Использование водорода в энергетике

Основные этапы и направления развития водородной энергетики, современные технологии и достижения в данной области. Альтернативные виды топлива и особенности их применения в автомобильной индустрии. Анализ и оценка преимуществ использования водорода.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 27.11.2012
Размер файла 31,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Использование водорода в энергетике

Переводом автомобильных и других тепловых двигателей на водород или их частичным питанием водородом в нашей стране и за рубежом занимаются многие десятилетия.

В 1841 г. в Англии был выдан патент на двигатель, работающий на смеси водорода с кислородом. В 1852 г. в Мюнхене (Германия) был построен двигатель внутреннего сгорания (ДВС), в котором смесь водорода с воздухом сжималась насосом до 2…8 бар и воспламенялась электрической искрой. В 1928 г. двигатели внутреннего сгорания компании «Цеппелин», работающие на , использовались для дирижаблей. В 1923 г. Г.Р. Рикардо проводил исследование влияния состава смеси водород-воздух на детонацию двигателя, работающего на .

В СССР в предвоенные годы В.И. Сороко-Новицким, Ф.Б. Перельманом, Е.К. Корси и др. исследователями испытывались ДВС, работающие на водороде и с его добавлением.

В послевоенные годы в АН СССР в лаборатории академика Е.А. Чудакова был испытан одноцилиндровый двигатель с переменной степенью сжатия при работе на водороде. В 1968 г. в институте механики АН СССР проведена конвертация автомобиля на водород при работе на частичных нагрузках.

С начала 70-х годов в США проводятся комплексные научно-исследовательские работы по использованию водорода для тепловых двигателей и прежде всего для автомобильных.

У нас в стране на водородную энергетику также обратили повышенное внимание в начале 70-х годов. Так в марте 1975 г. в Минске состоялось первое в СССР совещание по проблемам водородной энергетики. В мае 1975 г. при отделении физико-технических проблем энергетики АН СССР организована рабочая группа по водородной энергетике во главе с академиком И.А. Стыриковичем.

Первые Всемирные конференции по водородной энергетике состоялись: 1976 г. - в Майами-Бич (США), 1978 г. - в Цюрихе (Швейцария), 1980 г. - в Токио (Япония) и 1982 г. - в СССР.

Топливный кризис 70-х годов заставил многие автомобильные компании по-новому взглянуть на альтернативные виды топлива. Тогда-то и был первый всплеск интереса к водороду, запасы которого на Земле огромны (его можно получать из воды). Однако вскоре кризис прошел, нефтепроводы заработали на полную мощность, и водородные исследования были приостановлены. Но прошло всего 30 лет, и эти исследования вновь стали актуальны, особенно учитывая современное экологическое настроение. Действительно, сжигая водород - получаем воду.

В сравнении с другими возможными видами автомобильных топлив преимуществами водорода в чистом виде являются:

· Высокая теплота сгорания (28620 ккал/кг);

· Хорошая воспламеняемость водородовоздушной смеси в широком диапазоне температур, что обеспечивает хорошие пусковые свойства двигателя при любых температурах атмосферного воздуха;

· Безвредность отработавших газов;

· Высокая антидетонационная стойкость, допускающая работу при степени сжатия до 14,0;

· Высокая скорость сгорания, для стехиометрической водородо-воздушной смеси она в 4 раза больше, чем для бензовоздушной, что обеспечивает лучшую полноту сгорания водорода и определяет более высокий термический КПД (в среднем на 20…25%);

· Хорошая воспламеняемость в широком диапазоне смесей с воздухом; делает возможным осуществление качественного регулирования смесеобразования в двигателе путем изменения количества подаваемой смеси определенного состава; при применении можно в значительной мере отказаться от дросселирования потока воздуха на впуске и тем самым увеличить термический КПД двигателя на режимах частичных нагрузок.

Можно выделить следующие перспективные направления разработок водородных двигателей:

· Двигатель распределенного впрыска (Оклахомский университет, США; фирма BMW, Германия и др.). Это переоборудованный обычный двигатель, мощность которого при переходе на водород несколько повысилась.

· Стирлинг - двигатель внешнего сгорания (фирма «Филипс», Голландия и др.). Современные двигатели внешнего сгорания с возвратно-поступательно движущимися поршнями представляют собой двигатели двойного действия (например, с четырьмя цилиндрами), работающие с определенным сдвигом фаз и при высоких давлениях (от 5 до 20 МПа). В каждом цилиндре расположен один поршень, верхняя поверхность которого выполняет роль рабочего поршня, а нижняя работает как вытеснитель для следующего цилиндра. Он несколько тяжелее и значительно дороже из-за усложненной конструкции аналогичного двигателя внутреннего сгорания (например, дизеля). Повысить удельную мощность пока мешают проблемы теплообмена (очень высокие значения рабочих температур и соответственно большие охлаждающие поверхности теплообменника). Двигатель абсолютно безвреден (очень низкая токсичность) и практически бесшумен, позволяет использование различных топлив (многотопливный).

