небольших количеств хиральных соединений (1-2 мол. %) к нематикам. Как видно из рис. 3, в, в этом случае дополнительно реализуется спиральная закрученность молекул, и очень часто холестерик называют закрученным нематиком.
Периодическая спиральная структура холестериков определяет их уникальную особенность - способность селективно отражать падающий свет, "рабо тая" в этом случае как дифракционная реш етка. При фиксированном угле отражения условия интерференции выполняются только для лучей одного цвета, и слой (или пленка) холестерика кажется окрашенным в один ц вет. Этот ц вет определяется шагом спирали Р, который при нормальном угле падения света простым образ ом связан с максимумом длины волны отраженного света
lmax: P = lmax / n (1),
где n - показатель преломления холестерика.
Этот эффект избирательного отражения пленкой холестерика света с определенной длиной волны получил название селективного отражения. В зависимости от величины шага спирали, который определяется химической природой холестерика, максимум длины волны отраженного света может располагаться в видимой, а также в ИК- и УФ-областях спектра, определяя широкие области использования оптических свойств холестериков.
Любой из трех типов мезофаз рассматривается обычно как непрерывная анизотропная среда, где в небольших по размерам микрообьемах (их часто называют роями или доменами), состоящ их, как правило, из 104-105 молекул, молекулы ориентированы параллельно друг другу.
Теперь рассмотрим макроскопическую структуру жидких кристаллов, которую чаще всего называют текстурой, понимая под этим совокупность структурных деталей образца жидкого кристалла, помешенного между двумя стеклами и исследуемого с помощью оптического поляризационного микроскопа. Каждый тип жидкого кристалла самопроизвольно образует свои характерные текстуры, по которым их часто удается идентифицировать. Как правило, текстуры жидких кристаллов настолько "фотогеничны", что их красивые микрофотографии часто помешают на обложках научных журналов и научно-популярных изданий.
В отличие от термотропных жид ких кристаллов лиотропные жидкие кристаллы образуются при растворении ряда амфифильных соединений в определенных растворителях и имеют, как правило, более сложную структуру, чем термотропные жидкие кристаллы. Амфифильные соединения состоят из молекул, содержащих гидрофильные и гид рофобные группы. Такие соединения широко распространены в природе. Так, например, любая жирная кислота является амфифильной. Ее молекулы состоят из двух частей: полярной "головки" (СООН-группа) и углеводородного "хвоста" [СН3(СН2)n-]. Подобные соединения при растворении в воде, как правило, образуют мицеллярные растворы, в которых полярные головки торчат наружу, находясь в контакте с водой, а углеводородные хвосты, контактируя друг с другом, смотрят вовнутрь. Таки е мицеллы (рис. 4, а) и являются теми структурными элементами, из которых строятся лиотропные жидкие кристаллы, формируя, например, цилиндрическую или ламеллярную формы.
В лиотропных системах тип структурной организации определяется уже двумя параметрами: концентрацией вещества и температурой. Лиотропные жидкие кристаллы наиболее часто образуются биологическими системами, функционирующими в водных средах. Именно в эти х системах в наиболее яркой форме проявляются уникальные особенности жидких кристаллов, сочетающих лабильность с высокой склонностью к самоорганизации. Ограничимся лишь одним примером, относящимся к клеткам и внутриклеточным органеллам, покрытым тонкими высокоупорядоченными оболочками - мембранами. Современные структурные исследования показывают, что мембраны представляют собой типичные лиотропные ламеллярные лабильные ЖК-структуры, составлен ные из двойного слоя фосфолипидов, в котором "растворены" белки, полисахарилы, холестерин и другие жизненно важные компоненты (рис. 4, г). Такое анизотропное строение мембраны, с одной стороны, позволяет защищать ее внутреннюю часть от нежелательных внешних воздействий, а с другой стороны, ее "жидкостной" характер обеспечивает высокие транспортные свойства (проницаемость, перенос ионов и др.), что придает клетке определяющую роль в процессах жизнедеятельности.
Подобные документы
История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.
учебное пособие [1,1 M], добавлен 14.12.2010Рассмотрение истории открытия и направлений применения жидких кристаллов; их классификация на смектические, нематические и холестерические. Изучение оптических, диамагнитных, диэлектрических и акустооптических свойств жидкокристаллических веществ.
курсовая работа [968,9 K], добавлен 18.06.2012Жидкие кристаллы как фазовое состояние, в которое переходят некоторые вещества при определенных условиях, их основные физические свойства и факторы, на них влияющие. История исследования, типы, использование жидких кристаллов в производстве мониторов.
контрольная работа [585,0 K], добавлен 06.12.2013Успехи атомной физики, физики полупроводников и химии полимеров. Свойства жидкости с оптической осью. Классификация жидких кристаллов. Изменение направления оси в нематике под действием поля. Действие поля на оптическую ось. Правые и левые молекулы.
реферат [60,0 K], добавлен 19.04.2012Определение жидких кристаллов, их сущность, история открытия, свойства, особенности, классификация и направления использования. Характеристика классов термотропных жидких кристаллов. Трансляционные степени свободы колончатых фаз или "жидких нитей".
реферат [16,9 K], добавлен 28.12.2009Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.
лекция [2,0 M], добавлен 13.03.2007Общее понятие о люминесценции. Лазерные кристаллы, активированные ионами Ln3+. Соединения cемейства шеелита. Редкоземельные оптические центры. Явление комбинационного рассеяния света. Метод полиэдров Вороного-Дирихле. Главные свойства молибдатов.
курсовая работа [2,8 M], добавлен 18.07.2014Описание свойств электромагнитных полей математическими средствами. Дефект традиционной классической электродинамики. Базовые физические представления современной теории электромагнитного поля, концепция корпускулярно-полевого дуализма микрочастицы.
статья [225,0 K], добавлен 29.11.2011Обзор теории взаимодействия вещества с электромагнитными волнами; методы измерения диэлектрических свойств материалов, способов синтеза и углеродных наноструктур. Отработка известных методик измерения диэлектрических свойств для углеродных нанопорошков.
курсовая работа [5,4 M], добавлен 29.02.2012Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, объясняющей атомные системы, сформированы представления о свойствах микрочастиц, описанные квантовой механикой.
реферат [146,3 K], добавлен 05.01.2009