Организация эксплуатации и ремонта электрооборудования электрических станций и сетей
Общая характеристика энергосистемы. Нагрев электрооборудования, измерение температур и работа изоляции. Эксплуатация и ремонт генераторов, синхронных компенсаторов, электродвигателей, трансформаторов, кабельных линий. Ликвидация аварий на электростанции.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 08.11.2012 |
Размер файла | 4,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
По количеству автономных камер для масла уплотнения делятся на однокамерные, или однопоточные, и двухкамерные, или двухпоточные. В однопоточном уплотнении, одна из конструкций которого показана на рис. 26, вкладыш прижимается к диску пружинами и давлением водорода на его тыльную сторону. Давление уплотняющего масла на прижимающее усилие влияния не оказывает. Камера уплотняющего масла между корпусом и вкладышем уплотняется шнуром из маслостойкой резины.
1-корпус уплотнения; 2 -камера уплотняющего масла; 3 - корпус опорного подшипника; 4- пластикатовая диафрагма; 5 - упорный диск на валу ротора; 6 -регулировочный винт; 7 - вкладыш; 8 - пружина; 9 - уплотняющий резиновый шнур
Рисунок 26 Однопоточное уплотнение
В двухпоточных уплотнениях (рис. 27) вкладыш прижимается к диску не пружинами, которые в этом уплотнении отсутствуют, а усилием от давления прижимающего масла в камере 7 и от давления водорода в генераторе на тыльную сторону вкладыша. Уплотняющее масло поступает на рабочую поверхность вкладыша через камеру 8. Достоинство двухпоточных уплотнений состоит в возможности регулирования усилия, прижимающего вкладыш к диску, изменением давления прижимающего масла, т. е. без разборки уплотнения.
1 - корпус; 2- вкладыш; 3 - маслоуловители; 4 - упорный диск на валу ротора; 5 - уплотняющие кольца из резины; 6 - резиновая прокладка; 7 - камера прижимающего масла; 8 - камера уплотняющего масла
Рисунок 27 Двухпоточное уплотнение
Рабочая поверхность торцевого вкладыша (рис. 28), выполняемая из баббита, имеет клиновые поверхности 1, поверхности без уклона 2, внутренний запорный поясок 3, внешний поясок 4, радиальные канавки 5, кольцевую канавку 6 и маслоподводящие отверстия 7. При малой частоте вращения давление в масляных клиньях не создается.
Рисунок 28 Разделка рабочей поверхности торцевого вкладыша
Все усилия, прижимающие вкладыш к диску, воспринимаются при этом поверхностями без уклонов и поясками. Только при частоте вращения выше 2000 об/мин прижимающее усилие воспринимается всей несущей поверхностью, причем при номинальной частоте вращения большая часть этого усилия воспринимается клиновыми поверхностями. Таким образом, наиболее напряженно вкладыш работает при частоте вращения ниже 2000 об/мин и особенно при 400-500 об/мин. Это требует при остановке и особенно при пуске машины повышенного внимания к работе уплотнений: необходимо следить за температурой, давлением масла и водорода, не допускать перебоя в подаче масла.
«Схемы маслоснабжения уплотнений»
В схеме маслоснабжения однопоточных торцевых уплотнений (рис. 29) основным источником масла является инжектор 1, в сопло которого поступает масло из системы регулирования турбины. Под действием струи этого масла в инжектор засасывается более холодное масло из системы смазки подшипников, что позволяет получить температуру масла после инжектора на 4-6°С ниже, чем температура масла в системе регулирования. Маслонасосы с двигателями переменного 2 и постоянного 3 тока являются резервным источником маслоснабжения. Нормально оба насоса стоят в автоматическом резерве. При снижении давления масла в системе первым автоматически включается маслонасос переменного тока. Если по каким-либо причинам давление масла не восстановится, то с выдержкой времени 0,5-0,7 с включится маслонасос постоянного тока. На остановленном генераторе, когда давление масла в системе регулирования равно нулю, в работе находится маслонасос переменного тока, а маслонасос постоянного тока - в автоматическом резерве.
Из напорного коллектора после инжектора и маслонасосов масло поступает в маслоохладитель 4, где оно охлаждается на 6-10 °С, и затем через один из фильтров 5, расширительный бак 7 и регулятор давления масла 6 подается на уплотнение. Масло, сливаемое из уплотнений в сторону водорода, попадает в поплавковый гидрозатвор 10 и из него в маслобак турбины. Гидрозатвор предотвращает выход из машины вместе с маслом водорода.
1- инжектор; 2-насос с двигателем переменного тока; 3-насос с двигателем постоянного тока; 4- маслоохладитель; 5 - фильтр; 6- регулятор давления масла; 7 - демпферный бак; 8 - сигнализатор уровня масла; 9 - смотровой фланец; 10 - поплавковый гидрозатвор
Рисунок 29 Схема маслоснабжения однопоточных уплотнений
Расширительный бак, устанавливаемый на генераторах 60 МВт и выше, играет большую роль в повышении их надежности. Он обеспечивает уплотнения маслом в течение нескольких минут, а на останавливающихся машинах -до их полной остановки, если оно перестанет поступать от регулятора давления масла из-за его неисправности или нарушения работы источников маслоснабжения.
Регулятор давления масла 6 поддерживает давление масла, поступающего из уплотнения, таким, чтобы оно во всех случаях превышало давление водорода в машине. При этом превышение (перепад) давления масла над давлением водорода должно оставаться постоянным при изменении расхода масла на уплотнения, давления водорода, давления масла перед регулятором. Если давление масла после регулятора превысит допустимое, то масло может попасть в машину. Если же давление масла станет ниже допустимого, то водород прорвется через уплотнения и, попав в камеры опорных подшипников генератора, начнет вместе с маслом выбрасываться наружу через зазор между валом и маслоуловителями. При этом создается большая опасность воспламенения водорода и масла от искрения на щеточном аппарате ротора. При глубоком снижении давления масла и тем более при полном прекращении поступления его на уплотнения произойдет подплавление вкладышей. Поэтому регуляторы давления масла должны быть очень надежными.
Таким требованиям отвечает, например, дифференциальный регулятор прямого действия типа ДРДМ-12С с вращающимся золотником. Его надежность обусловлена тем, что механические частицы, попавшие в зазор между золотником и цилиндром, в большинстве случаев за счет вращения золотника и грузовых шайб со сравнительно большой силой инерции, успевают проскочить через зазор, не вызывая заедания регулятора. Если же заедание все же произойдет, то дежурный персонал при обходе легко обнаружит неисправность по прекращению вращения золотника и своевременно примет меры к ее устранению.