· Электродвигатель на топливных элементах (концерн Ford, Daimler-Chrysler, Opel, MAN, Mazda, Honda и др.). Пока топливные батареи (электрохимический генератор) имеют высокую стоимость и требуют решения некоторых вопросов эксплуатации (в том числе при низких температурах).

По мнению некоторых авторов, общественный транспорт уже сегодня мог бы перейти на жидкий водород. Для промышленно развитых стран это уже не техническая, а организационная проблема.

Исследователями выяснено, что наиболее полно специфическим особенностям водорода как моторного топлива отвечает быстроходный двигатель с неразделенной камерой сгорания и внутренним смесеобразованием. В работе проведен теоретический анализ рабочего процесса в энергетических установках транспортных средств при использовании в качестве топлива водорода, получаемого из воды при помощи ЭАВ.

Результаты показали, что максимальные температуры продуктов сгорания водорода в цилиндре не превышают аналогичных температур для продуктов сгорания бензина, в то же время максимальное давление продуктов сгорания и среднее индикаторное давление на 25% ниже, чем у двигателя на бензине.

Установлено, что такой двигатель может работать при полностью открытом дросселе во всем диапазоне рабочих нагрузок, причем его эффективная мощность может изменяться (при холостом ходу и до полной нагрузки) за счет регулируемой подачи водорода. Были получены сравнительно высокие значения индикаторного КПД. При степени сжатия е = 5,45 и числе оборотов двигателя n = 1500 максимальный индикаторный КПД составлял 37,5% при среднем индикаторном давлении 0,42 МПа и коэффициенте избытка воздуха б = 2, в то время как на бензине -32% при б =1,07…1,15.

Проводя испытания на двигателе со степенью сжатия е = 7 при 1500 , получен на более бедной смеси индикаторный КПД, равный 43%, в то время как при работе с той же степенью сжатия на бензине максимально возможное его значение составило 37%.

Результаты исследований показали, что склонность водородовоздушной смеси к детонации существенным образом зависит от коэффициента б избытка воздуха в ней. Предельная степень сжатия снижается с уменьшением б и при стехиометрическом составе не превышает 4,6, что соответствует октановому числу топлива 42, а при б = 3 достигает 9,4 (октановое число 114).

Скорость распространения ударной волны составила (при б = 1,3) 680 м/с, тогда как при детонации 2…4 км/с. Подобное сгорание необходимо рассматривать как результат очень высокой скорости распространения фронта пламени. На всех рабочих режимах отработавшие газы можно считать практически безтоксичными, т.е. сгорание являлось полным. Впрыск воды в карбюратор (впускной коллектор) и другие способы снижения температуры сгорания позволяют уменьшить количество до допустимых значений. При б = 2…2,5 количество падает практически до 0 без применения дополнительных мер.

ДВС на водороде с началом подачи в цилиндр в конце такта сжатия и воспламенением с помощью свечи зажигания исключает возможность возникновения детонации, что позволяет работать при высоких степенях сжатия. В двигателях, работающих по данному принципу, подачу водорода в цилиндр следует организовывать таким образом, чтобы его струя попадала на электроды свечи зажигания. Это можно осуществить подачей водорода через отверстие в самой свече зажигания или подачей его в поток направленного движения воздушного заряда, созданного специальной формой впускного трубопровода или выполнением в поршне камеры сгорания специальной формы.

Некоторые катализаторы (этилнитрат, амилнитрит и др.) одновременно с повышением скорости горения, снижают температуру воспламенения горючей смеси и уменьшают период задержки воспламенения, что как раз необходимо для двигателя, работающего на водороде.

Существуют твердые катализаторы, снижающие температуру воспламенения водородовоздушной смеси, которыми можно покрывать внутреннюю поверхность камеры сгорания. К ним относятся: никель, молибден, окись марганца, окись титана и др.

Одним из направлений создания в цилиндре ДВС условий, обеспечивающих надежное воспламенение водородовоздушной смеси, будет одновременное увеличение температуры и давления в конце такта сжатия. Это можно осуществить за счет увеличения степени сжатия, повышения давления и температуры воздушного заряда в начале такта сжатия. Для увеличения давления и температуры воздушного заряда в начале такта сжатия применяют турбо - или механический наддув.

