Эксплуатация и ремонт заземляющих устройств

Защитное заземление как преднамеренное соединение с землей металлических частей электроустановки, не находящихся под напряжением, структура и основные этапы данного процесса, его необходимость и функции. Монтаж заземления, его эксплуатация и ремонт.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 24.05.2013
Размер файла 676,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Защитное заземление - это преднамеренное соединение с землей металлических частей электроустановки, не находящихся под напряжением (рукояток приводов разъединителей, кожухов трансформаторов, фланцев опорных изоляторов, корпусов измерительных трансформаторов и т.п.).

Монтаж заземляющих устройств состоит из следующих операций: установки заземлителей, прокладки заземляющих проводников, соединения заземляющих проводников друг с другом присоединения заземляющих проводников к заземлителям и электрооборудованию.

Вертикальные заземлители из угловой стали и отбракованных труб погружают в грунт забивкой или вдавливанием, из круглой стали - ввертыванием или вдавливанием. Эти работы выполняют с помощью механизмов и приспособлений, например: копра (забивка в грунт), приспособления к сверлилке (ввертывание в грунт стержневых электродов), механизма ПЗД-12 (ввертывание в грунт электродов заземления).

Для устройства заземления наиболее распространены электрозаглубители, имеющие стандартную электросверлилку и редуктор, понижающий частоту вращения ниже 100 об/мин и соответственно увеличивающий крутящий момент на ввертываемом электроде. При пользовании этими заглубителями к концу электрода приваривают наконечник-забурник, обеспечивающий рыхление грунта и облегчающий погружение электрода. Выпускаемый промышленностью наконечник представляет собой заостренную на конце и изогнутую по винтовой линии стальную полосу шириной 16 мм. В монтажной практике применяются и другие типы наконечников для электродов. При устройстве заземления вертикальные заземлители должны закладываться на глубину 0,5 - 0,6 м от уровня планировочной отметки земли и выступать от дна траншеи на 0,1 - 0,2 м. Расстояние между электродами 2,5 - 3 м. Горизонтальные заземлители и соединительные полосы между вертикальными заземлителями укладывают в траншеи глубиной 0,6 - 0,7 м от уровня планировочной отметки земли. Все соединения в цепях заземлителей выполняют сваркой внахлестку; места сварки покрывают битумом во избежание коррозии. Траншею роют обычно шириной 0,5 и глубиной 0,7 м. Устройство внешнего заземляющего контура и прокладку внутренней заземляющей сети производят по рабочим чертежам проекта электроустановки. Вводы в здание заземляющих проводников выполняют не менее чем в двух местах. После монтажа заземлителей составляют акт на скрытые работы, указывая на чертежах привязки заземляющих устройств к стационарным ориентирам.

Заземляющие магистральные проводники прокладывают по стенам на расстоянии 0,5-0,10 м от поверхностей на высоте 0,4-0,6 м от уровня пола. Расстояние между точками крепления 0,6 -1,0 м. В сухих помещениях и при отсутствии химически активной среды допускается прокладка заземляющих проводников вплотную к стене. Заземляющие полосы к стенам крепят дюбелями, которые пристреливают строительно-монтажным пистолетом либо непосредственно к стене, либо через промежуточные детали. Широко применяют также закладные детали, к которым приваривают полосы заземления. Пистолетом типа ПЦ можно пристреливать детали из листовой или полосовой стали толщиной до 6 мм в основания из бетона (марки до 400), кирпича и др.

В сырых, особо сырых помещениях и в помещениях с едкими испарениями (с агрессивной средой) заземляющие проводники приваривают к опорам, закрепленным дюбелями-гвоздями. Для создания зазора между заземляющим проводником и основанием в таких помещениях используют штампованный держатель из полосовой стали шириной 25 - 30 и толщиной 4 мм, а также кронштейн для прокладки круглых заземляющих проводников диаметром 12 - 19 мм. Длина нахлестки при сварке должна быть равна двойной ширине полосы для прямо угольных полос или шести диаметрам для круглой стали.

К трубопроводам заземляющие проводники присоединяют при наличии на трубах задвижек или болтовых фланцевых соединений выполняют обходные перемычки.

