Исследование и расчет цепей постоянного тока

Число линейно независимых уравнений, составляемых по первому закону Кирхгофа. Второй закон Кирхгофа для контура электрической цепи. Последовательность определения токов ветвей. Методы узловых потенциалов и эквивалентного генератора. Анализ результатов.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 09.02.2013
Размер файла 460,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Курсовая работа

Исследование и расчёт цепей постоянного тока

1. Цель работы

1) Освоение методики измерения токов, напряжений, потенциалов.

2) Опытная проверка законов Кирхгофа и принципа наложения.

3) Расчёт токов, узловых потенциалов, эквивалентного генератора.

4) Построение потенциальной диаграммы.

5) Составление баланса мощностей.

6) Сравнение результатов опыта и расчёта.

1.1 Особенности выполнения работы

Проверка методов расчёта цепей постоянного тока состоит в измерении токов, напряжений, потенциалов и сравнение их с результатами расчётов. На первом занятии необходимо освоить методику измерения ЭДС, токов, напряжений, потенциалов и провести измерения по программе из задания на расчётно-экспериментальную работу (РЭР).

На последующих занятиях экспериментальные данные сравнивают с результатами расчётов, полученных различными методами. Поскольку макеты установок находятся в лаборатории в течении всего времени выполнения РЭР, при необходимости эксперимент можно повторить и уточнить данные опыта.

3. Описание лабораторной установки.

Лабораторная установка содержит:

1) Панель, на которой установлены приборы магнитоэлектрической системы: три миллиамперметра и вольтметр, сопротивления: R1, R2, R4, R5;

2) Два источника постоянной регулируемой ЭДС;

3) Два магазина сопротивлений - R3 и R6;

4) Ключ S, соединительные провода.

1.2 Теоретические сведения

1.2.1 Законы Кирхгофа

Законы Кирхгофа являются фундаментальными законами электротехники.

Первый закон Кирхгофа формулируется для узла электрической цепи: алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю. При этом подходящие к узлу токи записываются с одним знаком, отходящие - с другим.

Например, для узла, изображенного на рис. 1, можно записать первый закон Кирхгофа:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рисунок 1.1

I1 + I2 - I3 - I4 = 0 или - I1 - I2 + I3 + I4 = 0

Число линейно независимых уравнений, составляемых по первому закону Кирхгофа, на единицу меньше числа узлов схемы.

Второй закон Кирхгофа формулируется для контура электрической цепи: алгебраическая сумма падений напряжений на участках контура равна алгебраической сумме ЭДС того же контура. При этом, если направление ЭДС совпадает с направлением обхода контура, то она берется со знаком „плюс", если не совпадает - со знаком „минус”. Падение напряжения на элементе берется со знаком „плюс", если направление тока в элементе совпадает с направлением обхода, если не совпадает - со знаком „минус".

Например, для контура, показанного на рис. 2, можно записать:

Рисунок 1.2

R1I1 + R2I2 - R3I3 - R4I4 = E1 - E2

Уравнения по второму закону Кирхгофа составляются для независимых контуров - контуров, отличающихся друг от друга хотя бы одной новой ветвью.

Последовательность определения токов ветвей по законам Кирхгофа:

1) Выбирается направления токов ветвей. Число токов равно числу ветвей схемы. Токи ветвей с источниками тока известны.

2) Записываются уравнения по первому закону Кирхгофа, их число на единицу меньше числа узлов схемы.

3) Выбираются независимые контуры и направления их обхода.

4) Записываются уравнения по второму закону Кирхгофа для независимых контуров, при этом уравнения для контуров, включающих источники тока, не составляются.

5) В результате совместного решения уравнений, составленных по первому и второму законам Кирхгофа, определяются токи ветвей.

1.2.2 Метод контурных токов

В этом методе за неизвестные принимают токи независимых контуров (контурные токи), а токи ветвей выражают через контурные.

Рассмотрим правила формирования уравнений на примере схемы, приведенной на рис. 3, в которой известны величины ЭДС и ток источника тока, а также все сопротивления.

