Предельные режимы биполярного транзистора
Анализ основных способов определения максимальной мощности рассеяния транзистора. Общая характеристика видов пробоя коллекторного перехода: тепловой, электрический. Знакомство с предельными режимами биполярного транзистора, рассмотрение особенностей.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 21.07.2013 |
Размер файла | 62,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Предельные режимы биполярного транзистора
транзистор коллекторный электрический
1.Рабочий диапазон температур транзистора
Для нормальной работы транзистора необходимо, чтобы в каждой из его областей -- эмиттерной, базовой и коллекторной -- преобладала электропроводность одного типа -- дырочная или электронная. При повышении температуры транзистора это соотношение электропроводностей может нарушиться и тогда он теряет работоспособность.
Максимальная рабочая температура определяется энергией ионизации атомов основного вещества и концентрацией примесей.
С ростом температуры увеличивается количество ионизированных атомов основного вещества, концентрация неосновных носителей заряда приближается к концентрации основных носителей и работоспособность транзистора нарушается. Чем выше энергия ионизации основного вещества и больше концентрация примеси, тем выше максимальная рабочая температура транзистора. Расчет и экспериментальные исследования показывают, что максимальная рабочая температура германиевых транзисторов может лежать в пределах 70 - 100°С, а для транзисторов из кремния, имеющего большую ширину запрещенной зоны, чем германий, максимальная рабочая температура может составлять 125 - 200°С.
Минимальная температура, при которой транзистор еще может работать, определяется энергией ионизации примесей и их концентрацией. Так как энергия ионизации примесей очень невелика (0,05 - 0,01 эВ), то минимальная рабочая температура транзистора теоретически составляет около - 200°С. Фактически нижний предел температуры ограничивается термоустойчивостью корпуса и допустимыми изменениями параметров, поэтому его величина обычно равна - (60 - 70)°С.
Необходимо иметь в виду, что изменение температуры транзистора в пределах рабочего диапазона также существенно сказывается на его рабочих свойствах, что может вызвать температурную нестабильность параметров транзисторной аппаратуры. Поэтому при проектировании и эксплуатации следует учитывать влияние температуры на характеристики и параметры транзисторов.
Максимально допустимая непрерывно рассеиваемая мощность транзистора. При прохождении тока через транзистор джоулево тепло выделяется в основном в коллекторном переходе, обладающем наибольшим электрическим сопротивлением по сравнению с другими областями транзисторной структуры, поэтому наибольшую температуру во время работы транзистора имеет его коллекторный переход.
Отвод тепла от перехода в транзисторе, так же как и в полупроводниковом диоде, происходит главным образом за счет теплопроводности, и мощность рассеяния транзистора определяется следующим соотношением, аналогичным (3.21):
Здесь Тп -- температура коллекторного перехода транзистора; Т0 - температура окружающей среды; Rт - тепловое сопротивление транзистора, определяющее передачу тепла от коллекторного перехода к корпусу транзистора и зависящее от теплопроводности материалов, из которых изготовлен транзистор, и его конструкции; Rто - тепловое сопротивление теплоотвода, определяющее передачу тепла от корпуса транзистора в окружающую среду и зависящее от конструкции теплоотвода, теплопроводности материала, из которого он изготовлен, и качества теплового контакта корпуса транзистора с теплоотводом.
Максимальная мощность рассеяния транзистора определяется максимально допустимой температурой его коллекторного перехода Тп max и температурой окружающей среды Т0. При пренебрежимо малом тепловом сопротивлении теплоотвода RТО< RТ из соотношения (3.80) получаем, что максимальная мощность рассеяния транзистора равна.
Максимально допустимая температура коллекторного перехода составляет 70 - 100°С для германиевых и 125 - 200°С для кремниевых транзисторов. Для конкретных типов приборов она указывается в справочниках.
2.Пробой транзистора
Тепловой пробой. При нарушении теплового баланса, когда вследствие недостаточного теплоотвода прирост подводимой к коллекторному переходу мощности UКБIк не компенсируется соответствующим приростом отводимой мощности, в транзисторе имеет место тепловой пробой. При этом температура перехода неограниченно растет, увеличиваются ток коллектора и подводимая мощность UКБIк , в результате транзистор перегревается и выходит из строя.
Величину напряжения, не приводящую к тепловому пробою транзистора, можно оценить с помощью соотношения, аналогичного (3.25):
Допустимое напряжение UКБт тем меньше, чем больше обратный ток транзистора IКБо, его тепловое сопротивление Rт и температура окружающей среды T0. При плохом теплоотводе и высокой температуре окружающей среды 26 напряжение теплового пробоя может стать значительно ниже, чем рабочее напряжение транзистора. Особенно опасен тепловой пробой для мощных транзисторов, имеющих значительный ток IКБо .
