Лазерная сварка и резка
Установка для сварки и пайки сфокусированной лучистой энергией. Дуговые ксеноновые лампы. Создание оптических квантовых генераторов. Характеристики и оптические системы транспортировки и фокусировки лазерного излучения. Принципиальная схема лазера.
Рубрика | Физика и энергетика |
Вид | доклад |
Язык | русский |
Дата добавления | 10.12.2012 |
Размер файла | 79,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лазерная сварка и резка
Свет, как и любые другие виды электромагнитных колебаний, обладает большим запасом энергии, применение которой для сварки возможно только при высокой ее концентрации на небольшой площади. Практически впервые установка для сварки и пайки сфокусированной лучистой энергией была разработана в Московском авиационном институте под руководством профессора Г.Д. Никифорова. В качестве источника света была использована дуговая ксеноновая лампа. Свет концентрировали с помощью специальной оптической системы, состоящей из зеркал и увеличительных стекол. Однако мощность установки была небольшой и пригодной только для сварки тонкого металла.
Значительно увеличить концентрацию светового излучения удалось путем создания оптических квантовых генераторов (ОКГ) - лазеров. Лазер создает мощный импульс монохроматического излучения за счет возбуждения атомов примеси в кристалле или в газах. Среди известных в настоящее время источников энергии, используемых для сварки, лазерное излучение обеспечивает наиболее высокую ее концентрацию до 1011 Вт/см2. Такие высокие значения концентрации энергии определяются уникальными характеристиками лазерного излучения, в первую очередь его монохроматичностью и когерентностью. В таких условиях все известные материалы не только плавятся, но и испаряются.
Лазерное излучение легко передается с помощью оптических систем в труднодоступные места, может одновременно или последовательно использоваться на нескольких рабочих постах. Оптические системы транспортировки и фокусировки лазерного излучения создают возможность легкого и оперативного управления процессом сварки. На лазерный луч не влияют магнитные поля свариваемых деталей и технологической оснастки.
Первые сообщения о лазерной сварке металлов относятся к 1962 г. В нашей стране публикации об этом способе соединения металлов появились на год позже. Первоначально использовались твердотельные рубиновые лазеры. На их базе были разработаны первые лазерные установки СУ-1, К-3М, УЛ-2 и УЛ-20, предназначенные для сварки и обработки материалов. Первые три из них имели максимальную энергию излучения не выше 2 Дж. Длительность импульса изменялась дискретно от 0,5 до 8 мс. Эти установки предназначались для сварки металлов толщиной 0,1-0,2 мм.
Установка УЛ-20 имела энергию излучения до 20 Дж и применялась для сварки металлов толщиной 0,5-1,0 мм. К сожалению, качество сварных соединений, получаемых с помощью указанных установок, было низким и нестабильным. Одной из причин этого была неудовлетворительная воспроизводимость режимов сварки на разных установках одного типа. Как показали исследования, это было связано с неоднородностью распределения показателя преломления в стержнях активной среды. К тому же оно индивидуально для каждого стержня.
Степень неоднородности активного стержня обуславливала низкую воспроизводимость режимов сварки за счет пространственно-временной неравномерности теплового потока.
лазер энергия квантовый генератор излучение
Рис. 1. Принципиальная схема лазера: 1 - зеркало резонатора; 2 - рабочее тело; 3 - лампы накачки.
Экспериментальные исследования, выполненные в 1966-1969 гг., показали, что для обеспечения равномерности теплового потока в ОКГ сварочных установок необходимо применять устойчивый сферический резонатор. Использование сферического резонатора ослабляет влияние на генерацию излучения неоднородности показателя преломления активной среды и устраняет временную неравномерность освещения в пятне нагрева.
В дальнейшем именно такие схемы были использованы для создания установок лазерной обработки материалов. В настоящее время в технологических лазерах применяются твердотельные и газовые излучатели. В твердотельных лазерах в качестве рабочего тела используются активные элементы из рубина, стекла с присадками ионов неодима, алюмоиттриевого граната с неодимом.
В настоящее время лазерная сварка применяется для создания конструкций из сталей, алюминиевых, магниевых и титановых сплавов. Ей отдается предпочтение при необходимости получения прецизионных конструкций, форма и размеры которых практически не должны изменяться в результате сварки, а также при производстве крупногабаритных конструкций малой жесткости с труднодоступными швами.
Высокая плотность энергии лазерного излучения, передаваемая аномально малой площади воздействия, позволила создать в 70-е гг. ХХ в. и новый способ резки материалов.
Источник: М.П. Шалимов, В.И. Панов "Сварка Вчера, Сегодня, Завтра". Екатеринбург, 2006.
Размещено на Allbest.ru
Подобные документы
Принцип действия и разновидности лазеров. Основные свойства лазерного луча. Способы повышения мощности лазерного излучения. Изучение особенностей оптически квантовых генераторов и их излучения, которые нашли применение во многих отраслях промышленности.
курсовая работа [54,7 K], добавлен 20.12.2010Принцип работы лазера. Классификация современных лазеров. Эффекты, в виде которых в тканях организма реализуется биологическое действие высокоинтенсивного лазерного излучения. Действующие факторы лазерного излучения. Последствия действия светового потока.
презентация [690,8 K], добавлен 19.05.2017Понятие об оптическом волокне. Прохождение светового излучения через границу раздела сред, а также в оптических волокнах, определение окон прозрачности. Стабильность мощности лазерного излучения. Принципы измерения мощности на разных длинах волн.
курсовая работа [832,5 K], добавлен 07.01.2014Оптические свойства квантовых ям, сверхрешеток, квантовых точек, нанокристаллов. Электрооптические эффекты в квантовых точках и сверхрешетках под действием внешнего электрического поля. Квантово-размерный эффект Штарка. Лестницы Штарка, осцилляции Блоха.
контрольная работа [2,4 M], добавлен 24.08.2015Физические принципы работы лазера. Оптические свойства инверсной среды. Конструкция газоразрядной трубки. Основные параметры оптических резонаторов. Распределение интенсивности в поперечном сечении лазерного пучка и положение щели при измерениях.
лабораторная работа [150,4 K], добавлен 18.11.2012История создания лазера. Принцип работы лазера. Некоторые уникальные свойства лазерного излучения. Применение лазеров в различных технологических процессах. Применение лазеров в ювелирной отрасли, в компьютерной технике. Мощность лазерных пучков.
реферат [610,1 K], добавлен 17.12.2014История создания квантовых усилителей и генераторов электромагнитных волн. Роль лазера в современной науке, технике, медицине, индустрии развлечений. Создание шоу-программ с помощью лазерных проекторов; их виды. Параметры и принципы работы оборудования.
реферат [23,9 K], добавлен 28.11.2013Оптические свойства аэрозолей. Релеевский закон рассеяния. Взаимодействие электромагнитного излучения с одиночной частицей. Оптические характеристики аэрозолей. Пределы применимости теории Ми. Процессы взаимодействия излучения с аэродисперсными частицами.
реферат [748,7 K], добавлен 06.01.2015Принцип работы газодинамического лазера, его конструктивные особенности, энергетический баланс, кинетическая модель. Анализ и диагностика лазерного излучения. Текст расчета параметров газодинамического лазера, специфика их промышленного применения.
реферат [3,9 M], добавлен 26.11.2012История разработки лазера и устройство типичной лазерной установки. Сравнительный анализ схемы движения электронов, излучения световых волн и принцип действия лампы и лазера. Лазер как открытая система с фазовым переходом, принципы его самоорганизации.
реферат [301,0 K], добавлен 26.09.2009