Рисунок 1.3

Выберем независимые контуры и направления их обхода. Допустим, что в каждом контуре протекает свой контурный ток, совпадающий с направлением обхода - I11 , I22 , I33 .Выберем направления токов ветвей и составим уравнения по второму закону Кирхгофа для выбранных контуров (для контура с источником тока уравнение не составляется, так как I33 = J):

R1I1 + (R2 + R3)I2 = E1

-(R2 + R3)I2 - R4I3 + R5I4 = -E2 (*)

Выразим токи ветвей через контурные:

I1 = I11 ; I2 = I11 - I22 ; I6 = I3 = -I22 ; I4 = I22 + I33 ; I5 = I33 ; I33 = J ; I5 = J

и подставим в систему (*):

R1I11 + (R2 + R3)(I11 - I22) = E1

-(R2 + R3) (I11 - I22) - R4(-I22) + R5(I22 + I33) = -E2

После группировки получим:

(R1 + R2 + R3)I11 - (R2 + R3) I22 = E1

-(R2 + R3) I11 + -(R2 + R3 + R4 + R5 )I22 + R5I33 = -E2

В общем виде для трехконтурной схемы с одним источником тока:

R11I11 + R12I22 + R13I33 = E11

R21I11 + R22I22 + R23I23 = E22,

где R11 , R22 - собственные сопротивления контуров I11 и I22, каждое из которых равно сумме сопротивлении, входящих в данный контур;

R12 = R21 , R13 ,R23 - общие сопротивления контуров. Общее сопротивление равно сопротивлению ветви, общей для рассматриваемых контуров, Общие сопротивления берутся со знаком “плюс”, если контурные токи в них направлены одинаково и со знаком “минус”, если контурные токи в них направлены встречно. Если контуры не имеют общей ветви, то их общее сопротивление равно нулю. В рассматриваемом примере R13 = 0;

Е11 , Е22 - контурные ЭДС, каждая из которых равна алгебраической сумме ЭДС данного контура. ЭДС берется со знаком ”плюс”, если ее направление совпадает с направлением контурного тока, если не совпадает - со знаком “минус”.

Последовательность определения токов ветвей методом контурных токов

1) Выбираются независимые контуры и направления контурных токов.

2) Записывается система уравнений в общем виде. Число уравнений равно числу независимых контуров схемы минус число контуров, содержащих источники тока. Количество слагаемых в левой части уравнения равно числу независимых контуров.

3) Определяются коэффициенты при неизвестных - собственные и общие сопротивления контуров, а также контурные ЭДС. Если общей ветвью контуров является источник ЭДС без сопротивления, то общее сопротивление этих контуров равно нулю.

4) Рассчитываются контурные токи.

5) Выбираются направления токов ветвей.

6) Определяются токи ветвей.

1.2.3 Метод узловых потенциалов

В этом методе за неизвестные принимают потенциалы узлов схемы, а токи ветвей находят по закону Ома.

Рассмотрим правила формирования уравнений на примере схемы, приведенной на рис. 4, в которой известны величины ЭДС и ток источника тока, а также все сопротивления.

Рисунок 1.4

В этой схеме два неизвестных потенциала: и , поскольку =, =, =, а потенциал одного из узлов, в данном случае , принимается равным нулю, что на схеме обозначается заземлением узла 3.

Запишем уравнения по первому закону Кирхгофа, предварительно выбрав направления токов в ветвях:

узел 1: -I1 + I3 + I4 + I5 -I7 = 0

узел 2: I2 - I3 - I4 + I6 + I7 = 0 (*)

Выразим токи ветвей через потенциалы узлов:

;

;

;

;

;

;

и подставим в систему (*):

После группировки получим:

В общем виде:

где , - собственные (узловые) проводимости узлов 1 и 2, каждая из которых равна сумме проводимостей ветвей, сходящихся в данном узле;

, - общая проводимость - взятая со знаком “минус” сумма проводимостей ветвей, соединяющих узлы 1 и 2 (проводимость ветви, содержащей источник тока, равна нулю);

, - задающие (узловые) токи узлов 1 и 2, каждый из которых равен алгебраической сумме произведений ЭДС на проводимость ветвей, в которых они находятся (рассматриваются ветви, подключенные к данному узлу), и алгебраической сумме токов источников тока, подключенных к данному узлу. Знаки слагаемых: “плюс” - если направление ЭДС (источника тока) к узлу, “минус” - если направление ЭДС (источника тока) от узла.

Последовательность определения токов ветвей методом узловых потенциалов:

1) Записывается система уравнений в общем виде. Число уравнений системы на единицу меньше числа узлов схемы. Если в схеме содержится ветвь с источником ЭДС без сопротивлений, то 2 = 1 + E1. Приняв 1 = 0, получим 2 = E1.