Части электроустановок, подлежащие заземлению, присоединяют к заземляющим магистралям отдельными ответвлениями. Стальные заземляющие проводники присоединяют к металлоконструкциям сваркой, к оборудованию - под возможно, сваркой. заземляющий болт или, где проводники присоединяют к медными проводниками с креплением проволочным бандажом и пайкой. Вокруг подстанции обычно делают общий заземляющий контур, к которому приваривают заземляющие проводники внутренней части подстанции. Отдельные элементы электрооборудования присоединяют к заземляющим проводникам параллельно, а не последовательно, иначе при обрыве заземляющего проводника часть оборудования может оказаться незаземленной.

На подстанциях заземляют все элементы электрооборудования и металлические конструкции. Силовые трансформаторы заземляют гибкой перемычкой, изготовленной из стального троса. Перемычку с одной стороны приваривают к заземляющему проводнику, с другой - присоединяют к трансформатору с помощью болтового соединения. Разъединители заземляют через раму, плиту привода и опорный подшипник; корпус вспомогательных контактов - присоединением к шине заземления.

Если разъединители и приводы смонтированы на металлических конструкциях, то заземление выполняют путем приваривания к ним заземляющего проводника.

Предохранители на 6 - 10 кВ заземляют путем присоединения заземляющего проводника к фланцам опорных изоляторов, раме или металлической конструкции, на которой они установлены.

1. Общая часть

1.1 Монтаж заземления

Монтаж заземляющих устройств состоит из следующих операций: установки заземлителей, прокладки заземляющих проводников, соединения заземляющих проводников друг с другом присоединения заземляющих проводников к заземлителям и электрооборудованию.

Вертикальные заземлители из угловой стали и отбракованных труб погружают в грунт забивкой или вдавливанием, из круглой стали - ввертыванием или вдавливанием. Эти работы выполняют с помощью механизмов и приспособлений, например: копра (забивка в грунт), приспособления к сверлилке (ввертывание в грунт стержневых электродов), механизма ПЗД-12 (ввертывание в грунт электродов заземления).

Для устройства заземления наиболее распространены электрозаглубители, имеющие стандартную электросверлилку и редуктор, понижающий частоту вращения ниже 100 об/мин и соответственно увеличивающий крутящий момент на ввертываемом электроде. При пользовании этими заглубителями к концу электрода приваривают наконечник-забурник, обеспечивающий рыхление грунта и облегчающий погружение электрода. Выпускаемый промышленностью наконечник представляет собой заостренную на конце и изогнутую по винтовой линии стальную полосу шириной 16 мм. В монтажной практике применяются и другие типы наконечников для электродов. При устройстве заземления вертикальные заземлители должны закладываться на глубину 0,5 - 0,6 м от уровня планировочной отметки земли и выступать от дна траншеи на 0,1 - 0,2 м. Расстояние между электродами 2,5 - 3 м. Горизонтальные заземлители и соединительные полосы между вертикальными заземлителями укладывают в траншеи глубиной 0,6 - 0,7 м от уровня планировочной отметки земли. Все соединения в цепях заземлителей выполняют сваркой внахлестку; места сварки покрывают битумом во избежание коррозии. Траншею роют обычно шириной 0,5 и глубиной 0,7 м. Устройство внешнего заземляющего контура и прокладку внутренней заземляющей сети производят по рабочим чертежам проекта электроустановки. Вводы в здание заземляющих проводников выполняют не менее чем в двух местах. После монтажа заземлителей составляют акт на скрытые работы, указывая на чертежах привязки заземляющих устройств к стационарным ориентирам.

Заземляющие магистральные проводники прокладывают по стенам на расстоянии 0,5-0,10 м от поверхностей на высоте 0,4-0,6 м от уровня пола. Расстояние между точками крепления 0,6 -1,0 м. В сухих помещениях и при отсутствии химически активной среды допускается прокладка заземляющих проводников вплотную к стене. Заземляющие полосы к стенам крепят дюбелями, которые пристреливают строительно-монтажным пистолетом либо непосредственно к стене, либо через промежуточные детали. Широко применяют также закладные детали, к которым приваривают полосы заземления. Пистолетом типа ПЦ можно пристреливать детали из листовой или полосовой стали толщиной до 6 мм в основания из бетона (марки до 400), кирпича и др.

