Варикап: понятие, виды, назначение
Изучение сути и назначения управляемых напряжением полупроводниковых конденсаторов переменной емкости. Вольт-фарадная и вольт-амперная характеристики варикапа и мгновенное напряжение на варикапе. Схема включения варикапа в колебательный контур генератора.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 20.05.2013 |
Размер файла | 58,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Варикап: понятие, виды, назначение
Варикап [англ. varicap, от vari (able) - переменный и cap (acity) - ёмкость], конденсатор в виде полупроводникового диода, ёмкость которого нелинейно зависит от приложенного к нему электрического напряжения. Эта ёмкость представляет собой барьерную ёмкость электронно-дырочного перехода и изменяется от единиц до сотен пф (у отдельных В. практически в 3-4 раза) при изменении обратного (отрицательного знака) напряжения на несколько десятков вольт. В. обладает высокой добротностью (малыми потерями электрической энергии), малым температурным коэффициентом ёмкости, независимостью от частоты практически во всём диапазоне радиочастот, стабильностью параметров во времени. В. изготавливают на базе кремния, германия, арсенида галлия (см. Полупроводниковые материалы). В радиоэлектронных устройствах свойство нелинейности изменения ёмкости В. применяют для получения параметрического усиления, умножения частоты и др., а возможность электрического управления значением ёмкости - для дистанционной и безынерционной перестройки резонансной частоты колебательного контура и др.
Варикапы:
Варикап - это полупроводниковый диод, в котором используется зависимость емкости p-n перехода от обратного напряжения.
Варикапы удобны тем, что, подавая на них постоянное напряжение смещения, можно дистанционно и практически безинерционно менять их емкость и тем самым резонансную частоту контура, в который включен варикап. Варикапы применяют для усиления и генерации СВЧ сигналов, перестройки частоты колебательных контуров или автоподстройки частоты.
Принцип работы варикапа основан на свойствах барьерной емкости p-n перехода, причем при увеличении обратного напряжения на переходе его емкость уменьшается. Эта емкость имеет относительно высокую добротность, низкий уровень собственных шумов и не зависит от частоты вплоть до миллиметрового диапазона.
Основные параметры варикапов при нормальной температуре окружающей среды приведены в таблице:
Варикапы отечественные:
В таблицах по варикапам применены следующие условные обозначения:
Cном. |
- |
номинальная емкость варикапа при заданном обратном напряжении; |
|
Uобр. |
- |
обратное напряжение на варикапе; |
|
DC |
- |
диапазон отклонения номинальной емкости варикапа; |
|
Кс. |
- |
коэффициент перекрытия по емкости варикапа при изменении напряжения от U1 до U2; |
|
Qв. |
- |
добротность варикапа на частоте f; |
|
Uобр.мах. |
- |
максимально-допустимое обратное напряжение варикапа; |
|
Iобр. |
- |
постоянный обратный ток варикапа; |
|
Тк.макс. |
- |
максимально-допустимая температура корпуса варикапа; |
|
Тп.макс. |
- |
максимально-допустимая температура перехода варикапа. |
Управляемые напряжением полупроводниковые конденсаторы переменной емкости - варикапы - приборы с сильно выраженной нелинейностью. По этой причине в цепях, где к варикапу приложено переменное напряжение относительно большой амплитуды, он способен преподнести сюрприз.
По сути, варикап - это обратно-смещенный полупроводниковый диод. Прямая ветвь его вольт-амперной характеристики, принципиальная для основного назначения диода (выпрямление, детектирование), для варикапа несущественна. В общем случае в качестве варикапа можно использовать (и на практике это нередко реализуют) диод и даже коллекторный или эмиттерный переход биполярного транзистора.
В отличие от полупроводниковых диодов, у варикапов нормируют (и, разумеется, обеспечивают при производстве) емкость р-n перехода при определенном напряжении смещения на нем и добротность. Заметим, что добиться добротности варикапа, заметно превышающей добротность контурной катушки, непросто. Это объясняется тем, что в варикапе, как и в любом диоде, последовательно с р-n переходом всегда включено сопротивление базовой области полупроводника, а параллельно - эквивалентное сопротивление, обусловленное обратным током через переход. Относительно низкая добротность варикапа подразумевает, в частности, необходимость учитывать ее при расчете добротности колебательного контура. Зависимость емкости р-n перехода от приложенного к нему обратного напряжения имеет степенной характер вида С=U-n, где значение параметра n может находиться в пределах от 0,33 до 0,5 (определяется технологией изготовления перехода). На рис. 1 показана типовая вольт-фарадная характеристика варикапа Д902, построенная в линейных координатах. Подобные характеристики можно найти в справочной литературе. Они позволяют определить емкость варикапа при различных значениях напряжения смещения.