Для реализации преимуществ водорода в качестве автомобильного топлива необходимы следующие основные конструктивные изменения бензинового двигателя:

· Увеличение рабочего объема цилиндров (для получения той же мощности);

· Увеличение степени сжатия до допустимой для водорода;

· Предотвращение возможности преждевременного воспламенения, обратных вспышек, детонации, учитывая большую скорость распространения пламени водородовоздушной смеси;

· Изменение (уменьшение) угла опережения зажигания с учетом полного сгорания смеси в верхней мертвой точке;

· Изменение системы питания, уменьшение аэродинамического сопротивления с учетом возможности увеличения коэффициента избытка воздуха при работе на водороде;

· Осуществление мер по предотвращению образования окислов азота в отработавших газах при использовании атмосферного воздуха в качестве окислителя и другие меры.

В каком агрегатном состоянии заправлять водород в топливный бак. Для газообразного водорода потребуются довольно-таки объемные емкости, к тому же его способность проникать через малейшие неплотности, а также опасная концентрация в воздухе в объемном соотношении 2: 1 (так называемый «гремучий газ») затрудняет развитие данного направления. Несмотря на простоту и надежность баллонные системы хранения водорода можно считать целесообразным только при использовании водорода к качестве присадки к бензину, так как существующие баллоны мало пригодны в силу большого веса (самые легкие из существующих баллонов имеют удельный вес около 33 кг/кг ).

Не лучшим образом дело обстоит и со сжиженным водородом, который нужно хранить при температуре - 253°С. Криогенные системы многосложней и дороже баллонных, при сжижении водорода требуется более сложное и дорогое оборудование и более высокие энергозатраты.

Известен способ хранения - с использованием гибридов, металлов и сплавов, способных «разместить» между своими атомами атомы водорода. Емкость подобного «хранилища» (при равном объеме устройства) впятеро выше, чем у баллона со сжатым газом и почти вдвое - со сжиженным. Наилучшей основой для гидрида является титан. Гидроидные наполнители довольно сложны в изготовлении, они не состоят из цельного металла, а больше напоминают губку с множеством каналов - для скорейшего поглощения и выделения водорода. Как уже было ранее отмечено, последнее происходит при нагреве гидридов.

Хотя гибриды безопаснее других способов хранения водорода - для автомобильного транспорта емкость и у них маловата, а вес и сложность устройства, напротив, велики. К тому же гибридные системы мало приспособлены к работе с переменными расходами из-за значительной тепловой инерции реакторов и поэтому должны иметь в своем составе ресивер или комбинироваться с другим источником водорода.

Независимо от способа хранения водородного топлива на автомобиле, большинство существующих водородных систем питания обеспечивают подачу газообразного водорода во впускной коллектор двигателя. Схемы внешнего смесеобразования базируются на системах непрерывного впрыска топлива, в которых центральный электрический дозирующий клапан и распределитель водорода направляют газообразный водород в отдельные впускные тракты двигателя.

Предотвращение обратных вспышек во впускном коллекторе осуществляется путем использования обедненных смесей или впрыскиванием в коллектор дополнительных порций воды.

Проведенные исследования выявили положительные и отрицательные моменты в работе двигателей на водороде. К отрицательным можно отнести преждевременные вспышки, резкие колебания давления в цилиндре при сгорании, жесткий ход и детонацию.

Неустойчивое сгорание в ДВС может быть улучшено путем мероприятий, направленных на снижение скорости распространения фронта пламени и уменьшения температуры рабочей смеси (впрыск во впускной коллектор воды, рециркуляция отработавших газов, снижение отношения водород / воздух в смеси, введение в цилиндр через отдельный клапан).

Следующим направлением является получение водорода непосредственно на автомобиле. Самым перспективным здесь считается способ, при котором сырьем служит метанол.

Бак автомобиля наполняют метанолом. Отсюда он попадает в химический реактор, где испаряется и в присутствии катализатора реагирует с водяным паром, выделяя водород и двуокись углерода. Можно провести реакцию другим способом, тогда вторым из продуктов окажется не, а . Поскольку и горючи, их можно вместе сжигать в цилиндрах двигателя внутреннего сгорания.

Несмотря на активное развитие водородных систем питания двигателя, они еще уступают по весу и габаритам бензиновой и дизельной системам. Поэтому одним из направлений разработок является двигатель, работающий на бензине с присадкой водорода. При этом могут быть использованы существующие баллоны или водород можно получать непосредственно на автомобиле путем термокаталитической переработки части расходуемого бензина.

В эксплуатационных условиях при добавках водорода в среднем 10% расхода бензина и сохранении автономии автомобиля такой же, как и на бензине, потребуется иметь на борту запас водорода 0,8…1,0 кг для автомобилей малого класса и 1,2…1,5 кг - для автомобилей среднего класса. Хранение такого количества водорода на автомобиле в настоящее время не представляет особых трудностей. Увеличение массы автомобиля не превышает 3% при хранении в жидкой форме и 5…7% - в виде гидридов металлов. Экономия органического топлива при этом будет составлять 30…40%.