В сырых, особо сырых помещениях и в помещениях с едкими испарениями (с агрессивной средой) заземляющие проводники приваривают к опорам, закрепленным дюбелями-гвоздями. Для создания зазора между заземляющим проводником и основанием в таких помещениях используют штампованный держатель из полосовой стали шириной 25 - 30 и толщиной 4 мм, а также кронштейн для прокладки круглых заземляющих проводников диаметром 12 - 19 мм. Длина нахлестки при сварке должна быть равна двойной ширине полосы для прямо угольных полос или шести диаметрам для круглой стали.

Заземляющие и нулевые защитные проводники в помещениях и в наружных установках должны быть доступны для осмотра. Это требование не относится к нулевым жилам и металлическим оболочкам кабелей, трубам скрытой электропроводки, металлоконструкциям и трубам, находящимся в земле и фундаментах, а также заземляющим и нулевым защитным проводникам, проложенным в трубах и коробах и в скрытых несменяемых электропроводках.

Заземляющие проводники прокладывают горизонтально и вертикально или параллельно наклонным конструкциям зданий.

В сухих помещениях заземляющие проводники по бетонным и кирпичным основаниям могут укладываться непосредственно по основаниям с креплением полос дюбель-гвоздями, а в сырых, особо сырых помещениях и в помещениях с едкими парами прокладку проводников выполняют на подкладках или опорах (держателях) на расстоянии не менее 10 мм от основания.

Рис. 1. Крепление заземляющих проводников из полосовой стали: а - непосредственно к стене, б - на подкладках, в-на держателе для полосовой стали, г-то же для круглой стали 1 - дюбель, 2-полоса (шина заземления) 3 - подкладка из полосовой стали, 4 - держатель для плоских и круглых проводников 5 - круглая сталь (шина заземления).

Заземляющие проводники крепят на расстояниях 600 - 1000 мм между креплениями на прямых участках, 100 мм на поворотах от вершин углов, 100 мм от мест ответвлений, 400 - 600 мм от уровня пола помещения и не менее 50 мм от нижней поверхности съемных перекрытий каналов. Через стены, перегородки и перекрытия заземляющие проводники прокладывают в открытых проемах или в гильзах, а при пересечении температурных швов устанавливают компенсаторы.

Соединение заземляющих проводников и присоединение их к металлическим конструкциям зданий выполняют сваркой, за исключением разъемных мест, предназначенных для измерений. Длину нахлестки для сварки проводников при соединениях принимают равной ширине полосы при прямоугольном сечении и шести диаметрам - при круглом сечении.

К корпусам электродвигателей и электрических аппаратов заземляющие проводники присоединяют, как правило, под заземляющий болт, имеющийся на их корпусах. Электродвигатели, установленные на салазках, заземляют путем присоединения к последним заземляющего проводника.

При наличии сотрясений или вибрации принимают меры против ослабления контакта (установка контргайки, контрящих шайб и т.п.). Контактные поверхности на электрооборудовании и у заземляющих проводников в местах болтового соединения зачищают до металлического блеска и покрывают тонким слоем технического вазелина.

Способ соединения заземляющих проводников и подсоединения их к заземляющим болтам указан на рис. 2. Если на трубопроводах, используемых в качестве заземлителей, установлены задвижки, водомеры или выполнены фланцевые соединения, то в этих местах приваривают или устанавливают на хомутах обходные перемычки сечением не менее 100 мм2.

Рис. 2. Соединение и присоединение заземляющих проводников: а - соединение сваркой полосовой стали, б - соединение сваркой круглой стали, в - присоединение к заземляющему болту круглой стали, г - присоединение к трубопроводу полосовой стали сваркой

Открыто проложенные заземляющие и нулевые защитные проводники имеют отличительную окраску - по зеленому фону желтая полоса вдоль проводника. Окраске не подлежат места, предназначенные для подсоединения инвентарных переносных заземлителей.

Заземляющее устройство - это совокупность заземлителя и заземляющих проводников.

Сопротивление заземляющего устройства - это сумма сопротивлений, состоящие из сопротивления заземлителя относительно земли и сопротивления заземляющих проводников.

