Нелинейные магнитные цепи постоянного потока

Основные понятия и законы магнитной цепи, особенности ее применения. Соотношение в электрической цепи между удельной проводимостью металла (провода) и диэлектрика (изоляция). Аппроксимация вебер-амперных характеристик нелинейных элементов магнитных цепей.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.07.2013
Размер файла 156,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нелинейные магнитные цепи постоянного потока

Содержание

  • 1. Основные понятия и законы магнитной цепи
  • 2. Аппроксимация вебер-амперных характеристик Uм=f (Ф) нелинейных элементов магнитных цепей

1. Основные понятия и законы магнитной цепи

Электромагнитное поле, которое лежит в основе всех многообразных явлений и процессов, исследуемых в электротехнике, имеет две равнозначные стороны - электрическую и магнитную. Как известно, в электрической цепи под воздействием источников энергии возникают электрические токи, которые протекают по электрическим проводам. Подобно электрическим цепям существуют также магнитные цепи, состоящие из магнитных проводов или кратко магнитопроводов, в которых под воздействием магнитодвижущих сил (МДС) возникают и замыкаются магнитные потоки Ф. Формальную схожесть или аналогию между электрическими и магнитными цепями в дальнейшем будем именовать принципом двойственности. Следует помнить, что при формальной схожести электрические и магнитные явления физически различны.

Магнитные цепи применяются в электрических машинах, трансформаторах, электромагнитных аппаратах, реле, приборах и т.д. Их назначением является создание заданной величины и формы магнитного потока Ф (t) и проведение его по заданному пути.

Как известно, магнитное поле характеризуется векторными величинами и , между которыми существует связь , где вектор индукции (или плотности) магнитного поля [Тл], вектор напряженности магнитного поля [А/м], который создается электрическим током и является первопричиной магнитного поля, [Гн/м] магнитная проницаемость пустоты, относительная магнитная проницаемость, характеризующая способность материала к намагничиванию.

Все материалы по способности их к намагничиванию условно разделяют на две группы: ферромагнитные и неферромагнитные. Для ферромагнитных материалов . К ним относятся железо (Fe), никель (Ni), кобальт (Co) и их сплавы. Ферромагнитные материалы способны к намагничиванию и создают малое магнитное сопротивление для магнитного потока, поэтому применяются в технике для изготовления магнитопроводов. Для неферромагнитных материалов , они создают большое сопротивление магнитному потоку и в магнитной цепи выполняют роль магнитных изоляторов.

Рис. 1

Следует отметить, что если в электрической цепи соотношение между удельной проводимостью металла (провода) и диэлектрика (изоляция) составляет , то для магнитной цепи это соотношение составляет всего около . Это означает, что изоляция в магнитных цепях очень несовершенна, что в таких цепях существенная часть магнитного потока рассеивается, т.е. замыкается через участки с несовершенной магнитной изоляцией.

Зависимость между векторами и для ферромагнитных материалов не имеет точного аналитического выражения, на графической диаграмме эта зависимость B=f (H), имеет форму петли и называется петлей гистерезиса (рис. 1).

При периодическом перемагничивании материала с увеличением амплитуды индукции Bm площадь петли гистерезиса увеличивается, а ее вершина все больше смещается в область насыщения материала. Кривая, проходящая через вершины симметричных петель гистерезиса, называется основной кривой намагничивания B=f (H) для данного материала. Сведения об основных кривых намагничивания B=f (H) для ферромагнитных материалов, которые применяются в технике для изготовления магнитопроводов, приводятся в справочной литературе в виде таблиц или графических диаграмм и используются в инженерной практике для расчета магнитных цепей.

Пусть требуется выполнить расчет магнитной цепи электромагнитного реле, состоящей из катушки с w витками, ярма (неподвижная часть магнитопровода), якоря (подвижная часть магнитопровода) и воздушного зазора между ярмом и якорем (рис. 2а). Геометрические размеры магнитной цепи заданы.

