Расчет статически неопределимых балок. Способ сравнения деформаций

Построение эпюры изгибающих моментов и поперечных сил, определение опорных реакций для подбора сечения статически неопределимых балок. Уравнения, выражающие условия совместности деформаций, для определения опорных реакций. Способ сравнения деформаций.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 30.07.2013
Размер файла 59,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Расчет статически неопределимых балок. Способ сравнения деформаций

План

1. Общие понятия и метод расчета

2. Способ сравнения деформаций

1. Общие понятия и метод расчета

До сих пор мы рассматривали только статически определимые балки, у которых три опорные реакции определялись из условий равновесия. Очень часто, по условиям работы конструкции, оказывается необходимым увеличить число опорных закреплений; тогда мы получаем так называемую статически неопределимую балку.

Рис.1. Схемы статически неопределимых балок

Например, для уменьшения пролета балки АВ на двух опорах (Рис.1, а) можно поставить опору еще посредине, а для уменьшения деформаций балки, защемленной одним концом (Рис.1, б), можно подпереть ее свободный конец.

Для подбора сечения таких балок, так же как и в рассмотренных ранее задачах, необходимо построить обычным порядком эпюры изгибающих моментов и поперечных сил, а стало быть, определить опорные реакции.

Во всех подобных случаях число опорных реакций, которые могут возникнуть, превышает число уравнений статики, например, для балок рис.2. Соответственно: четыре, четыре и пять опорных реакций.

Рис.2. Механизм появления дополнительных связей

Поэтому необходимо составить дополнительные уравнения, выражающие условия совместности деформаций, которые вместе с обычными уравнениями равновесия и дадут возможность определить все опорные реакции.

Определим опорные реакции и построим эпюру моментов для балки, находящейся под действием равномерно распределенной нагрузки q рис.3. Сначала изобразим все реакции, которые по устройству опор могут возникнуть в этой балке. Таких реакций может быть на опоре А три: вертикальная А, горизонтальная и опорный момент , на опоре В возможно появление лишь одной реакции В. Таким образом, число опорных реакций на одну больше, чем уравнений статики.

Одна из реакций является добавочной, как говорят, "лишней" неизвестной. Этот термин прочно укоренился в технической литературе; между тем, принять его можно лишь условно.

Рис.3. Исходная расчетная схема статически неопределимой балки.

Действительно, добавочная реакция и соответствующее ей добавочное опорное закрепление являются "лишними" только с точки зрения необходимости этих закреплений для равновесия балки как жесткого целого. С точки же зрения инженера добавленное закрепление во многих случаях не только не является лишним, а наоборот, позволяет осуществить такую конструкцию, которая без него была бы невозможна. Поэтому мы будем пользоваться термином "лишняя опорная реакция", "лишняя неизвестная" лишь условно.

Составим все уравнения статики для нашей балки, приравнивая нулю сумму проекций всех сил на направление оси балки, на перпендикуляр к ней, и сумму моментов относительно точки А. Получим систему:

,

Из первого уравнения сразу определяется опорная реакция Для определения трех других остаются лишь два уравнения.

За лишнюю реакцию можно взять любую из этих трех: попробуем взять реакцию опоры В. В таком случае мы должны считать, что рассматриваемая балка получилась из статически определимой балки АВ, защемленной концом А, у которой потом поставили добавочную опору в точке В. Эта статически определимая балка, которая получается из статически неопределимой при удалении добавочного, лишнего опорного закрепления, называется основной системой. Выбрав какую-либо из реакций за лишнюю неизвестную, мы тем самым выбираем основную систему.

Попробуем теперь превратить основную систему без опоры В в систему, полностью совпадающую с заданной статически неопределимой балкой (Рис.3).

Рис.4. Эквивалентная система

Для этого загрузим ее сплошной нагрузкой q и в точке В приложим лишнюю реакцию В (Рис.4).

Однако этого мало: в балке, представленной на рис.4, точка В может перемещаться по вертикали под действием нагрузок q и В; между тем, в нашей статически неопределимой балке точка В не имеет этой возможности, она должна совпадать с опорным шарниром. Поэтому, чтобы привести к окончательному совпадению, надо к последней добавить условие, что прогиб точки В основной системы под действием нагрузок q и В должен быть равен нулю:

Это и будет добавочное уравнение, определяющее реакцию В; оно является условием совместности деформаций в рассматриваемом случае: конец В балки не отрывается от опоры.

Решение этого добавочного уравнения возможно несколькими способами.

2. Способ сравнения деформаций

балка статика эпюра деформация

Выполняя решение уравнения , названного уравнением совместности деформаций, можно рассуждать следующим образом.