Сопротивление заземлителя - отношение напряжения на заземлителе относительно земли к току, проходящему через заземлитель.

Искуственные и естественные заземлители

Искусственные заземлители применяют тогда, когда естественные заземлители не не удовлетворяют требования ПУЭ. В качестве естественных заземлителей используются: проложенные в земле стальные водопроводные трубы, соединённые в стыках газо- или электросваркой; трубы артезианских скважин; металлические конструкции зданий и сооружений, имеющие надёжное соединение с землёй; различного рода трубопроводы, проложенные под землей.

Не допускается использовать в качестве естественных заземлителей нефтепроводы бензопроводы газопроводы и м подобные.

Для искусственных заземлителей применяют отрезки угловой стали 50 мм. Длинной 2,5 - 3 метра, которые забивают вертикально в траншее глубиной 70 см., оставляя над поверхностью дна траншеи 10 см. заземлителя. К этим заземлителям приваривают, проложенную в траншее круглую сталь диаметром 10 - 16 мм. или полосовую сталь сечением мм. по всему контуру.

Сопротивление заземляющего устройства

По ПУЭ в электроустановках до 1000 В с глухим заземлением нейтрали сопротивление заземляющие устройства должно быть не боле 4 Ом. Для электроустановок выше 1000 В.с большими токами замыкания на землю сопротивление заземляющего устройство должно быть не более 0,5 Ом.

Для электроустановок выше 1000 В с малыми токами замыкания на землю сопротивление заземляющего устройства удовлетворять условию Rз < Uз/Iз, где Uз = 250 В., если заземляющее устройство используется только для установок напряжением выше 1000 В, Uз=125 В., если заземляющее устройство одновременно используется и для установок до 1000 В., I з - расчетный ток замыкания на землю.

Если заземляющее устройство является общим для РУ электроустановок различных напряжений, то за расчетную сопротивлений заземления принимается наименьшая из требуемых величин. Емкостной ток замыкания на землю определяют по приближенной формуле. Iз = U (35lх +lв)/350, гдеU - линейное напряжение сети, lх и lв - суммарная длинна электрически связанных между собой кабельных и воздушных линий, км

1.2 Эксплуатация заземления

Все соединения в цепях заземлителей выполняют сваркой внахлёстку. Качество сварных швов проверяют осмотром, а прочность - ударом молотка массой 1 кг. Места сварки покрывают битумным лаком против коррозии.

Монтаж заземляющих и нулевых защитных проводников. Заземляющие проводники прокладывают горизонтально и вертикально по конструкциям зданий.

В сухих помещениях заземляющие проводники укладывают непосредственно по бетонным или кирпичным стенам с краплением полос под дюбель, а в сырых помещениях на подкладках на расстоянии не мене 10 мм. от стены.

Проводники крепят на расстояниях 600 - 1000 мм., на прямых участках, и 100 мм на поворотах, 400 - 600 мм от уровня пола. Заземляющие проводники к корпусам машин и аппаратов присоединяют под болт

При повреждении изоляции металлические части электроустановок и оборудования, обычно не находящиеся под напряжением, могут оказаться под полным рабочим напряжением. Прикосновение к ним человека связано с опасностью поражения электрическим током.

Одной из мер защиты людей в этих случаях является заземление, т.е. преднамеренное присоединение к земле (через заземляющую проводку и заземлитель, например вбитые в землю трубы) металлических частей электрооборудования и электроустановок, которые могут оказаться под напряжением вследствие нарушения изоляции. Сущность этой меры защиты заключается в следующем.

При повреждении изоляции через место замыкания в землю протекает ток. По пути протекания тока создается падение напряжения между оказавшейся под напряжением металлической частью и землей, при этом наибольшее значение имеет «напряжение относительно земли», т.е. напряжение между корпусом электроприемника и точками земли, находящимися вне зоны растекания токов в земле. Практически такие точки отстоят от сосредоточенного заземлителя на расстоянии 20 м и более (рис. 1).

Рис. 1. Кривая распределения напряжения относительно земли

Напряжение между двумя точками на пути протекания тока, к которым одновременно может прикоснуться человек (например, между корпусом электроприемника и тем местом, где стоит человек, или между ногами человека, идущего или стоящего в зоне растекания тока), называется «напряжением прикосновения» («шага»). Это напряжение будет всегда меньше «напряжения относительно земли».