Рис. 2

В основе расчета магнитных цепей лежит известный из физики закон полного тока:

.

При применении закона полного тока к магнитной цепи ее разбивают на отдельные однородные участки, для которых H=const, а контур интегрирования выбирают вдоль магнитных линий. При выполнении этих условий интеграл по замкнутому контуру заменяется суммой простых произведений , а . Для рассматриваемого примера получим:

Здесь произведение называется магнитодвижущей силой (МДС) или намагничивающей силой (НС), является источником магнитного потока Ф. Слагаемые типа Hk·lk называются магнитным напряжением: [A], а полученное выше уравнение представляет собой второй закон Кирхгофа для магнитной цепи:

или .

Из курса физики известно, что магнитные линии поля непрерывны. Из этого следует, что магнитный поток Ф на всех участках неразветвленной магнитной цепи имеем одно и то же значение . Индукция поля и напряженность поля на отдельных участках будут различны:

; ; ; ;

; .

Сделаем подстановку в уравнение 2-го закона Кирхгофа:

.

Здесь магнитное сопротивление к-го участка магнитной цепи. Для сравнения: формула электрического сопротивления проводника имеет аналогичную структуру: , т.е. в магнитной цепи электрической проводимости соответствует магнитная проницаемости материала . Магнитные сопротивления для участков магнитопровода зависят от магнитной проницаемости , которая является функцией магнитного состояния (). Следовательно, магнитные сопротивления отдельных участков магнитопровода являются нелинейными и на схеме представляются нелинейными элементами. Магнитное сопротивление зазора и, следовательно, является линейным элементом. С учетом сказанного выше, рассматриваемая магнитная цепь может быть представлена эквивалентной схемой с нелинейными элементами (рис. 2б).

Для сложных магнитных цепей, имеющих разветвления и содержащих несколько источников МДС, в полной мере соблюдаются оба закона Кирхгофа:

1) 1-й закон Кирхгофа: алгебраическая сумма магнитных потоков в узле магнитной цепи равна нулю;

2) 2-й закон Кирхгофа: алгебраическая сумма падений магнитных напряжений в замкнутом контуре магнитной цепи равна алгебраическая сумма МДС.

Магнитные цепи постоянного потока относятся к классу нелинейных цепей. В силу принципа двойственности к их расчету применимы все методы расчета нелинейных электрических цепей постоянного тока.

Следует отметить, что магнитные цепи обладают своими характерными особенностями, которые вносят некоторые отличия в методы их расчета.

2. Аппроксимация вебер-амперных характеристик Uм=f (Ф) нелинейных элементов магнитных цепей

Как было уже сказано, в справочной литературе для каждого типа ферромагнитного материала, применяемого для изготовления магнитопроводов, приводятся сведения об основной кривой намагничивания B=f (H) в виде таблицы координат точек или в виде графической диаграммы этой функции (рис. 3).

Рис. 3

Вебер-амперные характеристики (ВАХ) Uм=f (Ф) отдельных однородных участков магнитной цепи рассчитывается через их геометрические размеры по основной кривой намагничивания: . Вследствие пропорциональной зависимости и графические диаграммы ВАХ отдельных участков магнитной цепи будут в некотором линейном масштабе подобны диаграмме основной кривой намагничивания B=f (H) (рис. 3).

В аналитических методах расчета магнитных цепей применяется аппроксимация Uм=f (Ф) для отдельных участков. Рассмотрим эту процедуру на примере аппроксимации основной кривой намагничивания B=f (H) (рис. 3.

Для аппроксимации ВАХ, симметричных относительно начала координат, используют нечетные математические функции, например, степенной полином с нечетными степенями или уравнение гиперболического синуса:

.