Даже небольшое количество присадки водорода к бензину (дизельному топливу) заметно улучшает сгорание, позволяет сильно обеднять смесь и уменьшает количество вредных выбросов.

Усредненный КПД двигателя по всему циклу испытаний с присадкой водорода был на 25% выше, чем при работе без присадки.

Наиболее целесообразно использование топливных смесей с добавкой водорода до 20% по массе, соответствующих пределу обеднения порядка б = 2,5. Этот предел эффективного обеднения определен при условии устойчивой работы двигателя без пропусков сгорания.

Литература

водородный топливо автомобильный энергетика

1. Долматовский Ю.А. Автомобиль за 100 лет. - М.: Знание, 1986. - 235 с.

2. Автомобильная промышленность. 1976. №9.

3. www. peugeot.ru/rus/innovat/electro.asp.

4. Варшавский И.Л., Мищенко А.И. Анализ работы поршневого двигателя на водороде. Известия вузов №10. - М.: Машиностроение, 1977

5. Мир легковых автомобилей. «Auto Katalog»: модели 1998 года. Изд-во «Ферайнигте Мотор-Ферлаге» (Герман.) совм. «За рулем». - М., 1997. - 323 с.

6. Изобретатель и рационализатор. 1973. №2

7. Мир легковых автомобилей «Auto Katalog»: модели 1998 года. Изд-во «Ферайнигте Мотор-Ферлаге» (Герман.) совм. «За рулем». - М., 1997. - 323 с.

8. Автомобильная промышленность. 1976. №9.

9. Смаль Ф.В., Арсенов Е.Е. Перспект.

Размещено на Allbest.ru


Подобные документы

  • Современная энергетика. Сокращение запасов ископаемого топлива. Топливные элементы. Типы топливных элементов и области их применения. Состояние работ по водородной энергетике в России. Примеры использования водорода, в качестве источника энергии.

    реферат [789,6 K], добавлен 02.10.2008

  • Экологические аспекты ветроэнергетики. Достоинства и недостатки солнечной, геотермальной, космической и водородной энергетики. Развитие биотопливной индустрии. Использование когенерационных установок малой и средней мощности для экономии топлива.

    презентация [1,4 M], добавлен 17.02.2016

  • Проблемы современной российской энергетики, перспективы использование возобновляемых источников энергии и местных видов топлива. Развитие в России рынка биотоплива. Главные преимущества использования биоресурсов на территории Свердловской области.

    контрольная работа [1,1 M], добавлен 01.08.2012

  • Преимущества использования вечных, возобновляемых источников энергии – текущей воды и ветра, океанских приливов, тепла земных недр, Солнца. Получение электроэнергии из мусора. Будущее водородной энергетики, минусы использования ее в качестве топлива.

    реферат [28,3 K], добавлен 10.11.2014

  • Геотермальная энергия и ее использование. Применение гидроэнергетических ресурсов. Перспективные технологии солнечной энергетики. Принцип работы ветроустановок. Энергия волн и течений. Состояние и перспективы развития альтернативной энергетики в России.

    реферат [39,3 K], добавлен 16.06.2009

  • История человечества тесно связана с получением и использованием энергии. Практическая ценность топлива - количество теплоты, выделяющееся при его полном сгорании. Проблема энергетики - изыскания новых источников энергии. Перспективные виды топлива.

    реферат [11,6 K], добавлен 04.01.2009

  • Использование на производстве синтетического и дизельного топлива, эталона и бутилового спирта. Особенности применения на автотранспорте биодизеля, диметилового эфира. Альтернативные виды топлива. Изучение положительных и отрицательных свойств метанола.

    презентация [775,1 K], добавлен 16.12.2014

  • Понятие и общая характеристика резины, физические и потребительские свойства данного материала. Способы и методы, основные этапы получения, сферы и преимущества практического применения. Области применения материала в электротехнике и энергетике.

    реферат [21,2 K], добавлен 30.06.2014

  • Ознакомление с основными направлениями и перспективами развития альтернативной энергетики. Определение экономических и экологических преимуществ использования ветровой, солнечной, геотермальной, космической, водородной, сероводородной энергии, биотоплива.

    реферат [706,0 K], добавлен 15.12.2010

  • Общая характеристика и направления деятельности энергоредприятий современной России, оценка их достижения и тенденции развития. Понятие и значение гидромагнитных систем, анализ преимуществ и недостатков, особенности практического применения на сегодня.

    презентация [327,9 K], добавлен 24.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.