В сетях с малыми токами замыкания на землю, т.е. там, где генераторы и трансформаторы работают с изолированной нейтралью или нейтралью, заземленной через компенсирующее сопротивление, безопасность персонала от прикосновения к металлическим частям, находящимся под напряжением, может быть достигнута путем выбора сопротивления заземления, при котором напряжение прикосновения будет находиться в допустимых пределах.

В сетях с большими токами замыкания на землю, т.е. там, где нейтраль трансформаторов или генераторов заземлена наглухо или через небольшое сопротивление, безопасность может быть обеспечена только путем возможно быстрого автоматического отключения поврежденного участка. Такое отключение должно осуществляться либо релейной защитой, либо аппаратами защиты (автоматическими выключателями или плавкими предохранителями). Соответствующим расположением заземлителей в целях выравнивания потенциалов можно добиться дополнительного снижения напряжений прикосновения и шага.

Заземляющие устройства, сооружаемые в основном для обеспечения условий безопасности персонала, должны удовлетворять также требованиям, обусловленным режимами сетей и защитой от перенапряжений.

Последовательное включение в заземляющий проводник заземляемых элементов установки не допускается, так как при изъятии какого-либо элемента установки для ремонта, замены и т.п. произойдет разрыв цепи заземления со всеми вытекающими отсюда последствиями.

При параллельном присоединении (т.е. посредством отдельных ответвлений) в этом случае сохраняется непрерывность цепи заземления (заземляющей магистрали). Заземление присоединенных к ней элементов установки не нарушается.

Рис. 2. Схемы присоединения заземленных электроприемников к заземляющей магистрали

Способы присоединения заземляющей проводки к заземляемым конструкциям, корпусам аппаратов, машин, к заземлителям и т.д., а также соединения заземляющих проводников между собой должны обеспечивать надежный контакт. Неудовлетворительное соединение может привести к нарушению функций, выполняемых заземляющим устройством.

Наибольшую надежность соединения обеспечивает сварка. Болтовое соединение применяется только в тех местах заземляющей проводки, где необходимо отсоединение от общей заземляющей сети, например при ремонтах или испытаниях. При наличии в этом случае сотрясений или вибрации должны быть приняты меры против ослабления контакта (контргайки, контрящие шайбы и т.п.).

Для обеспечения надежного соединения сболчиваемые поверхности тщательно зачищаются.

Сварка заземляющей проводки выполняется внахлестку с длиной шва, равной двойной ширине при прямоугольном сечении или шестикратному диаметру - при круглом сечении проводников.

1.3 Ремонт заземления

Заземлитель - представляет собой металлический проводник, находящийся в непосредственном соединении с землёй.

Заземляющими проводниками являются металлические проводники, соединяющие заземляемые части электроустановки с заземлителем.

Заземлением какой либо части электроустановки называют преднамеренное электрическое соединение с заземляющим устройством. Напряжением относительно земли при замыкании на корпус называют напряжение между этим корпусом и точками земли, находящимися вне зоны токов в земле, но не ближе 20 м.

Естественные заземлители

Чтобы получить заземляющие устройства с малым сопротивлением, широко используются так называемые естественные заземли: водопроводные и иные трубы, проложенные в земле, металлические конструкции хорошо связанные с землей и т.п. Такие естественные заземлители могут иметь сопротивление порядка долей ома и не требуют специальных затрат на их устройство. Поэтому они должны быть использованы в первую очередь.

В тех случаях, когда такие естественные заземлители отсутствуют, для заземляющих устройств приходится устраивать искусственные заземлители в виде заземляющих контуров, представляющих собой ряды забитых в землю уголков или труб, соединенных стальными полосами.