Выберем для аппроксимации основной кривой намагничивания степенной полином усеченного вида: . Коэффициенты аппроксимации a, b, n можно определить по методу выбранных точек. Для этой цели на графической диаграмме (или в таблице координат) функции B=f (H) выбираются три точки 1, 2, 3 (по числу определяемых коэффициентов), как показано на рис. 3. и определяются их координаты, например: 1 (1,0 Тл, 100 А/м), 2 (1,4 Тл, 500А/м), 3 (1,5 Тл, 800 А/м). Так как функция B=f (H) в области насыщения описывается в основном вторым слагаемым bBn, то для точек 2 и 3 можно приближенно принять:

магнитная цепь постоянный поток

Так как показатель степени n должен быть целым нечетным числом, то принимаем n=7.

Коэффициенты a и b определяются из совместного решения системы уравнений для точек 1 и 2:

Уравнение аппроксимации примет окончательный вид:

.

При аппроксимации основной кривой намагничивания уравнением гиперболического синуса коэффициенты аппроксимации определяются также по методу выбранных точек. Используем для этой цели координаты точек 1 и 2:

Совместное решение этих уравнений позволяет определить коэффициенты a и b:

, откуда следует

;

.

Уравнение аппроксимации примет окончательный вид:

.

Уравнения аппроксимации используются в аналитических методах расчета магнитных цепей.

Размещено на Allbest.ru


Подобные документы

  • Алгоритмы и последовательность действий при расчёте цепей постоянного магнитного потока, трехфазной цепи со статической нагрузкой и в аварийном режиме, построении диаграммы токов и напряжения. Аналитический расчет магнитной цепи в системе MathCAD.

    курсовая работа [7,9 M], добавлен 21.04.2019

  • Анализ неразветвленных и разветвленных магнитных цепей. Трансформаторы, асинхронные и синхронные электрические машины. Разработка задач по нелинейным электрическим цепям. Выпрямители, магнитные цепи постоянного потока, электромагнитные устройства.

    курсовая работа [2,2 M], добавлен 25.09.2012

  • Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа [685,5 K], добавлен 28.09.2014

  • Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей два потенциальных узла. Нелинейные электрические цепи постоянного тока. Цепи с параллельным, последовательно-параллельным соединением резистивных элементов.

    презентация [1,8 M], добавлен 25.07.2013

  • Проявления магнитного поля, параметры, его характеризующие. Особенности ферромагнитных (магнитомягких и магнитотвердых) материалов. Законы Кирхгофа и Ома для магнитных цепей постоянного тока, принцип их расчета, их аналогия с электрическими цепями.

    контрольная работа [122,4 K], добавлен 10.10.2010

  • Что такое нелинейные цепи и нелинейный элемент. Классификация нелинейных элементов, параметры и некоторые схемы замещения. Методы расчёта нелинейных цепей постоянного тока. Графический способ расчета цепей с применением кусочно-линейной аппроксимации.

    реферат [686,7 K], добавлен 28.11.2010

  • Основные законы и методы анализа линейных цепей постоянного тока. Линейные электрические цепи синусоидального тока. Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов. Трехфазная система с нагрузкой.

    курсовая работа [777,7 K], добавлен 15.04.2010

  • Электрическая цепь, её элементы и классификация. Энергия, мощность, режим работы и законы электрической цепи. Расчёт цепи с одним и несколькими источниками ЭДС. Свойства и области применения мостовых цепей, потенциометров и делителей напряжений.

    реферат [368,0 K], добавлен 25.12.2010

  • Анализ трехфазной цепи при включении в нее приемников по схеме "треугольник". Расчет двухконтурной электрической цепи. Метод эквивалентных преобразований для многоконтурной электрической цепи. Метод применения законов Кирхгофа для электрической цепи.

    курсовая работа [310,7 K], добавлен 22.10.2013

  • Нелинейные резистивные (безинерционные) двухполюсные и четырехполюсные элементы. Анализ нелинейных цепей с двухполюсными элементами. Сущность графоаналитических методов анализа нелинейных цепей. Анализ цепей с четырехполюсными нелинейными элементами.

    реферат [155,2 K], добавлен 11.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.