Схема маслоснабжения двухпоточных уплотнений отличается от рассмотренной только наличием второго регулятора. В схемах генераторов ТГВ-200, ТГВ-300, ТВВ-320-2, кроме того, отсутствует инжектор, зато установлены три маслонасоса, два из них - с двигателями переменного тока.
Масло, идущее через уплотнение в сторону водорода, захватывает с собой водород, который частично выделяется в гидрозатворе, и возвращается в машину, а частично поступает в сливной маслопровод и маслобак турбины. Для удаления водорода из маслосистемы применяется вентилятор (эксгаустер), который должен работать непрерывно. Его колесо для исключения искрообразования выполняется из латуни.
«Газовая схема генераторов и синхронных компенсаторов»
Газовая схема (рис. 30) состоит из верхнего коллектора 1, соединенного с водородной рампой 3, нижнего коллектора 2, соединенного с рампой двуокиси углерода (углекислого газа) 4, осушителя 5 и панели управления газовой системой 6 с приемником автоматического газоанализатора 7. К нижней точке коллектора двуокиси углерода присоединен указатель жидкости 9 в машине. Частично к газовой схеме относятся бачок продувки 10 и поплавковый гидрозатвор Для контроля за давлением водорода в генераторе (перед вентилятором) имеются манометры 12 на панели газового управления и у водородной рампы. В схему, входят клапан 13 и регулятор 14, а также блок регулирования газовой смеси 8.
Ввод в генератор и вытеснение из генератора водорода и воздуха производятся через верхний коллектор. Водород в генератор подается от централизованной газовой системы или от баллонов, присоединенных к рампе через редукторы. При низком давлении водорода в генераторе (0,005 МПа) целесообразно иметь автоматическую подпитку при помощи регулятора типа РДВ-12, а при давлении водорода 0,15 МПа и выше предпочтение обычно отдают ручной подпитке, так как при высоком давлении подпитку требуется производить 1 раз в смену, а то и еще реже. На мощных генераторах для автоматической подпитки применяется вентиль с электромагнитным приводом. Контроль газоплотности генератора при этом может обеспечиваться, манометром МЭД, записывающим давление газа на диаграмму и отмечающим все открытия вентиля.
Воздух в генератор подается через осушитель, для чего вентиль 15 открывается, а вентиль 16 закрывается.
Двуокись углерода вводится в генератор и удаляется из генератора через нижний коллектор. Источником двуокиси углерода могут быть баллоны с двуокисью углерода, подключаемые к рампе без редуктора, или централизованная, установка двуокиси углерода.
На ряде станций, имеющих электролизные или централизованные водородные установки и установки двуокиси углерода, водородные рампы и рампы двуокиси углерода ликвидированы, а трубопроводы водорода и двуокиси углерода подведены к панели управления газовой схемой на отметках 8 и 9 м.
Рисунок 30 Газовая схема генератора
«Схема охлаждения обмоток водой»
Схема охлаждения обмотки статора водой по замкнутой системе показана на рис. 31. Обмотка статора и вся система охлаждения заполняются конденсатом с содержанием соли не более 1 мг/л и электрическим сопротивлением не ниже 200 кОм•см. При работе генератора допускается повышение содержания соли до 5 мг/л и снижение электрического сопротивления до 75 кОм•см.
Для циркуляции конденсата по замкнутому контуру в схеме имеются два насоса 17, из которых один находится в работе, а другой в автоматическом резерве. Конденсат к насосам подается из бака 6. Уровень конденсата в этом баке поддерживается поплавковым регулятором 4. При снижении уровня конденсата из-за утечек в системе охлаждения поплавковый регулятор автоматически приоткрывается и за счет добавления конденсата из магистрали обессоленной воды восстанавливает прежний уровень конденсата в баке. В баке благодаря соединению его с паровым пространством конденсатора турбины или за счет работы водяного инжектора поддерживается вакуум. Конденсат, нагревшийся при прохождении по обмотке, попадая на решетку бака, разбрызгивается и под воздействием разрежения интенсивно очищается от воздуха. Выделившийся воздух удаляется через трубу и обратный клапан в конденсатор турбины или через инжектор 1 в циркуляционный водовод.
Давление конденсата в системе охлаждения не должно превышать 0,45 МПа. Поэтому на напорном коллекторе после насосов установлен предохранительный клапан 16, предотвращающий повышение давления конденсата сверх допустимого путем сброса конденсата в бак. Параллельно предохранительному клапану установлен обводной вентиль для ручной регулировки давления.
Из напорного коллектора после насосов конденсат поступает в водоводяные теплообменники 15. В одном из теплообменников он охлаждается конденсатом турбины, а в другом - циркуляционной водой.
Затем конденсат проходит через один из двух фильтров 14, солемер 13, шайбу для измерения расхода 12 и поступает в напорный кольцевой коллектор статора и из него в стержни статора. После прохождения через стержни конденсат собирается в сливной кольцевой коллектор и оттуда, пройдя струйное реле 8, возвращается в расширительный бак. Струйное реле контролирует наличие слива конденсата из обмотки и сигнализирует о его прекращении. Расстановка приборов контроля показана на рис. 31
I - нормально открытый вентиль; II- нормально закрытый вентиль; 1 - инжектор; 2- обратный клапан; 3- реле уровня; 4 - регулятор уровня; 5 - вакуумметр; 6 - бак; 7 - термосигнализатор; 8 - струйное реле; 9 - ртутный термометр; 10 - термометр сопротивления; 11 - электроконтактный манометр; 12 - измерительная шайба; 13 - солемер; 14- фильтр; 15 - теплообменник; 16 - предохранительный клапан; 17 - водяной насос; 18 - манометр
Рисунок 31 Схема питания обмотки статора водой
Вопросы для повторения
1.К чему приведет ослабление прессовки сердечника генератора или синхронного компенсатора?
2.Характеристика и достоинства термореактивной изоляции.
Назначение роторных бандажей. Особенности их конструкции для турбогенераторов различных мощностей и серий.
Какие системы охлаждения по способу отбора тепла от активных частей применяются в генераторах и компенсаторах? Характеристика каждой из них.
Преимущества водородного охлаждения по сравнению с воздушным. В чем состоят трудности его применения?
6.Достоинство непосредственного масляного охлаждения.
Какой средой охлаждаются обмотки ротора и статора и сердечник в различных сериях турбогенераторов с непосредственным охлаждением?
Основные достоинства и недостатки кольцевых и торцевых уплотнений.
Преимущества двухпоточных уплотнений по сравнению с однопоточными.
10.Назначение демпферного бака в схеме маслоснабжения уплотнений.