Прогиб точки В основной системы под действием нагрузок q и В складывается из двух прогибов: одного , вызванного лишь нагрузкой q, и другого , вызванного реакцией В. Таким образом,

(1)

Остается вычислить эти прогибы. Для этого загрузим основную систему одной нагрузкой q (рис.4, а).

Рис.4. Расчет прогиба от исходной нагрузки - а) и реакции - б)

Тогда прогиб точки В будет равен:

При нагружении основной системы реакцией В (Рис.4,б) имеем:

Подставляя эти значения прогибов в уравнение (1), получаем:

Отсюда

В этом способе мы сначала даем возможность основной системе деформироваться под действием внешней нагрузки q, а затем подбираем такую силу В, которая бы вернула точку В обратно. Таким образом, мы подбираем величину неизвестной дополнительной реакции В с тем расчетом, чтобы уравнять прогибы от нагрузки q и силы В. Этот способ и называют способом сравнения деформаций.

Рис.5. Эпюры поперечных сил и внутренних изгибающих моментов.

Подставляя значение лишней реакции В в уравнения статики, получаем

Выражение изгибающего момента получаем, рассматривая правую часть балки (Рис.4) и подставляя значение В:

Поперечная сила Q выражается формулой

Эпюры моментов и поперечных сил изображены на рис.5. Сечение с наибольшим положительным моментом соответствует абсциссе , определяемой равенством

т.е.

Отсюда

соответствующая ордината эпюры моментов, равна:

Размещено на Allbest.ru


Подобные документы

  • Проведение расчета площади поперечного сечения стержней конструкции. Определение напряжений, вызванных неточностью изготовления. Расчет балок круглого и прямоугольного поперечного сечения, двойного швеллера. Кинематический анализ данной конструкции.

    курсовая работа [1,0 M], добавлен 24.09.2014

  • Описание решения стержневых систем. Построение эпюр перерезывающих сил и изгибающих моментов. Расчет площади поперечных сечений стержней, исходя из прочности, при одновременном действии на конструкцию нагрузки, монтажных и температурных напряжений.

    курсовая работа [2,2 M], добавлен 23.11.2014

  • Определение реакции опор и построение эпюры моментов, поперечных и продольных сил для статически неопределимой Е-образной рамы с одной скользящей и двумя неподвижными опорами с помощью составления уравнений методом сил, формулы Мора и правила Верещагина.

    задача [173,2 K], добавлен 05.12.2010

  • Расчет на прочность статически определимых систем при растяжении и сжатии. Последовательность решения поставленной задачи. Подбор размера поперечного сечения. Определение потенциальной энергии упругих деформаций. Расчет бруса на прочность и жесткость.

    курсовая работа [458,2 K], добавлен 20.02.2009

  • Определение продольной силы в стержнях, поддерживающих жёсткий брус. Построение эпюры продольных усилий, нормальных напряжений и перемещений. Расчет изгибающих моментов и поперечных сил, действующих на балку. Эпюра крутящего момента и углов закручивания.

    контрольная работа [190,3 K], добавлен 17.02.2015

  • Построение эпюра моментов, мощность на шкиве для стального трубчатого вала, оборачивающегося с постоянной угловой скоростью. Определение площади и размеры сечений участков бруса, эпюру продольных сил. Определение опорных реакций для двухопорной балки.

    практическая работа [2,2 M], добавлен 22.10.2009

  • Вычисление реакций опор в рамах и балках с буквенными и числовыми обозначениями нагрузки. Подобор номеров двутавровых сечений. Проведение расчета поперечных сил и изгибающих моментов. Построение эпюр внутренних усилий. Определение перемещения точек.

    курсовая работа [690,7 K], добавлен 05.01.2015

  • Расчет статически определимого стержня переменного сечения. Определение геометрических характеристик плоских сечений с горизонтальной осью симметрии. Расчет на прочность статически определимой балки при изгибе, валов переменного сечения при кручении.

    курсовая работа [1,2 M], добавлен 25.05.2015

  • Расчет статически определимой рамы. Перемещение системы в точках методом Мора-Верещагина. Эпюра изгибающих моментов. Подбор поперечного сечения стержня. Внецентренное растяжение. Расчет неопределенной плоской рамы и плоско-пространственного бруса.

    курсовая работа [1,4 M], добавлен 04.12.2012

  • Исследование механических конструкций. Рассмотрение плоских ферм и плоских конструкций. Анализ значений реакций в зависимости от углов конструкции, вычисление внешних и внутренних связей. Зависимость реакций механической конструкции от опорных реакций.

    курсовая работа [1,9 M], добавлен 05.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.