Электростатическое поле

Понятие и характерные свойства электростатического поля, роль и значение в нем напряженности и потенциала как основных параметров. Составление модели электрического поля. Исследование и графическое представление градиента потенциала, положение точек.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 10.02.2013
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Электрическое поле - одна из форм существования материи, посредством которой осуществляется взаимодействие электрически заряженных тел. Поле, созданное неподвижными электрическими зарядами называется электростатическим.

Электростатическое поле в каждой точке характеризуется вектором напряженности и потенциалом . Напряженность поля векторная физическая величина, численно равная силе, действующей на единичный пробный положительный заряд, помещенный в данную точку поля:

(1)

Потенциал поля скалярная физическая величина, численно равная потенциальной энергии единичного пробного положительного заряда, помещенного в данную точку поля:

(2)

Напряженность и потенциал электростатического поля связаны между собой соотношением:

(3)

где производная потенциала по нормали n к эквипотенциальной поверхности называется градиентом потенциала, который также обозначается

.

Градиентом потенциала называется вектор, направление которого совпадает с направлением наибольшего увеличения потенциала, а величина равна изменению потенциала на единицу длины в направлении наибольшего изменения (рис. 1)

Графически электростатические поля изображаются с помощью силовых линий и эквипотенциальных поверхностей. Силовой линией электростатического поля или линией напряженности называется линия, касательная к которой в каждой точке совпадает с направлением вектора напряженности (сплошные линии на рис. 2)

Эквипотенциальная поверхность есть геометрическое место точек равного потенциала (пунктирные линии на рис. 2)

Силовые линии всегда перпендикулярны эквипотенциальным поверхностям.

Действительно, работа сил электростатического поля по перемещению заряда по эквипотенциальной поверхности на отрезке равна

так как изменение потенциала .

С другой стороны

где угол между направлением вектора и направлением отрезка .

Так как , следовательно

а .

Отсюда вытекает, что силовые линии электростатического поля перпендикулярны к эквипотенциальным поверхностям.

Ортогональность силовых линий и эквипотенциальных поверхностей используется в данной работе для построения силовых линий электростатического поля по экспериментально установленному положению эквипотенциальных поверхностей.

Определить положение эквипотенциальных поверхностей можно, измеряя потенциал электростатического поля в различных точках. Для определения потенциала в электростатическом поле применяются электрометры. Однако измерение потенциала с помощью электрометра затруднено, вследствие возмущений, вносимых в поле зондом.

В данной работе для экспериментального исследования электростатического поля используется моделирование. Моделью электростатического поля является электрическое поле, возникающее в слабопроводящей среде при помещении в нее электродов, на которые подается переменное электрическое напряжение от внешнего источника. Изучение электростатического поля заряженных электродов заменяют изучением электрического поля в проводящей среде при наличии тока. Такую замену можно сделать потому, что математическое описание обоих полей тождественно и электрическое поле в слабопроводящей среде при наличии тока такое же, как электростатическое поле заряженных электродов до их погружения.

Определение положения точек в проводящей среде, имеющих одинаковый потенциал, осуществляется с помощью вольтметра (рис. 3)

градиент напряженность потенциал электростатический

1 - ванна, 2 - источник питания, 3 - электроды, 4 - вольтметр, 5 - зонд.

К одной клемме вольтметра (рис. 3) подключают зонд, вторую соединяют с одним из электродов. Перемещая зонд в пространстве между электродами так, чтобы вольтметр показывал одинаковое значение выбранной разности потенциалов, находят ряд точек с равным потенциалом.

В данной работе в качестве слабопроводящей среды используется вода.

Для получения графической картины электрического поля используется пантограф, который представляет собой устройство, состоящее из системы рычагов, на одном конце которого находится зонд, а на другом - пробойник. На листе бумаги, закрепленной на столе пантографа, пробойником отмечают точки равного потенциала, соединив которые можно получить эквипотенциальную поверхность, а точнее ее сечение плоскостью чертежа.

Размещено на Allbest.ru


Подобные документы

  • Расчет напряженности и потенциала электрического поля, создаваемого заряженным телом. Распределение линий напряженности и эквипотенциальных линий вокруг тела. Электрическое поле, принцип суперпозиции. Связь между потенциалом и напряженностью поля.

    курсовая работа [1,5 M], добавлен 26.12.2011

  • Сущность электростатического поля, определение его напряженности и графическое представление. Расчет объемной и линейной плотности электрического заряда. Формулировка теоремы Гаусса. Особенности поляризации диэлектриков. Уравнения Пуассона и Лапласа.

    презентация [890,4 K], добавлен 13.08.2013

  • Изучение электромагнитного взаимодействия, свойств электрического заряда, электростатического поля. Расчет напряженности для системы распределенного и точечных зарядов. Анализ потока напряженности электрического поля. Теорема Гаусса в интегральной форме.

    курсовая работа [99,5 K], добавлен 25.04.2010

  • Электромагнитное поле. Система дифференциальных уравнений Максвелла. Распределение потенциала электрического поля. Распределения потенциала и составляющих напряженности электрического поля и построение графиков для каждого расстояния. Закон Кулона.

    курсовая работа [1,1 M], добавлен 12.05.2016

  • Определение потенциала электростатического поля и напряжения (разности потенциалов). Определение взаимодействия между двумя электрическими зарядами в соответствии с законом Кулона. Электрические конденсаторы и их емкость. Параметры электрического тока.

    презентация [1,9 M], добавлен 27.12.2011

  • Изучение электростатического поля системы заряженных тел, расположенных вблизи проводящей плоскости. Определение емкости конденсатора на один метр длины. Описание зависимости потенциала и напряженности в электрическом поле, составление их графиков.

    контрольная работа [313,2 K], добавлен 20.08.2015

  • Силовые линии напряженности электрического поля для однородного электрического поля и точечных зарядов. Поток вектора напряженности. Закон Гаусса в интегральной форме, его применение для полей, созданных телами, обладающими геометрической симметрией.

    презентация [342,6 K], добавлен 19.03.2013

  • Теоретическое исследование электростатического поля как поля, созданного неподвижными в пространстве и неизменными во времени электрическими зарядами. Экспериментальные расчеты характеристик полей, построение их изображений и описание опытной установки.

    лабораторная работа [97,4 K], добавлен 18.09.2011

  • Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.

    презентация [1,1 M], добавлен 23.10.2013

  • Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.

    шпаргалка [619,6 K], добавлен 04.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.