11.Чем определяется высокая надежность регулятора давления масла с вращающимся золотником?
«Осмотры и проверки генераторов»
Осмотры и проверки генераторов производятся персоналом электроцеха перед пуском и во время работы. При этом осматриваются генератор и оборудование, включаемое вместе с ним в работу.
При осмотре генератора перед пуском после ремонта проверяется, все ли работы закончены и имеется ли об этом запись в журнале ремонта. Обращается внимание на состояние щеток на кольцах ротора и на коллекторе возбудителя, проверяется, не выступает ли слюда и не затянуты ли медью промежутки между коллекторными пластинами, нет ли подгара и рисок-задиров на пластинах, не загрязнена ли изоляция щеточных аппаратов. Сработавшиеся щетки подлежат замене. Пыль и грязь на изоляции щеточных аппаратов удаляются путем протирки. О дефектах, которые сменный персонал своими силами устранить не может, сообщается руководству электроцеха.
При осмотре помещения выводов и ячейки генератора проверяется отсутствие закороток на ошиновке, следов нагрева контактных соединений по термоуказателям или по цветам побежалости. Проверяется, не попадает ли масло на оборудование выводов. Включается вентиляция помещения выводов. Производится опробование автомата гашения поля (АГП) и выключателей включением и отключением.
Проверяется готовность к пуску газомасляной системы генератора и системы водяного охлаждения обмоток. Особенно важно убедиться в том, что все вентили на маслопроводах подачи масла на уплотнения от системы регулирования через инжектор открыты, так как наиболее надежно производить пуск при поступлении масла на уплотнения от инжектора. Совместно с машинистом турбины проверяется работа АВР маслонасосов турбины и водородного охлаждения, конденсатных, циркуляционных и других насосов. Перед проверкой АВР измеряется сопротивление изоляции всех двигателей, принадлежащих турбоагрегату, если они были в ремонте или длительно находились в резерве. Готовится к включению в работу система возбуждения согласно инструкции.
Измеряется сопротивление изоляции обмотки статора мегомметром 2500 В и цепи ротора мегомметром 500- 1000 В. Результаты измерения сравниваются с данными предыдущих измерений. При уменьшении сопротивления изоляции обмотки статора в 3-5 раз, в цепи ротора ниже нормированного значения следует, разделяя цепи, определить участок с пониженной изоляцией и принять меры к восстановлению ее.
Сопротивления изоляции всей цепи возбуждения генераторов и синхронных компенсаторов с газовым охлаждением обмотки ротора и с воздушным охлаждением элементов системы возбуждения должно быть не менее 0,5 МОм, при водяном охлаждении полупроводниковых преобразователей- не менее 100 кОм. Сопротивление изоляции цепи возбуждения с водяным охлаждением обмотки ротора должно быть не менее 10 кОм. Однако при удалении дистиллята из обмотки с продувкой сжатым воздухом сопротивление изоляции обмотки должно быть не менее 0,5 МОм.
Во время пуска при повышении частоты вращения генератора необходимо следить за тем, поддерживает ли регулятор необходимый перепад между давлениями масла на уплотнения и водорода в генераторе, не понизилось ли давление масла перед регулятором до недопустимо низкого значения. Необходимо также следить за температурой вкладышей уплотнений по термометрам сопротивлений, а если их нет, то по температуре масла, сливаемого из уплотнения, и по нагреву корпусов уплотнений. Если при этом будет обнаружена ненормальность, следует снизить частоту вращения генератора для выяснения и устранения причины ненормальности.
При осмотре генератора, находящегося в работе, проверяют:
нет ли искрения на кольцах ротора и коллекторе возбудителя, не загрязнены ли щеточные аппараты, не попадают ли на кольца и коллектор пары масла, нет ли на коллекторе рисок, появляющихся при наличии на поверхности щеток металлических или абразивных включений или при срабатывании щеток до такой степени, что их медная армировка начинает задевать за коллекторные пластины;
не усилилась ли вибрация подшипников, не изменился ли шум генератора;
какова температура подшипников и вкладышей уплотнений, холодного и горячего газа и другие параметры охлаждения;
не увеличился ли слив масла из уплотнений в сторону водорода;
нормален ли перепад между давлениями масла на уплотнения и водорода;
вращается ли золотник регулятора, если в схеме маслоснабжения установлен регулятор типа ДРДМ-12М.
При обнаружении ненормальностей в работе следует выяснить причины и по возможности принять меры к их устранению.
Осмотр генератора должен производиться начальником смены электроцеха не реже 1 раза в смену и мастером по генераторам не реже 1 раза в сутки. Кроме того, контактные кольца ротора и коллектор возбудителя должны осматриваться дежурным электромонтером в установленные сроки. Машинист турбины должен следить за нагревом уплотнений и подшипников генератора и возбудителя. Он обязан контролировать и регулировать температуру охлаждающей среды в генераторе, периодически прослушивать генератор, наблюдать за чистотой выступающей части изоляции под стулом подшипников генератора и возбудителя и не допускать закорачивания ее металлическими предметами.
Газоохладители и теплообменники наиболее эффективно работают, если трубки полностью заполнены водой. Поэтому температура охлаждающего газа или конденсата регулируется изменением количества охлаждающей воды, открытием или прикрытием не напорной, а общей сливной задвижки. Сливные задвижки после каждого охладителя прикрываются лишь настолько, чтобы обеспечить равномерный расход воды через все газоохладители и полное заполнение их водой при номинальной нагрузке генератора. Общая напорная задвижка и напорные задвижки перед каждым газоохладителем должны быть открыты полностью. Только при наличии слива воды из всех дренажных кранов, присоединенных к верхним точкам сливных камер газоохладителей, можно быть уверенным, что воздух в газоохладителях отсутствует.
Резкое увеличение расхода охлаждающей воды через нагретые газоохладители может привести к нарушению плотности вальцовки трубок в трубной доске. Поэтому таких случаев следует избегать. При пуске генератора охлаждающая вода в газоохладители должна быть подана до того, как они сильно нагреются.
Если входные отверстия трубок газоохладителей забиваются мелкой щепой, листьями и другим мусором, их охлаждающая способность резко снижается. Для восстановления их нормальной работы приходится поочередно отключать каждый газоохладитель, вскрывать на нем торцевые крышки и удалять мусор, забивший трубки, вручную. Эта операция на генераторах с водородным охлаждением не только трудоемка, но и небезопасна, так как проводится, как правило, без вытеснения водорода. При наличии схемы промывки газоохладителей обратным ходом воды (рис. 31) необходимость в частой ручной чистке газоохладителей отпадает. Для промывки газоохладителей закрываются задвижки на сливе 4 и входе 2 и открываются задвижки1 и 3. Вода вместе со смытым мусором и грязью сбрасывается в дренажные каналы. Промывку заканчивают после того, как вода из газоохладителей пойдет чистой. Обычно промывка продолжается 5-10 мин и, как правило, проводится на неработающем генераторе. При необходимости промывку можно производить и на работающем, но по возможности разгруженном генераторе.