Рис. 1. Типовая вольт-фарадная характеристика варикапа Д902
варикап генератор напряжение конденсатор
Однако предпочтительнее иметь дело с вольт-фарадной характеристикой варикапа, построенной в "двойном" (т. е. по обеим осям) логарифмическом масштабе. Известно, что степенная функция выглядит в таком масштабе как прямая линия, причем тангенс угла ее наклона к оси ординат численно равен показателю степени функции. На рис. 2 показан этот график для варикапа Д902. Измерив обычной линейкой стороны прямоугольного треугольника ABC, получаем для модуля показателя степени значение 0,5 (АВ/ВС). Падающий характер характеристики говорит о том, что этот показатель имеет минусовой знак. Таким образом, зависимость емкости варикапа Д902 от приложенного напряжения имеет вид С=U-0,5.
Рис. 2. Вольт-фарадной характеристика варикапа, построенной в "двойном" логарифмическом масштабе
Сказанное выше относится к "классическим" варикапам. Для увеличения эффективности управления современными варикапами при их изготовлении принимают специальные технологические меры, поэтому и вольт-фарадные характеристики могут иметь уже не столь простой вид.
Поскольку вольт-фарадная характеристика варикапа нелинейна, его использование в аппаратуре неизбежно приводит к появлению искажений. Немецкий радиолюбитель Ульрих Граф (DK4SX) провел измерения интермодуляционных искажений второго и третьего порядков в различных полосовых фильтрах, содержащих полупроводниковые диоды (Ulrich Graf. Intermodulation an passiven Schaltungsteilen. - CQ DL, 1996, № 3, s. 200-205). Он подавал на вход фильтра (входное сопротивление 50 Ом) два сигнала с уровнем +3 дБ (10 мВ на сопротивлении 50 Ом) и анализировал спектр выходного сигнала. Значения частоты входных сигналов Граф выбирал так, чтобы продукты интермодуляции попадали в полосу пропускания фильтра.
В одном из экспериментов в двуконтурном входном полосовом фильтре постоянные конденсаторы, входящие в колебательные контуры, были заменены варикапами. Интермодуляционные составляющие второго порядка на выходе фильтра при этом возросли по уровню на 10 дБ, а третьего - почти на 50 дБ!
Иными словами, варикапы во входных цепях приемников способны ухудшить их реальную избирательность, хотя, скорее всего, они так "сработают" лишь в аппаратуре относительно высокого класса (связная техника). Впрочем, и в приемнике среднего класса интермодуляция на входном варикапе может стать существенной, если приемник эксплуатируют вблизи передающих устройств.
Есть, однако, узлы, в которых к варикапу принципиально должно быть подведено относительно большое переменное напряжение - речь идет о генераторах. На рис. 3 показана широко распространенная схема включения варикапа в колебательный контур генератора, а на рис. 4 - вольт-фарадная (С) и вольт-амперная (I) характеристики варикапа и мгновенное напряжение на варикапе (Uг) при двух значениях управляющего напряжения (Uynp). Обращаем внимание, что для наглядности на графике масштаб по оси "U" вправо от нуля и по оси "I; С" вниз от нуля укрупнен. Пока управляющее напряжение велико (Uупр1) по сравнению с амплитудой переменного напряжения (Uг), варикап работает в нормальном режиме. Но при уменьшении управляющего напряжения (Uynp2) могут наступать моменты, когда на пиках отрицательной полуволны напряжения рабочая точка варикапа будет заходить на прямую ветвь вольт-амперной характеристики и он начнет выпрямлять приложенное к нему переменное напряжение.
Рис. 3. Схема включения варикапа в колебательный контур генератора
Рис. 4. Вольт-фарадная и вольт-амперная характеристики варикапа и мгновенное напряжение на варикапе при двух значениях управляющего напряжения
Как же определить границу зоны нормальной работы варикапа в генераторе? Можно, например, измерять переменное напряжение на варикапе и сравнивать его с управляющим. Для этого необходим ВЧ вольтметр с высоким входным сопротивлением и малой входной емкостью (чтобы его подключение не изменяло режима работы генератора).
Минимально допустимое управляющее напряжение на варикапе можно определить, не нарушая режима работы генератора, и с помощью частотомера. Его подключают к выходу генератора и снимают зависимость крутизны управления генератором от управляющего напряжения.
Крутизна управления - это отношение изменения частоты генератора к вызвавшему его заданному изменению управляющего напряжения - dF/dU. При полном включении варикапа в контур крутизна может, например, быть описана степенной функцией (по крайней мере, для Д902), показатель которой зависит от вида вольт-фарадной характеристики варикапа. Вспомним (см. выше), что такая функция, если ее построить в "двойном" логарифмическом масштабе, представляет собой прямую линию. Если варикап начнет выходить из нормального режима работы, характер зависимости крутизны от управляющего напряжения изменится. Это справедливо и в более общем случае, когда варикап включен в контур не полностью или его вольт-фарадная характеристика - не степенная функция.