2) Определяются коэффициенты при неизвестных - собственные и общие проводимости, также задающие токи узлов.

3) Рассчитывается потенциалы узлов.

4) Выбираются направления токов ветвей.

5) Определяются токи ветвей.

1.2.4 Метод эквивалентного генератора

При расчетах линейных электрических цепей возможна замена части цепи, содержащей источник ЭДС и тока, относительно зажимов выделенной ветви ab (рис. 5,а) активным двухполюсником, состоящим из последовательно соединенных ЭДС и сопротивления. В этом случае указанную ветвь можно рассматривать как нагрузку эквивалентного генератора с ЭДС ЕГ и сопротивлением RГ.

Рисунок 1.5

Эквивалентная ЭДС ЕГ равна напряжению на зажимах ab при разомкнутой ветви RH, т.е. напряжению холостого хода Uх.х.

Сопротивление RГ равно входному сопротивлению цепи относительно зажимов ab при разомкнутой ветви RH. Источники при этом исключаются из схемы.

Эквивалентные параметры ЕГ и RГ могут быть определены опытным путем из режимов холостого хода (рис. 5,б) и короткого замыкания (рис. 5,в):

ЕГ = Uх.х ;

1.2.5 Сравнение методов

Наиболее эффективным методом при расчете цепи постоянного тока является тот метод, который приводит к наименьшему числу уравнений, составляющих систему решения. Поэтому выбор способа решения напрямую зависит от исследуемой схемы. Если в этой схеме малое количество узлов, то решение удобнее проводить методом узловых потенциалов, если же в схеме небольшое количество независимых контуров, то удобней решать методом контурных токов. Метод эквивалентного генератора можно применять в очень сложных цепях, когда требуется найти один какой-либо параметр. При использовании этого метода число ветвей в схеме для анализа уменьшается на одну, что упрощает расчет.

1.3 Экспериментальная часть

1) Измеряем Е1 и Е2 , показания заносим в таблицу 1.1.

Параметры исследуемой цепи

Таблица1.1

Значения ЭДС, В

Сопротивления резисторов ,

Ом

Сопротивления амперметров, Ом

Е1

Е2

R1

R2

R3

R4

R5

R6

RA1

RA2

RA3

9

8

34

28

20

34

27

45

1

1

1

2) При замкнутом ключе S измеряем токи от действия обеих ЭДС, полученные значения заносим в таблицу 1.2 и 1.4 .

Таблица 1.2 Сравнение значений токов, полученных расчётами и в опыте

Токи в ветвях, мА

Способ определения

I1

I2

I3

I4

I5

80

60

135

Опытным путём

83

62

145

94

156

Методом контурных токов

86

52

142

100

166

Методом узловых потенциалов

143

Методом эквивалентного генератора

3) Принимаем потенциал одного из узлов схемы (узла номер 2) равным нулю, измеряем потенциалы указанных точек, заносим их в таблицу 1.3

Таблица 1.3 Сравнение значений потенциалов, полученных расчетом и в опыте

Потенциалы точек цепи, В

Способ определения

ц1

ц2

ц3

ц4

ц5

ц6

4,5

3

0

-4,5

-2,5

5,5

Опытным путём

4,5

3

0

-4,5

-3

5

Методом узловых потенциалов

4) Измеряем и заносим в таблицу 1.4 значения токов от действия Е1, Е2 .

Таблица 1.4 Проверка принципа наложения

включены ЭДС, В

Токи, мА

опыт

Расчёт

Е1

I'1

I'2

I'3

преобразованием цепи

I'1

I'2

I'3

90

-30

60

107

-24

67

Е2

I''1

I''2

I''3

преобразованием цепи

I''1

I''2

I''3

-23

70

70

-23

73

73

Е1, Е2

I1

I2

I3

методом наложения

I1

I2

I3

80

60

135

84

59

140

5) Включаем в схему Е1 и Е2, измеряем ток I3 при R3=0, затем размыкаем ключ S и измеряем напряжение между точками 2и3.Полученные значения заносим в таблицу 1.5

Таблица 1.5 Параметры эквивалентного генератора

Напряжение холостого хода Eг=U23Х,X, В

Ток короткого замыкания IЗ К.З, А

Сопротивление

RГ , Ом

Способ определения

-6,5

0,23

27,3

Опыт

-6,24

24

Расчёт

1.4 Расчётная часть

Рисунок 1.6 - Эквивалентная схема стенда, используемая для проведения расчетов.