Наблюдение за работой генератора ведется как по измерительным приборам, так и визуально. Показания электрических приборов генератора, температуры стали и обмотки статора, охлаждающей среды и вкладышей подшипников должны записываться не реже 2 раз в смену. В те же сроки у турбогенераторов с водородными и водородно-водяным охлаждением должны записываться: чистота и давление водорода, давление масла на уплотнения, температура газа или конденсата на входе в обмотку и выходе из нее, расход конденсата через обмотку, температура воды (конденсата) на входе в газоохладители (теплообменники) и выходе из них, давление воды в напорном коллекторе газоохладителей (теплообменников).
«Проверка совпадения фаз, синхронизация и набор нагрузки»
После окончания монтажа или работ в первичной цепи генератора, которые могли нарушить чередование фаз, необходимо проверить, совпадают ли фазы генератора и сети.
Для проверки совпадения фаз к трансформатору напряжения резервной системы шин присоединяется фазоуказатель. Какой зажим фазоуказателя к какой фазе трансформатора напряжения будет подключен, существенного значения не имеет. Важно лишь сохранить порядок подключения неизменным до конца проверки. Затем на резервную систему шин подается поочередно напряжение от рабочей системы шин и от генератора. Если в обоих случаях диск фазоуказателя будет вращаться в одном и том же направлении, то порядок следования фаз генератора и системы одинаков. Если же направление вращения диска изменяется, то включать генератор в сеть, не поменяв местами две фазы на ошиновке, соединяющей генератор с сетью, недопустимо.
При отсутствии резервной системы шин или блочном соединении генератора с трансформатором фазоуказатель присоединяется к трансформатору напряжения генератора. От выводов статора отсоединяются компенсаторы и на шинный мост, и трансформатор напряжения генератора подается напряжение от системы включением выключателя силового трансформатора. Фиксируется направление вращения диска фазоуказателя. Затем, после присоединения компенсаторов к выводам статора и пуска генератора, напряжение на шинный мост подается от генератора. При совпадении фаз направление вращения диска фазоуказателя должно сохраниться. Если между генератором и его трансформатором имеются разъединители, то отсоединять компенсаторы от выводов статора не требуется. В этом случае перед подачей напряжения на шинный мост от сети достаточно отключить разъединители.
По окончании монтажа или работ в цепях синхронизации и связанных с ними трансформаторах напряжения должны быть проверены исправность и правильность схемы синхронизации. Для этого нужно после достижения генератором частоты вращения, близкой к номинальной, возбудить генератор (т. е. включить его автомат гашения поля АГП, подать в ротор ток возбуждения и поднять напряжение на выводах статора до номинального). Ток возбуждения регулируют с помощью регулировочного реостата, движок которого вручную перемещается в положение «холостого хода», или с помощью установочного автотрансформатора УАТ, воздействующего на автоматический регулятор возбуждения АРВ генератора. Далее, установив ключ синхронизации на пульте управления генератором в положение «Включено», следует подать на колонку синхронизации заведомо несинхронные напряжения (от генератора и сети).
Проверить вращение стрелки синхроноскопа и подождать, пока она сделает один или несколько полных оборотов. Это укажет на исправность синхроноскопа и наличие на нем напряжения как от генератора, так и от сети. Одновременно нужно убедиться в работе вольтметров и частотомеров на колонке синхронизации. Пока стрелка синхроноскопа не совершит полного оборота, нельзя считать синхроноскоп и его цепи исправными. Колебания стрелки и одну и другую сторону от красной черты могут быть вызваны не только неудовлетворительной работой регулирования турбины, но и обрывом в одной из фаз напряжения, подводимого к синхроноскопу или неисправностью самого синхроноскопа; возбужденный до номинального напряжения генератор включается на резервную систему шин, находящуюся без напряжения. Включается колонка синхронизации. Поскольку на синхроноскоп при этом будет подано заведомо синхронное напряжение, стрелка синхроноскопа должна остановиться в вертикальном положении, на красной черте, если же она остановится в другом положении, то, значит, синхронизирующее устройство работает неправильно и до устранения дефекта включать в работу генератор недопустимо.
При отсутствии резервной системы шин или при блочном соединении генератора с трансформатором правильность работы схемы синхронизации проверяется подачей напряжения на шинный мост генератора от сети при отсоединенных от выводов генератора компенсаторах.
Включение генератора в сеть может быть выполнено по способу точной синхронизации или самосинхронизации.
Для включения генератора по способу точной синхронизации без броска тока в статоре и без резкого изменения вращающего момента ротора должны быть соблюдены три условия: равенство значений напряжения генератора и сети; совпадение этих напряжений по фазе; равенство частот генератора и сети.
Включение генератора в сеть при значительном неравенстве напряжений по значению и при большом угле расхождения по фазе вызовет появление в генераторе уравнительного тока и связанных с ним последствий. Особенно опасно включение генератора при несовпадении напряжений по фазе. В наиболее тяжелом случае, когда напряжения генератора и сети сдвинуты по фазе на 180°, а мощность системы во много раз превышает мощность генератора, уравнительный ток в момент включения в 2 раза превысит ток трехфазного КЗ на выводах генератора. От такого тока могут разрушиться лобовые части обмотки статора или обмотки трансформатора. При значительной разности частот трудно безошибочно выбрать момент для включения генератора.
Однако точное соблюдение трех вышеуказанных условий, особенно двух последних, замедлило бы процесс синхронизации. Поэтому практически допускается возможность появления незначительных, неопасных толчков при включении генератора и синхронизация с соблюдением следующих, несколько отличающихся от указанных выше идеальных условий:
напряжение генератора должно быть выше напряжения сети, но не более чем на 5%, с тем чтобы он после включения принял на себя реактивную нагрузку;
импульс на включение выключателя должен подаваться до подхода стрелки синхроноскопа к красной черте на угол, соответствующий времени включения выключателя, с расхождением не более 8-12°;
частота вращения генератора должна быть близкой к частоте сети, чтобы стрелка синхроноскопа вращалась с частотой не более 2-3 об/мин.
Точная синхронизация проводится при помощи автоматического синхронизатора, а там где его нет - вручную. Схема ручной синхронизации дополняется блокировкой от несинхронного включения, разрешающей включение генератора только при допустимых разности частот вращения и угле расхождения между фазами напряжений генератора и сети. Ручная синхронизация при отключенной блокировке от несинхронного включения запрещается.