Общее сопротивление растеканию заземляющего контура определяется сопротивлением растеканию отдельных заземлителей по известному закону электротехники (как сумма проводимостей параллельно включенных проводников). Однако при контурных заземлителях приходится считаться с явлением так называемого взаимоэкранирования заземлителей. Это явление приводит к увеличению сопротивления растеканию заземлителей, размещенных в заземляющем контуре, по сравнению с отдельными заземлителями (уголок, полоса и т.п.) примерно в 1,5 и даже до 5 - 6 раз (для особо сложных контуров). Чем ближе находятся заземлители один от другого, тем в большей степени взаимоэкранирование влияет на общее сопротивление растеканию. Поэтому отдельные заземлители нужно располагать с расстояниями между ними не менее 2,5 и до 5 м.

Коэффициенты, учитывающие увеличение сопротивления растеканию в результате взаимоэкранирования, называются коэффициентами использования заземлителей. Все части заземляющего контура при протекании через него тока замыкания на землю получают примерно одинаковый потенциал. Поэтому заземляющие контуры способствуют выравниванию потенциалов на занимаемой ими площади. В ряде случаев (например, в установках напряжением 110 кВ и выше, лабораторных высоковольтных установках и др.) они специально для этой цели устраиваются в виде достаточно частой сетки из полос (помимо труб или уголков).

Заземляющие проводники

Выполнение сетей заземления облегчается при использовании в качестве заземляющих проводников стальных конструкций различного назначения. Будем называть их условно естественными проводниками.

В качестве естественных проводников могут служить:

а) металлические конструкции зданий (фермы, колонны и т.п.),

б) металлические конструкции производственного назначения (подкрановые пути, каркасы распределительных устройств, галереи, площадки, шахты лифтов, подъемников и т.п.),

в) металлические трубопроводы всех назначений - водопровод, канализация, теплофикация и т.п. (исключая трубопроводы для горючих и взрывоопасных смесей),

г) стальные трубы электропроводок,

д) свинцовые и алюминиевые оболочки (но не броня) кабелей.

Они могут служить единственными заземляющими проводниками, если удовлетворяют требованиям ПУЭ в отношении сечения или проводимости (сопротивления).

В качестве заземляющих проводников в первую очередь применяется сталь. Для осветительных установок и в других случаях, когда применение стали конструктивно неудобно или проводимость недостаточна, используются медь или алюминий.

Заземляющие проводники разделяются на основные (магистральные) и ответвления от них к отдельным электроприемникам.

2. Расчетно-технологическая часть

В грунтах с большим удельным сопротивлением один заземлитель (труба, стержень, полоса, кольцо, пластина и т.п.) имеет большое сопротивление и для получения требуемой меньшей величины сопротивления приходится устраивать заземление из нескольких единичных заземлителей, включенных параллельно. Заземляющее устройство при этом называется многоэлектродным.

При параллельном соединении единичных заземлителей необходимо принимать во внимание эффект взаимного экранирования заземлителей, который сказывается в том, что общее сопротивление заземления уменьшается не пропорционально числу заземлителей, соединенных параллельно, а несколько меньше. Экранирование сказывается тем больше, чем ближе друг к другу будут расположены единичные заземлители. Полное сопротивление Rоб параллельно соединенных заземлителей одинакового сопротивления определяется по формуле:

R-сопротивление единичного заземлителя, ом;

n-число заземлителей;

з - коэффициент использования, зависящий от конфигурации и расположения заземлителей.

Полное сопротивление нескольких вертикальных заземлителей одинакового сопротивления, соединенных параллельно с помощью горизонтальных заземлителей (полос или провода), определяется по формуле

R1 - сопротивление горизонтального заземлителя (соединительной полосы, шины), ом;

R2 - сопротивление вертикального заземлителя, ом;

з1 - коэффициент использования протяженных заземлителей, которыми являются соединительные полосы или шины;

з2 - коэффициент использования вертикальных заземлителей; n - количество вертикальных заземлителей.

Коэффициенты использования для многоэлектродных заземлителей (без учета влияния соединительной полосы), состоящих из вертикальных стержней (труб), размещенных в ряд.

заземление монтаж электроустановка ремонт

Расчет заземления (расчет сопротивления заземления) для одиночного глубинного заземлителя на основе модульного заземления производится как расчет обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.