Электрический пробой. Пробой переходов в транзисторе может возникать также вследствие ионизации атомов электрическим полем и ударной ионизации. Поскольку переходы находятся во взаимодействии, величина пробивного напряжения существенно зависит от схемы включения транзистора.
Пусть вследствие размножения электронно-дырочных пар в коллекторном переходе ток коллектора возрос в M раз и получил значение
Этот эффект можно рассматривать как увеличение коэффициента передачи тока эмиттера а, который становится равным
а* = Ма
В уединенном переходе с ростом приложенного напряжения коэффициент размножения носителей заряда М увеличивается в соответствии с эмпирической зависимостью (3.15):
где показатель k имеет величину от 2 до 6 в зависимости от материала и типа перехода. Это соотношение остается справедливым и для транзистора при отключенном эмиттере, когда коллекторный переход можно рассматривать как уединенный.
Рис.
Пробой коллекторного перехода наступает при UКБ ~Uл> при этом а* = М а -оо и ток коллектора лавинообразно нарастает, как показано на рис.3.28 (кривая Iэ=0). Напряжение пробоя коллекторного перехода при отключенном эмиттере принято обозначать UКБо *. В Рис 3.28 схеме с общим эмиттером коэффици ент передачи тока базы в предпробивном режиме
Пробой в данном случае должен наступать при р*-> ос, т. е. при М а 1, а следовательно, при напряжении, значительно меньшем UКБо.
Подставляя в равенство (3.84) условие М = 1/а и учитывая, что U UКЭ, Uл~ UКБо, найдем напряжение пробоя для случая, когда цепь базы разорвана:
причем значение а берут при Iк IКБо.
Расчет и эксперимент показывают, что UКЭo обычно в два-три раза ниже, чем UКБо (кривая IБ = 0 на рис. 3.28).
При увеличении тока коллектора, т е. при прямом напряжении базы, коэффициент передачи тока а возрастает и напряжение пробоя падает.
Размещено на Allbest.ru
Подобные документы
Получение входных и выходных характеристик транзистора. Включение биполярного транзистора по схеме с общим эмиттером. Проведение измерения тока базы, напряжения база-эмиттер и тока эмиттера для значений напряжения источника. Расчет коллекторного тока.
лабораторная работа [76,2 K], добавлен 12.01.2010Изучение методов построения зависимости прямого коэффициента усиления по току и анализ зависимости предельной частоты от тока эмиттера для кремниевого биполярного дрейфового транзистора. Этапы расчета частотных свойств биполярного дрейфового транзистора.
лабораторная работа [68,3 K], добавлен 06.02.2010Понятие и функциональное назначение биполярного транзистора как полупроводникового прибора с двумя близкорасположенными электронно-дырочными переходами. Анализ входных и выходных характеристик транзистора, включенного по схеме с общим эмиттером и базой.
лабораторная работа [1,3 M], добавлен 12.05.2016Параметры транзистора МП–40А, чертеж его основных выводов. Входная и выходная характеристики данного транзистора. Определение параметров для схемы с общим эмиттером. Схема с общим коллектором и общей базой. Расчет параметров для соответствующей схемы.
контрольная работа [642,0 K], добавлен 28.03.2011Принцип действия биполярного транзистора. Его статические характеристики и эксплуатационные параметры. Температурные и частотные свойства транзистора. Эквивалентные схемы полевых транзисторов. Схематическое изображение ПТ с изолированным затвором.
лекция [460,9 K], добавлен 15.03.2009Устройство и принцип действия биполярного транзистора, униполярного транзистора. Силовые полупроводниковые приборы, основные требования, предъявляемые к ним. Характеристика динисторов и транзисторов. Параметры предельных режимов работы транзисторов.
лекция [424,0 K], добавлен 14.11.2008Принцип работы полевого транзистора. Стоковые характеристики транзистора. Причина насыщения в стоковой характеристике полевого транзистора. Устройство полевого транзистора с управляющим p-n-переходом. Инверсия типа проводимости.
лабораторная работа [37,8 K], добавлен 20.03.2007Общее представление о мощных БИП-транзисторах Зависимость эффективности эмиттера от концентрации примеси в нем. Характеристика падения коэффициента усиления по току при больших плотностях тока. Сущность монолитного мощного транзистора Дарлингтона.
курсовая работа [676,6 K], добавлен 04.04.2015Порядок получения входных и выходных характеристик транзистора. Методика и основные этапы сборки электрической схемы, определение измерения тока коллектора. Экспериментальное нахождение сопротивления по входной характеристике при изменении базового тока.
лабораторная работа [39,8 K], добавлен 12.01.2010Характеристика біполярного транзистора - напівпровідникового елементу електронних схем, з трьома електродами, один з яких служить для керування струмом між двома іншими. Особливості принципу роботи, технології виготовлення на прикладі транзистора-КТ3107.
реферат [18,3 K], добавлен 02.02.2010