По способу самосинхронизации генератор включается в сеть без возбуждения при частоте вращения, близкой к синхронной (скольжение ±2%), после чего включается АГП, генератор возбуждается и в течение 1-2 с втягивается в синхронизм. Регулировочный реостат перед включением генератора должен быть установлен в положение XX. Во избежание пробоя изоляции обмотки ротора из-за появления перенапряжений она должна быть замкнута до включения АГП на резистор самосинхронизации.
Если при неудачной точной синхронизации механические усилия на вал ротора, обусловленные так называемым синхронным моментом, могут в несколько раз превысить усилия от номинального момента, то при самосинхронизации синхронный момент отсутствует, так как генератор включается невозбужденным. Кроме того, достоинство способа самосинхронизации состоит в простоте, позволяющей полностью автоматизировать включение генератора в сеть, в быстроте включения.
Включение турбогенераторов, имеющих косвенное охлаждение обмоток и работающих на шины генераторного напряжения, а также генераторов с непосредственным охлаждением обмоток в нормальных условиях должно осуществляться, как правило, способом точной синхронизации. Для турбогенераторов, работающих на шины генераторного напряжения, это связано с нежелательностью значительного понижения напряжения у потребителей в момент включения генератора из-за броска тока, превышающего 3,5 номинального значения.
Для турбогенераторов с непосредственным охлаждением, несмотря на то что симметричная составляющая тока в начальный момент их самосинхронизации обычно не превышает трехкратного номинального значения, ограничения по применению способа самосинхронизации вызваны меньшей стойкостью этих генераторов и блочных трансформаторов большой мощности к динамическим воздействиям по сравнению со стойкостью турбогенераторов с косвенным охлаждением и трансформаторов меньшей мощности.
В аварийных условиях, когда напряжение и частота в сети могут сильно колебаться, операция по включению генератора способом точной синхронизации может затянуться на продолжительное время или сопровождаться включением с большим углом расхождения векторов напряжения генератора и сети. В этих условиях турбогенераторы мощностью до 200 МВт включительно и гидрогенераторы мощностью до 500 МВт включительно разрешается включать на параллельную работу способом самосинхронизации. Генераторы большей мощности разрешается включать этим способом при условии, что кратность симметричной составляющей тока самосинхронизации к номинальному току не превышает 3,0.
Скорость подъема активной нагрузки после включения турбогенератора в сеть определяется допустимой скоростью набора нагрузки на турбину и котлоагрегат. Нарушение этого требования недопустимо. Например, чрезмерно быстрый набор нагрузки может привести к большему удлинению ротора турбины по сравнению с удлинением корпуса турбины и отключению ее защитой от осевого сдвига, а в худшем случае и к задеванию лопаток ротора за диафрагмы. Поэтому скорость подъема нагрузки должна быть указана в местных инструкциях для каждого типа турбогенератора.
Скорость набора реактивной нагрузки генераторов и синхронных компенсаторов с косвенным охлаждением обмоток, а также гидрогенераторов с непосредственным охлаждением обмоток не ограничивается. У турбогенераторов с непосредственным охлаждением обмоток скорость набора реактивной нагрузки в нормальных условиях не должна превышать скорости набора активной нагрузки, а в аварийных условиях не ограничивается. Ограничение скорости набора реактивной нагрузки (скорости повышения токов статора и ротора) в турбогенераторах с непосредственным охлаждением вызвано тем, что обмотки в них достигают установившейся температуры в 10-15 раз быстрее, чем сердечник. Без ограничения скорости повышения тока разность температур в стали и меди обмотки ротора может стать весьма большой, что при значительной длине активных частей турбогенераторов приведет к значительной разнице в тепловом расширении обмоток и стальных частей и как следствие к перемещению обмоток относительно сердечников, к появлению механических напряжений в меди обмотки ротора, превышающих предел ее текучести. Перемещения обмоток или чрезмерные усилия в меди при частых повторениях могут вызвать повреждение изоляции или деформацию меди.
«Нормальные режимы работы генераторов»
Нормальными режимами генератора являются такие, при которых он работает с номинальными параметрами, указанными на заводской таблице и в паспорте, или с отклонениями, допустимыми по ГОСТ или ТУ. Работа генератора точно с номинальными параметрами называется, кроме того, номинальным режимом. К основным параметрам генератора относятся: полная мощность, напряжение и ток статора, ток ротора, коэффициент мощности, частота, температура и давление охлаждающей среды.
Длительно допустимые значения тока статора и ротора генератора в зависимости от конкретных значений давления газа и температуры охлаждающей среды, а также от значения рабочего напряжения на выводах статора обычно указываются в так называемой режимной карте генератора, которой пользуются при его эксплуатации.
При составлении режимных карт руководствуются следующими соображениями. Длительно допустимые токи статора и ротора должны быть снижены, если температура охлаждающей среды или давление газа отличаются от номинального в сторону ухудшения охлаждения. Если температура охлаждающего газа ниже номинальной, то мощность генератора разрешается повысить.
Допустимые при пониженной температуре холодного газа токи ротора и статора, если они не указаны заводом-изготовителем, устанавливаются на основании испытания на нагрев. При этом не должны быть превышены наибольшие допустимые в эксплуатации температуры, определенные при номинальном режиме. Не допускается увеличивать мощность при снижении температуры входящей в обмотку воды для генераторов с водяным охлаждением обмотки статора.
Если температура охлаждающего газа выше номинальной, то допустимые токи статора и ротора уменьшаются до значений, при которых температуры обмоток не будут превышать наибольших допустимых в эксплуатации. При температуре входящего газа выше 55° С работа генераторов не допускается.
Для генераторов с водяным охлаждением обмотки статора снижение нагрузки в случае повышения температуры входящей в обмотку воды выше номинальной должно быть таким, чтобы температура выходящей из обмотки воды не превысила 85 °С.
Отклонение от номинального давления водорода в генераторе не должно быть больше ±0,02 МПа для генераторов с давлением 0,1 МПа и выше; ±0,01 МПа для генераторов с давлением водорода 0,05 МПа и выше и ±0,001 МПа для генераторов с давлением водорода 0,005 МПа. Снижение водорода сверх нормы для генераторов с давлением 0,005 МПа опасно в основном из-за возможности попадания воздуха в машину при сбросе нагрузки или при появлении утечки, а для генераторов с высоким давлением - из-за перегрева обмоток. Допустимая нагрузка при снижении давления водорода для этих генераторов устанавливается заводом-изготовителем или определяется испытанием на нагрев. При повышении давления сверх нормы снижается надежность системы водородного охлаждения. Например, из-за выпучивания при этом торцевых щитов может нарушиться работа уплотнений и появиться опасная утечка водорода, угрожающая пожаром или взрывом.