Формула расчета сопротивления заземления одиночного вертикального заземлителя:

где:

с - удельное сопротивление грунта (Ом*м)

L - длина заземлителя (м)

d - диаметр заземлителя (м)

T - заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)

р - математическая константа Пи (3,141592)

ln - натуральный логарифм

3. Техника безопасность и охрана труда

Согласно Правилам устройства электроустановок при невозможности присоединения заземляющих проводников к трубопроводу (протяженный заземлитель) при помощи сварки допускается выполнение его при помощи хомутов, контактная поверхность которых должна быть облужена. Трубы в местах накладки хомутов должны быть зачищены.

Правилами устройства электроустановок также требуется, чтобы заземление оборудования, подвергающегося частному демонтажу или установленного на движущихся частях, выполнялось при помощи гибких проводников.

Заземляющие проводники должны иметь минимальные размеры, приведенные в ПУЭ.

В электроустановках напряжением до 1 000 В с изолированной нейтралью допустимая нагрузка на магистральные заземляющие проводники в соответствии с требованием ПУЭ должна быть не менее 50% допустимой длительной нагрузки на фазный провод наиболее мощной линии данного участка сети, а допустимая нагрузка на ответвления заземляющих проводников к отдельным электроприемникам - не менее 1/3 допустимой нагрузки фазных проводов, питающих эти электроприемники.

Для заземляющих проводников при напряжении как до так и выше 1 000 В не требуются сечения больше 100 мм - для стали, 35 мм2 - для алюминия и 25 мм2 - для меди.

Таким образом, выбор проводников для заземления оборудования достаточно прост, поскольку допустимая нагрузка на различные проводники может быть получена из таблиц ПУЭ или электротехнических справочников.

Сложнее обстоит дело с выбором проводников зануления, т.е. для установок 380/220 и 220/127 В с заземленной нейтралью. Отключение аварийного участка происходит, если имеет место определенная величина тока короткого замыкания; следовательно, необходимо иметь такое по возможности малое сопротивление цепи короткого замыкания, при котором в случае аварии ток достиг бы значения, необходимого для срабатывания защиты. Величина тока в соответствии с требованиями ПУЭ должна превышать не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя или в 1,5 раза ток максимального расцепителя ближайшего автомата. Это требование обеспечивает сгорание плавкой вставки и отключение автомата. Таково первое требование ПУЭ в отношении устройств зануления.

В цепь однофазного замыкания в сети с заземленной нейтралью входят сопротивления: обмоток (и магнитной цепи) трансформатора, фазного провода, нулевого провода (зануляющего проводника). Трансформатор и фазный провод выбираются по нагрузке и другим факторам, не относящимся к системе зануления. Для нулевого провода (зануляющего проводника) ПУЭ предписывается следующее требование: его сопротивление не должно превышать более чем в 2 раза сопротивление фазного провода наиболее мощной линии из числа питающих электроустановку или электроприемник (или проводимость должна составлять не менее 50% проводимости фазного провода). Таково второе требование ПУЭ в отношении устройств зануления.

Первое требование в большинстве случаев автоматически выполняется, если обеспечено выполнение второго требования. Таким образом, необходимо главным образом обеспечить требуемую величину сопротивления нулевого провода (зануляющего проводника). Для этого необходимо принять сечение нулевого (зануляющего) провода равным 50% фазного.

Правильный выбор зануляющих проводников имеет особо важное значение для обеспечения безопасности.

Заключение

В курсовой работе мною были раскрыты такие понятие, как заземление, заземляющего устройства. В общей части подробно описано из каких операций состоит монтаж заземляющих устройств необходимо знать максимальную величину удельного сопротивления слоя грунта на глубине и по какой форме оно определяется. Также, указал расчетные формулы для определения для вертикальных и горизонтальных вертикалей и по каким срокам службы рабочих заземлителей и способы продления этого срока.

Важным пунктом курсовой работе я считаю, что во время монтажа заземления и замер заземления необходимо пользоваться правилами техниками безопасности при производстве электромонтажных работ и пуско-наладочных работ.

Список используемой литературы

1. Акимова Н.А. Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования. - М.: Мастерство, 2001 - 296 с.

2. Елисеев В.А., Шинянский А.В. Справочник по автоматизированному электроприводу. - М.: Энергоатомиздат - 1983 - 816 с.

3. Зимин Е.Н. Электрооборудование промышленных предприятий и установок в машиностроении. - М.: Энергия, 1987 - 526 с.