Составим уравнения по законам Кирхгофа:

-по первому закону Кирхгофа:

Токи входящие в узел беру с положительным знаком, выходящие с отрицательным.

-по второму закону Кирхгофа:

Сумма падений напряжений в контуре равна сумме ЭДС в контуре, если реальный ток совпадает с направлением обхода контура, то беру с плюсом, если нет то с минусом. Аналогично и знак перед ЭДС.

1.4.1 Потенциальная диаграмма

Потенциалы всех узлов, обозначенных на схеме:

Рисунок 1.7 - Потенциальная диаграмма для внешнего контура схемы (узлы 3-4-1-2-6-5-3)

1.4.2 Метод контурных токов

Выберем три независимых контура. Обозначим контурные токи: I11, I22, I33, выбрав направление обхода произвольно.

Рисунок 1.8 - Метод контурных токов

Составим систему уравнений для определения контурных токов:

Для данной схемы при выбранных направлениях обхода контуров их параметры выражаются следующим образом:

Решив полученную систему уравнений, найдем контурные токи:

Выразим токи ветвей через контурные:

кирхгоф ток электрический потенциал

1.4.3 Метод узловых потенциалов

Рисунок 1.9 - Метод узловых потенциалов

Запишем систему уравнений для потенциалов узлов 1 и 3:

По исходным данным вычислим значения задающих токов и проводимостей ветвей:

Решив полученную систему уравнений, получим потенциалы узлов:

Найдём потенциалы остальных точек схемы:

Исходя из потенциалов узлов и 2-го закона Кирхгофа, найдем токи ветвей:

1.4.4 Расчет токов методом наложения

Метод основан на предположении о линейности цепи, т.е. о том, что все источники в схеме действуют независимо и токи в ветвях схемы можно представить как алгебраическую сумму токов каждого из источников. Для этого поочередно исключаем из схемы источники ЭДС, рассчитываем токи в цепи по закону Ома.

Преобразуем исходную схему, исключив второй источник напряжения.

Рисунок 1.10 - Преобразование схемы для метода наложения.

Рассчитаем вспомогательные сопротивления (между узлами схемы):

Теперь рассчитаем токи в ветвях схемы с учетом принятых для них направлений.

Проведем аналогичный расчет, исключив первый источник.

Рисунок 1.11 - Преобразование схемы для метода наложения

Токи и межузловые сопротивления в данной схеме находятся следующим образом:

Найдем теперь токи I1, I2, I3.

1.4.5 Метод эквивалентного генератора

Метод эквивалентного генератора основан на том, что вся схема, подключенная к какой-нибудь одной ее ветви, ток в которой нужно найти, заменяется эквивалентным генератором с ЭДС и внутренним сопротивлением такими, что ток в этой ветви не изменяется по сравнению с исходной схемой.

Рисунок 1.12 - Преобразование схемы для метода эквивалентного генератора

Для заданной схемы ЭДС эквивалентного генератора, рассчитанная с использованием метода контурных токов,

Решим систему и найдём контурные токи и ток в ветви:

ЭДС эквивалентного генератора найдем по формуле:

Внутреннее сопротивление эквивалентного генератора найдем по формуле:

Ток I3 рассчитаем по закону Ома:

1.4.6 Проверка баланса мощностей в схеме

Баланс мощностей в схеме определяется следующими выражениями:

Для заданной схемы баланс мощностей запишется в виде:

Проверим баланс мощностей в схеме, подставив опытные значения для источников и потребителей первого контура

Рисунок 1.13

Получаю следующие уравнения

Посчитаем погрешность

Таблица 4.7

Способ определения

Мощность источников, Вт

Мощность потребителей, Вт

Относительная погрешность, %

Опыт

0,873

0,871

0,2%

Выводы

Расчеты, проведенные в данной работе, позволяют глубже понять суть методов расчета электрических цепей постоянного тока и соотношение их с практикой. Их результаты показывают, что изучаемые методы расчета абсолютно точны в принципе, а погрешности или расхождение с практикой могут появиться только в результате округления чисел в расчетах или использования неполных математических моделей реальных схем.