Для предотвращения конденсации влаги на стенках газоохладителей температура точки росы водорода в корпусе генератора при рабочем давлении должна быть ниже, чем температура воды на входе в газоохладители, но не выше 15°С. Последнее требование фактически определяет влагосодержание газа не более 12,8 г/м3. Повышение влажности водорода в генераторе при отсутствии течи воды в газоохладителях и применении для подпитки хорошо осушенного водорода может произойти только за счет попадания влаги вместе с воздухом из масла, сливающегося из уплотнений в сторону водорода.
Повышение влажности водорода снижает надежность и срок службы изоляции, вредно сказывается на механической прочности бандажей ротора, ограничивает снижение температуры холодного водорода в зимнее время из-за возможности конденсации влаги на стенках газоохладителей. Наконец, повышение влагосодержания в газе на 1 г/м3, увеличивая плотность газовой смеси, повышает вентиляционные потери в генераторе на 0,8-1%. В настоящее время для снижения влагосодержания газа начали применять холодильные установки.
Генераторы с поверхностным водородным охлаждением могут работать на воздушном охлаждении при сниженной нагрузке. Для генераторов с непосредственным охлаждением работа с нагрузкой на воздушном охлаждении недопустима, так как это привело бы к перегреву и повреждению обмотки. Генераторы серии ТВФ должны быть переведены на водород до включения в сеть, а генераторы серий ТВВ и ТГВ при воздушном охлаждении могут работать на XX только без возбуждения и то кратковременно. Чистота водорода в генераторе должна быть не ниже следующих значений:
Давление водорода, МПа |
Чистота водорода. % |
|
До 0,05 |
95 |
|
0,05 и выше в генераторах с косвенным охлаждением |
97 |
|
В генераторах с непосредственным охлаждением и синхронных компенсаторах |
98 |
Снижение чистоты водорода на 1% приводит к увеличению вентиляционных потерь на 10-11%. Например, в генераторе ТВФ-100-2 с давлением водорода 0,3 МПа при снижении чистоты водорода только на 1% дополнительные потери составят за год не менее 200 МВт•ч. В более мощных генераторах дополнительные вентиляционные потери при снижении чистоты водорода еще больше. Кроме того, снижение чистоты водорода приводит к ухудшению охлаждения или образованию взрывоопасной смеси. При снижении чистоты водорода ниже нормы генератор должен быть продут путем выпуска из него водорода с пониженной чистотой и добавлением такого же количества чистого водорода из ресиверов или баллонов.
Содержание кислорода в корпусе генератора не должно превышать 1,2%, а в бачке продувки- 2%. Несоблюдение этого требования резко увеличит опасность образования в генераторе взрывоопасной смеси. Поэтому, если содержание кислорода достигает значений, близких к предельно допустимым, производится продувка генератора чистым водородом, как и при снижении чистоты водорода.
Все генераторы допускают работу с номинальной мощностью при изменении напряжения в пределах ±5% номинального и при допустимых в эксплуатации изменениях частоты. Попутно отметим, что наибольший ток ротора в одном из трех режимов по напряжению (0,95; 1; 1,05 Uном) принимается за номинальный ток ротора.
Рисунок 32Диаграмма мощности
Длительно допустимое отклонение напряжения не должно превышать ±10% номинального. При отклонении напряжения свыше ±5% номинального полная мощность генератора уменьшается согласно указанию завода-изготовителя или на основании испытания.
Повышение напряжения свыше 105% номинального связано с повышением тока возбуждения и магнитной индукции генератора, что вызывает повышенный нагрев стали статора, возрастание дополнительных потерь в роторе и конструктивных элементах статора. Чтобы не превысить нагрева обмотки ротора и стали статора сверх допустимого в эксплуатации, нагрузка генератора при повышении напряжения сверх 105% должна понижаться. Уменьшение же мощности генератора при снижении напряжения ниже 95% номинального вызывается тем, что повышать ток свыше 105% номинального недопустимо. Повышение напряжения свыше 110% недопустимо из-за резкого усиления местных перегревов активной стали сердечника статора в результате роста при этом магнитного потока рассеивания.
Рассмотрим работу генератора с различными коэффициентами мощности, пользуясь диаграммой мощности (рис. 32). Полная мощность генератора ограничивается:
в зоне перевозбуждения при коэффициенте мощности менее номинального - нагревом обмотки ротора, так как для увеличения реактивной нагрузки необходимо увеличивать ток ротора. При номинальном токе ротора из-за размагничивающего действия реакции реактивного тока статора наибольшее значение тока статора составит всего лишь около 80% номинального;
в зоне от номинального значения коэффициента мощности до значения, равного единице, - нагревом обмотки статора или допустимой мощностью турбины;
в зоне недовозбуждения (коэффициент мощности менее единицы)-мощностью турбины, током статора, нагревом торцевых элементов сердечника статора.
В режиме недовозбуждения из-за подмагничивающего характера реакции тока статора заметно возрастает аксиальная составляющая магнитного поля рассеивания в зубцовой зоне торцевых пакетов сердечника (в основном в трех крайних пакетах), в результате чего резко увеличиваются вихревые токи в листах активной стали, в нажимных плитах и пальцах, вызывающие сильный нагрев этих элементов. Для обмотки статора особенно опасен нагрев активной стали в зоне под пазами и в зубцах, с которыми обмотка непосредственно соприкасается.
Уровень нагрева концевых элементов сердечника статора особенно значителен в генераторах с непосредственным охлаждением, имеющих повышенные электромагнитные нагрузки. Несмотря на меры, принимаемые по снижению нагрева (выполнение разрезов в зубцах крайних пакетов, усиление охлаждения этих пакетов и т.д.), торцевые элементы статора этих машин нагреваются до высоких температур не только в режимах недовозбуждения, но и при работе их с отстающим током при коэффициенте мощности, близком к единице. Поэтому допустимая длительная нагрузка в режиме недовозбуждения, а также при повышении коэффициента мощности от номинального до единицы для генераторов с непосредственным охлаждением должна определяться на основании специальных испытаний или директивных материалов с учетом обеспечения устойчивости параллельной работы в сети.
Для генераторов с косвенным охлаждением разрешается длительная работа при повышении коэффициента мощности от номинального до единицы с сохранением номинального значения полной мощности.