4. Зюзин А.М. Техническая эксплуатация и ремонт электрооборудования - М.: Энергоатомиздат, 1980 - 530 с.

5. Коновалова Л.Г., Рожкова Л.Д. Электрооборудование станций и подстанций: учебник для техникумов - М.: Энергия, 1981 - 600 с.

6. Москаленко В.В. Системы автоматизированного управления электроприводом. - М.: ИНФРА-М, 2004 - 208 с.

7. Осинов К.А., Нефёдов С.Б. Сборник задач по резанию металлов и режущему инструменту - М.: Машиностроение, 1990 - 448 с.

8. Сибикин М.Ю. Технологическое оборудование. - М.: ИНФРА-М, 2005 - 400 с.

9. Сибикин Ю.Д. Справочник по эксплуатации электроустановок промышленных предприятий - М.: Высшая школа, 2005 - 400 с.

10. Харизаменов И.В. Электрооборудование станков и автоматических линий. - М.: Машиностроение, 1964 - 240 с.

Размещено на Allbest.ru


Подобные документы

  • Характеристика обслуживаемого предприятия и оборудования цеха. Обязанности электромонтера, техника безопасности его работы. Монтаж защитного заземления металлических нетоковедущих частей электрооборудования. Измерение сопротивлений заземляющих устройств.

    курсовая работа [764,3 K], добавлен 10.06.2011

  • Назначение, виды и монтаж устройств защитного заземления. Ремонт обмоток электрических машин, бандажирование и балансировка роторов и якорей. Сборка и испытание электрических машин. Методы оценки увлажненности и сушки изоляции обмоток трансформатора.

    контрольная работа [623,8 K], добавлен 17.03.2015

  • Основы технологии электромонтажных работ. Монтаж, эксплуатация и ремонт электрической проводки. Основные понятия о заземляющих устройствах. Размещение, установка и хранение оборудования. Сушка двигателей постоянного тока на "ползучей" частоте вращения.

    курс лекций [5,0 M], добавлен 20.01.2014

  • Устройство, монтаж и эксплуатация осветительных установок. Планово-предупредительный осмотр, проверка и ремонт осветительных установок, замена ламп и чистка светильников. Техника безопасности при работе в электроустановках напряжением до 1000 вольт.

    реферат [215,6 K], добавлен 07.02.2015

  • Эксплуатация, испытания, техническое обслуживание, ремонт и утилизация силового трансформатора. Расчёт кривой жизни электрооборудования и заземляющего устройства для защиты персонала. Организация строительных, электромонтажных и пуско-наладочных работ.

    курсовая работа [3,5 M], добавлен 10.04.2012

  • Изучение сути и необходимости заземления электроустановки - преднамеренного электрического соединения ее корпуса с заземляющим устройством. Естественные и искусственные заземлители. Меры для защиты от поражения электрическим током. Установка заземлений.

    реферат [416,0 K], добавлен 21.05.2012

  • История Югорского ремонтно-наладочного управления, правила внутреннего трудового распорядка. Организация работ, выполняемых в период текущей эксплуатации. Монтаж осветительного оборудования и контура заземления. Общие сведения о трансформаторах.

    отчет по практике [229,1 K], добавлен 01.03.2013

  • Основные типы, устройство и сроки проверки электроизмерительных приборов, средств индивидуальной защиты, противопожарных средств, находящихся в цехе. Технические данные трансформатора. Перечень и объем основных работ по монтажу-демонтажу оборудования.

    отчет по практике [588,3 K], добавлен 19.05.2013

  • Расчет нагрузок и выбор силового трансформатора. Эксплуатация и ремонт электрооборудования. Электроэрозионная установка, защита электрооборудования от коррозий. Расчет токов короткого замыкания. Монтаж заземляющих шин внутреннего заземляющего контура.

    дипломная работа [974,8 K], добавлен 04.06.2013

  • Техническая эксплуатация и обслуживание электрического и электромеханического оборудования. Вывод оборудования в ремонт и ввод его в эксплуатацию после ремонта. Техника безопасности при обслуживании электроустановок. Монтаж силовых трансформаторов.

    отчет по практике [158,4 K], добавлен 20.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.