Наиболее простым для понимания и решения в данной работе для меня оказался метод наложения, потому что он использует только тождественные преобразования электрической цепи и закон Ома и не используются искусственные приемы (расчет контурных токов, потенциалов узлов и т.д.). Использование метода узловых потенциалов при расчете цепи дает более простые уравнения, чем метода контурных токов - в схеме 2 узла с неизвестными потенциалами и три независимых контура.

Сложнее всего оказывается метод эквивалентного генератора: для расчета ЭДС эквивалентного генератора приходится использовать метод узловых потенциалов, так как результирующая схема содержит два контура и два узла. При этом также необходимо использовать преобразование цепи для расчета сопротивления эквивалентного генератора. Таким образом, в данной схеме выигрыш в объеме расчетов дает именно метод узловых потенциалов.

При этом всегда следует учитывать то, что выбор конкретного метода для расчета заданной электрической цепи всегда стоит осуществлять, ориентируясь не только на ее структуру, но и учитывая глубину понимания данного метода расчета, т.к. это в конечном итоге может сократить требуемое время для расчета, что при одинаковых результатах расчета может служить критерием оптимального способа решения.

Размещено на Allbest.ru


Подобные документы

  • Свойства резистора. Расчет резистивной цепи постоянного тока методом эквивалентного генератора. Изучение методов уравнений Кирхгофа, контурных токов, узловых потенциалов, наложения и двух узлов. Расчет тока в электрических цепях и баланса мощностей.

    контрольная работа [443,9 K], добавлен 07.04.2015

  • Основные понятия, определения и законы в электротехнике. Расчет линейных электрических цепей постоянного тока с использованием законов Ома и Кирхгофа. Сущность методов контурных токов, узловых потенциалов и эквивалентного генератора, их применение.

    реферат [66,6 K], добавлен 27.03.2009

  • Метод уравнений Кирхгофа. Баланс мощностей электрической цепи. Сущность метода контурных токов. Каноническая форма записи уравнений контурных токов. Метод узловых напряжений (потенциалов). Матричная форма узловых напряжений. Определение токов ветвей.

    реферат [108,5 K], добавлен 11.11.2010

  • Порядок расчета цепи постоянного тока. Расчет токов в ветвях с использованием законов Кирхгофа, методов контурных токов, узловых потенциалов, эквивалентного генератора. Составление баланса мощностей и потенциальной диаграммы, схемы преобразования.

    курсовая работа [114,7 K], добавлен 17.10.2009

  • Определение напряжения в узлах электрической цепи. Получение тока ветвей цепи и их фазы методами контурных токов, узловых потенциалов и эквивалентного генератора. Теорема об эквивалентном источнике напряжения. Применение первого и второго закона Кирхгофа.

    курсовая работа [816,5 K], добавлен 18.11.2014

  • Основные методы расчета сложной цепи постоянного тока. Составление уравнений для контуров по второму закону Кирхгофа, определение значений контурных токов. Использование метода эквивалентного генератора для определения тока, проходящего через резистор.

    контрольная работа [364,0 K], добавлен 09.10.2011

  • Определение комплексных сопротивлений ветвей цепи, вид уравнений по первому и второму законах Кирхгофа. Сущность методов контурных токов и эквивалентного генератора. Расчет баланса мощностей и построение векторной топографической диаграммы напряжений.

    контрольная работа [1014,4 K], добавлен 10.01.2014

  • Краткий обзор методик измерения токов, напряжений, потенциалов. Опытная проверка законов Кирхгофа и принципа наложения. Расчет токов, узловых потенциалов, эквивалентного генератора. Построение потенциальной диаграммы и составление баланса мощностей.

    курсовая работа [343,3 K], добавлен 09.02.2013

  • Методы контурных токов, узловых потенциалов, эквивалентного генератора. Составление уравнений по законам Кирхгофа. Линейные электрические цепи синусоидального тока. Трехфазная цепь с несимметричной нагрузкой. Расчет параметров четырехполюсника.

    курсовая работа [772,1 K], добавлен 17.03.2015

  • Расчет значения токов ветвей методом уравнений Кирхгофа, токов в исходной схеме по методу контурных токов и узловых напряжений. Составление уравнений и вычисление общей и собственной проводимости узлов. Преобразование заданной схемы в трёхконтурную.

    контрольная работа [254,7 K], добавлен 24.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.