При регулярной работе генератора в режимах недовозбуждения должно быть обеспечено автоматическое ограничение минимального тока возбуждения для исключения потери устойчивости в случаях внезапного повышения напряжения в сети.
«Допустимые перегрузки генераторов»
В аварийных условиях генераторы и синхронные компенсаторы разрешается кратковременно перегружать по токам статора и ротора согласно ТУ на поставку, а если в ТУ такие указания отсутствуют, то кратность перегрузки по току статора, отнесенному к номинальному току, определяется по табл. 7
Таблица 7. Допустимые кратность и продолжительность перегрузки по току статора генераторов и синхронных компенсаторов
Продолжительность перегрузки мин, не более |
Кратность перегрузки по току статора генератора и синхронных компенсаторов |
Продолжительность перегрузки, мин, не более |
Кратность перегрузки по току статора генераторов и синхронных компенсаторов |
|||||
косвенным охлаждением обмотки статора |
с непосредственным охлаждением обмотки статора |
косвенным охлаждением обмотки статора |
с непосредственным охлаждением обмотки статора |
|||||
водой |
водородом |
водой |
водородом |
|||||
60 15 10 6 5 |
1,1 1,15 - 1,2 1,25 |
1,1 1,15 - 1,2 1,25 |
- - 1,11 1,15 - |
4 3 2 1 |
1,3 1,4 1,5 2,0 |
1,3 1,35 1,4 1,5 |
1,2 1,25 1,3 1,5 |
Допустимая перегрузка по току возбуждения генераторов и синхронных компенсаторов с косвенным охлаждением обмоток определяется допустимой перегрузкой статора.
Для турбогенераторов с непосредственным охлаждением обмоток ротора допустимая перегрузка по току возбуждения определяется кратностью тока, отнесенного к номинальному току ротора, указанной в табл. 8
Таблица 8. Допустимые кратность и продолжительность перегрузки турбогенераторов по току ротора
Продолжительность перегрузки, мин, не более |
Кратность перегрузки по току ротора генераторов |
Продолжительность перегрузки, мин, не более |
Кратность перегрузки по току ротора генераторов |
|||
ТВФ, кроме ТВФ-120-2 |
ТГВ, TBB (до 500 МВт включительно), ТВФ-120-2 |
ТВФ, кроме ТВФ-120-2 |
ТГВ, TBB (до 500 МВт включительно), ТВФ-120-2 |
|||
60 |
1,06 |
1,06 |
1/2 |
2,0 |
- |
|
4 |
1,2 |
1,2 |
1/3 |
- |
2,0 |
|
1 |
1,7 |
1,5 |
Снятие перегрузки роторов с непосредственным охлаждением, как правило, должно производиться автоматически.
Длительность перегрузок генераторов и компенсаторов при авариях в энергосистеме ограничивается недопустимостью перегрева обмоток по условию сохранения электрических и механических свойств изоляции; превышением температуры меди обмотки и бочки ротора, не вызывающим еще остаточных деформаций витков; недопустимостью закипания дистиллята в обмотке.
«Несимметричные режимы работы генераторов»
Несимметричный режим, характеризующийся неравенством токов в фазах обмотки статора генератора, вызывается наличием мощных однофазных нагрузок, например однофазных печей, электротяговых нагрузок, или возникает при обрыве провода линии электропередачи, а также ошиновки ОРУ, при отключении или неотключении одной фазы выключателя с пофазным управлением, при работе генератора через неполнофазную трансформаторную группу и при несимметричных КЗ.
При несимметричном режиме в токе статора появляется составляющая обратной последовательности, которая вызывает магнитный поток, вращающийся относительно ротора с двойной угловой частотой. Этот поток наводит в бочке ротора токи двойной частоты, вызывающие дополнительные потери в элементах ротора и их нагрев (рис. 33).
Магнитное поле обратной последовательности вызывает также повышение вибрации.
Эквивалентная глубина проникновения в бочку ротора вихревых токов с частотой 100 Гц невелика и составляет несколько миллиметров в зубцах и около 10-17 мм в клиньях. По этой причине эквивалентное активное сопротивление ротора току двойной частоты значительно и дополнительные потери в бочке ротора от несимметрии тока статора могут достигнуть больших значений. Для ряда турбогенераторов с непосредственным охлаждением обмоток эти потери соизмеримы с номинальными потерями на возбуждение уже при токе обратной последовательности I2?0,22 Iном, а при I2=Iном превышают их в 15-20 раз. К тому же дополнительные потери распределяются вдоль ротора неравномерно.
Рисунок 33 Прохождение токов в роторе при несимметричной нагрузке
Наиболее высокий нагрев зубцов и клиньев они вызывают в зонах, ближайших к торцам ротора, и бандажах. Поэтому длительная работа с несимметричной нагрузкой допустима, если разность тока в фазах не превышает 10% номинального тока для турбогенераторов и 20% для синхронных компенсаторов.
Продолжительность воздействия больших токов обратной последовательности должна быть строго ограничена и в зависимости от типа генератора определяться критерием термической стойкости ротора I22 t, равным: 30 для генераторов ТВ2; 15 для ТВФ; 8 (в отдельных случаях 5) для ТВВ и ТГВ; 40 для гидрогенераторов и синхронных компенсаторов с косвенным охлаждением; 20 для гидрогенераторов с непосредственным охлаждением обмотки статора.
Для предотвращения повреждения генераторов в случае неполнофазных отключений выключателей блоков, как правило, предусматривается устройство резервирования при отказе выключателей УРОВ, действующее при отказе любой фазы выключателя блока на отключение смежных выключателей секции или всех выключателей системы шин, на которую работает блок.
Если во время плановых остановок блоков одновременно с отключением выключателя производится гашение поля генератора, то при неполнофазном отключении выключателя генератор переходит в режим двигателя без возбуждения с потреблением реактивной мощности из сети. При этом ток обратной последовательности достигает 0,3-0,5 номинального, что выше уставки УРОВ, и последнее приходит в действие. Во избежание подобных тяжелых последствий недопустимо при плановых остановках генераторов отключать АГП сразу же после отключения выключателя. При возбуждении, обеспечивающем при XX номинальное напряжение, и при отсутствии пара в турбине даже при неполнофазном отключении выключателя ток обратной последовательности будет невелик и опасности для генератора представлять не будет. Длительность такого режима будет определяться работой турбины в беспаровом режиме по условию нагрева лопаток и, как правило, не должна превышать 4 мин. За это время должен быть подан пар в турбину.
«Асинхронные режимы работы генераторов»
При потере возбуждения из-за неисправности возбудителя, расцепления полумуфт между ротором и возбудителем, обрыва в цепи ротора, случайного отключения АГП и по любой другой причине генератор переходит в асинхронный режим. При этом по мере снижения магнитного потока, создававшегося до этого током в обмотке ротора, генератор начинает потреблять реактивную мощность из сети.