Поскольку вольт-фарадная характеристика нелинейна, измерения следует вести в определенной последовательности. Установив некоторое управляющее напряжение Uупр, определяют частоту генератора Fг. Затем сначала уменьшают это напряжение до Uупр-dUупр, а потом увеличивают до Uynp+dUупр и считывают по табло частотомера соответствующие значения частоты Fг1 и Fг2.
Крутизну управления при управляющем напряжении Uупр рассчитывают по формуле
dF/dU=(Fг2-Fг1)/2dUупр.
Абсолютное значение изменения напряжения dUупр должно быть минимальным, но таким, при котором можно надежно фиксировать изменение частоты генератора. Затем устанавливают другое значение управляющего напряжения иупри повторяют измерения. Такая методика уменьшает влияние нелинейности вольт-фарадной характеристики варикапа на точность измерения крутизны управления.
Результаты измерений крутизны управления частотой генератора с полным включением варикапа в контур (см. рис. 3) представлены на рис. 5. Видно, что при управляющем напряжении на варикапе ниже 3,5 В он выходит из нормального режима. Иначе говоря, для указанного генератора это напряжение и будет критическим. При дальнейшем уменьшении управляющего напряжения наклон кривой может вообще изменить свой знак! Происходит это из-за уже упоминавшегося выпрямления высокочастотного напряжения, приложенного к варикапу. Выпрямленное напряжение вычитается из управляющего и начинает преобладать над ним.
Рис. 5. Измерения крутизны управления частотой генератора с полным включением варикапа в контур
Если описанная ситуация произойдет, например, с гетеродином вашего приемника, будет чему удивляться. Представьте себе - при вращении в одну и ту же сторону ручки переменного резистора "Настройка" частота приема сначала изменяется.
Размещено на Allbest.ru
Подобные документы
Электрический пробой газов и диэлектриков. Вольт-секундные характеристики изоляции. Разработка импульсного генератора высоких напряжений. Моделирование и построение математической модели, позволяющей проводить расчет электрического разряда в жидкости.
дипломная работа [3,4 M], добавлен 26.11.2011Понятие полупроводникового диода. Вольт-амперные характеристики диодов. Расчет схемы измерительного прибора. Параметры используемых диодов. Основные параметры, устройство и конструкция полупроводниковых диодов. Устройство сплавного и точечного диодов.
курсовая работа [1,0 M], добавлен 04.05.2011Назначение полевых транзисторов на основе металлооксидной пленки, напряжение. Вольт-амперная характеристика управляющего транзистора в крутой линейной части. Передаточная характеристика инвертора, время переключения. Вычисление скорости насыщения.
контрольная работа [103,9 K], добавлен 14.12.2013Понятие электрической емкости системы из двух проводников. Конструкции конденсаторов: бумажных, слюдяных, керамических, электролитических, переменной емкости с воздушным или твердым диэлектриком. Параллельное и последовательное соединение конденсаторов.
презентация [728,9 K], добавлен 27.10.2015Рассмотрение устройства и назначения конденсаторов; их свойства в цепях переменного и постоянного тока. Условия достижения удельной емкости, максимальной плотности энергии и номинального напряжения. Классификация конденсаторов по виду диэлектрика.
презентация [2,4 M], добавлен 08.09.2013Расчет напряжения на переходе при прямом включении при заданном прямом токе. Влияние температуры на прямое напряжение. Сопротивление диода постоянному току. Вольт-амперная характеристика диода. Параметры стабилизатора напряжения на основе стабилитрона.
контрольная работа [219,8 K], добавлен 14.01.2014Понятие и принцип работы предохранителей, особенности и назначение. Технические характеристики предохранителей напряжением до 1000 Вольт, охрана труда при работе с ними. Анализ возможных неисправностей в работе предохранителей и пути их устранения.
контрольная работа [85,3 K], добавлен 08.10.2009Использование колебательного контура для возбуждения и поддержания электромагнитных колебаний. Стадии колебательного процесса. Фактор затухания в выражении для закона Ома. Формула напряжения на конденсаторе и логарифмический декремент затухания.
презентация [146,8 K], добавлен 18.04.2013Физика явлений, происходящих в газовых разрядах с непрерывным и импульсным подводом электрической энергии, как основа лазерных технологий. Виды, свойства и характеристики разрядов. Разряд униполярного пробоя газа, его вольт-амперные характеристики.
дипломная работа [1,9 M], добавлен 25.02.2013Определение величины обратного тока диодной структуры. Расчет вольт-амперной характеристики идеального и реального переходов. Зависимости дифференциального сопротивления, барьерной и диффузионной емкости, толщины обедненного слоя от напряжения диода.
курсовая работа [362,1 K], добавлен 28.02.2016