Равновесие между уменьшающимся до нуля синхронным электромагнитным моментом и вращающим моментом турбины нарушается, и частота вращения генератора начинает возрастать сверх синхронной. Под воздействием магнитного поля от тока статора, в зубцах и клиньях ротора и в его обмотке, если она остается замкнутой на возбудитель или замкнется на резистор самосинхронизации, появятся токи с частотой скольжения. Магнитный поток от этих токов, взаимодействуя с магнитным полем статора, создает тормозящий асинхронный момент, что обеспечивает выдачу генератором активной мощности в сеть при асинхронном режиме. Асинхронный тормозящий момент с увеличением скольжения ротора возрастает. Когда он станет равным вращающему моменту турбины, дальнейшее повышение скольжения прекратится. Наступит установившийся асинхронный режим.
Реагируя на увеличение частоты вращения, регулятор частоты вращения турбины сокращает поступление пара (воды) и тем самым уменьшает активную мощность. Поэтому, как правило, в результате потери возбуждения активная мощность на генераторе снижается.
Если при увеличении асинхронного тормозящего момента скольжение изменяется мало (жесткая кривая асинхронного момента), а максимальный асинхронный момент, развиваемый генератором, достаточно велик, то установившийся асинхронный режим наступает при небольшом скольжении и уменьшение активной мощности невелико.
Турбогенераторы ТВФ, ТВВ и ТГВ в области малых скольжений имеют достаточно жесткую кривую асинхронного момента. При работе без возбуждения с активной нагрузкой 0,5-0,6 номинальной, даже при разомкнутой обмотке ротора, скольжение у них не превышает 0,3-0,8%. Потери в роторе при этом составляют 0,3-0,9 номинальных потерь на возбуждение, а ток статора около 1,0-1,15 номинального.
Но максимальный асинхронный момент у турбогенераторов с непосредственным охлаждением значительно ниже, чем у машин с косвенным охлаждением. Поэтому потеря возбуждения у них при нагрузках, близких к номинальным, сопровождается повышенными скольжением и током статора. Из-за повышения частоты вращения до недопустимых пределов может произойти отключение турбины действием автомата безопасности. Для исключения этого на турбинах 300 МВт начали применять быстродействующие электрогидравлические приставки к регуляторам, удерживающие частоту вращения в допустимых пределах и автоматически разгружающие турбогенераторы до допустимых пределов.
Токи, появляющиеся в зубцах, клиньях и бочке ротора, при асинхронном режиме турбогенератора вызывают нагрев ротора.
При повышенном скольжении ток статора может значительно превышать номинальное значение, что может привести к перегреву обмотки статора.
Из-за возрастания результирующей магнитной индукции в торцевых областях турбогенератора при потере возбуждения увеличивается нагрев крайних пакетов стали и конструктивных элементов торцевых зон статора.
В асинхронном режиме в обмотке ротора наводится напряжение. Если обмотка разомкнута или включена не на электромашинный возбудитель, а на систему выпрямителей возбуждения, исключающую прохождение тока обратной полярности, то при больших скольжениях наведенное напряжение может достигнуть опасного для обмотки ротора и выпрямителей значения. Кроме того, при разомкнутой обмотке среднее значение асинхронного момента меньше, а скольжение больше, чем при замкнутой. Поэтому при переводе генератора в асинхронный режим обмотку ротора необходимо автоматически или ручным отключением АГП замыкать на активное сопротивление (самосинхронизации или гасительное).
Подобные документы
Структура подразделений и служб электроснабжения АО "ВК РЭК" - поставщика электроэнергии на рынке Восточного Казахстана. Организация и технология техобслуживания и ремонта генераторов и двигателей, силовых трансформаторов, электрических и кабельных линий.
отчет по практике [963,5 K], добавлен 24.01.2013Монтаж внутренних электрических сетей, прокладка кабельных линий в земле, внутри зданий, в каналах, туннелях и коллекторах. Электрооборудование трансформаторных подстанций, электрические машины аппаратов управления. Эксплуатация электрических сетей.
курсовая работа [61,8 K], добавлен 31.01.2011История создания Печорских Электрических сетей. Техническое обслуживание и ремонт трансформаторов. Непрерывная винтовая обмотки мощных трансформаторов электрического подвижного состава. Охрана труда и правила безопасности при монтаже электрооборудования.
отчет по практике [570,1 K], добавлен 17.12.2012Организация эксплуатации энергосистемы для обеспечения бесперебойного снабжения потребителей электроэнергией. Основные мероприятия, выполняемые при обслуживании электрооборудования для повышения эффективности его работы, виды профилактических работ.
реферат [23,8 K], добавлен 05.12.2009Характеристика электрического оборудования, электроснабжение открытых горных работ. Подсчет электрических нагрузок, выбор силовых трансформаторов. Расчет сечения воздушных и кабельных ЛЭП. Контроль за исправностью изоляции электроустановок карьера.
курсовая работа [2,4 M], добавлен 02.12.2010Обоснование периодичности текущего ремонта электрооборудования. Описание технологии текущего ремонта электродвигателя. Компоновка участка по проведению ТО и ТР электрооборудования. Выбор оборудования для диагностирования и ремонта. Задачи проектирования.
курсовая работа [227,3 K], добавлен 27.02.2009Назначение электрооборудования цеха. Организация технического обслуживания. Трудоемкость ремонтов электродвигателей. Эксплуатация цеховых сетей. Кабельные линии, пускорегулирующие аппараты. Техника безопасности при техобслуживании электрооборудования.
курсовая работа [232,1 K], добавлен 16.05.2012Послеремонтные испытания трехфазного трансформатора, автотрансформатора. Измерение сопротивления изоляции обмоток. Сушка изоляции синхронных компенсаторов. Способ нагрева обмоток постоянным током. Объемы текущих капитальных ремонтов электродвигателей.
контрольная работа [126,8 K], добавлен 16.12.2010Способы прокладки кабельных линий, техническая документация, инструкция. Предназначение сборных кабельных конструкций, способы крепления к основаниям. Эксплуатация кабельных линий внутрицеховых сетей, проверка состояния электроизоляционных материалов.
курсовая работа [2,0 M], добавлен 06.06.2013Назначение и устройство насосной станции. Техническая эксплуатация ее электрооборудования и сетей. Неисправности асинхронных двигателей насосной установки, влияющих на расход электроэнергии. Технология их ремонта и процесс их испытания после него.
курсовая работа [173,5 K], добавлен 06.12.2013