Организация эксплуатации и ремонта электрооборудования электрических станций и сетей

Общая характеристика энергосистемы. Нагрев электрооборудования, измерение температур и работа изоляции. Эксплуатация и ремонт генераторов, синхронных компенсаторов, электродвигателей, трансформаторов, кабельных линий. Ликвидация аварий на электростанции.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 08.11.2012
Размер файла 4,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Озон, являясь сильным окислителем, разрушает органические составляющие изоляции- бумагу, шеллак и др. Азотная и азотистая кислоты могут действовать не только на изоляцию, но и на металлы (сталь, медь). Особенно вредна ионизация внутренних включений. Явление наружной ионизации (коронирования) возникает из-за наличия воздушных зазоров между поверхностью изоляции и стенками пазов. Коронирование менее опасно, чем внутренняя ионизация, так как разрушающему действию короны подвергается только поверхность изоляции. Более опасно наличие местных скользящих разрядов в виде искр, которые могут расщеплять пластинки слюды и другие части изоляции. Для предотвращения поверхностных разрядов наружную покровную изоляцию делают с токопроводящими нитями, чем выравнивается потенциал паза и поверхности катушки. В низковольтных машинах старение изоляции под действием электрического поля не наблюдается.

Повышенная влажность вызывает снижение электрического сопротивления изоляции, что увеличивает токи утечки и потери в изоляции. Однако, как правило, это ухудшение свойств изоляции обратимо и может быть устранено медленной сушкой. Обычно изоляцию сушат, включая машину на пониженное напряжение в режиме холостого хода или короткого замыкания, т. е. без нагрузки. При проведении ускоренной сушки возможно повреждение изоляции из-за бурного выделения водяного пара из внутренних пор, что вызывает трещины в изоляции и делает ее пористой. Пористость изоляции может быть уменьшена пропиткой обмотки в лаке.

Механические усилия, воздействующие на изоляцию, возникают из-за электродинамических сил между проводниками, внутренних вибраций, центробежных сил вращающихся частей и т. д. Иногда изоляция подвержена сильным механическим воздействиям и от внешних воздействий (например, в тяговых двигателях, судовых электрических машинах). Многократно прилагаемые к проводникам знакопеременные усилия вызывают трещины в изоляции, что снижает ее электрическую прочность.

Кроме перечисленных основных причин на старение изоляции может влиять много других факторов: наличие химически активных веществ, находящихся в воздухе (например, хлора, аммиака, паров кислот и щелочей), морской воды, низких температур (до -60°С в ряде районов страны), микроорганизмов и даже насекомых (в тропических странах).

Так как главной причиной, вызывающей старение изоляции, является высокая температура, она нормируется стандартами и техническими условиями.

Рисунок 8 Зависимость срока службы изоляции от температуры

Кратковременные перегрузки могут сильно сократить срок службы машины, так как при больших токах температура растет весьма ощутимо. Так, например, при коротком замыкании трансформатора температура обмотки может достигать ~250сС.

Срок службы изоляции при такой температуре составляет всего ~14 мин и, как показывают расчеты, за время нагревания и остывания при одном коротком замыкании тратится 4,3% ресурса трансформатора.

Особенно важно помнить, что выходит из строя изоляция в первую очередь там, где температура максимальна. Это значит, что при одинаковой средней температуре может быть большое различие в сроке службы изоляции: неудачно сконструированная машина может иметь отдельные плохо охлаждаемые места, где температура значительно выше средней, а старение изоляции на этом участке и определит срок службы всей машины.

«Испытание изоляции электрооборудования повышенным напряжением»

Испытания изоляции повышенным напряжением производятся для обнаружения сосредоточенных дефектов в изоляции электрооборудования, не выявленных в предварительных испытаниях из-за недостаточного уровня напряженности электрического поля. Испытание повышенным напряжением является основным испытанием, после которого выносится окончательное суждение о возможности нормальной работы оборудования в условиях эксплуатации. Испытание повышенным напряжением обязательно для электрооборудования напряжением 35 кВ и ниже, а при наличии испытательных устройств - и для оборудования напряжением выше 35 кВ, за исключением случаев, оговоренных нормами. Изоляторы и оборудование с номинальным напряжением, превышающим номинальное напряжение установки, в которой они эксплуатируются, могут испытываться повышенным напряжением по нормам, установленным для класса изоляции данной установки. Установленный уровень испытательных напряжений соответствует пробивным напряжениям изоляции при наличии в них сосредоточенных дефектов. Уровень испытательных напряжений электрооборудования при вводе его в эксплуатацию ниже заводских испытательных напряжений и составляет 0,9*Uисп.зав. Это объясняется тем, что в процессе испытаний нецелесообразно развивать незначительные, не влияющие на нормальную работу дефекты до опасных, которые, уменьшая электрическую прочность, могут проявиться в процессе эксплуатации. В качестве испытательного обычно используется напряжение промышленной частоты 50 Гц. Время продолжительности приложения испытательного напряжения ограничивается во избежание появления дефектов в изоляции и преждевременного старения ее от 1 мин до 5 мин. При испытании изоляции крупных электрических машин, тяг выключателей, разрядников, силовых кабелей напряжением свыше 1 кВ в качестве испытательного используется выпрямленное напряжение. Основным недостатком испытания выпрямленным напряжением является неравномерное распределение напряжения по толщине изоляции (из-за неоднородности) в зависимости от проводимости отдельных частей ее.

Однако испытание выпрямленным напряжением имеет и преимущества: 1.Выпрямленное напряжение менее опасно для изоляции (пробивное выпрямленное напряжение выше, чем переменное, в среднем в 1,5 раза). 2. У машин распределение напряжения вдоль изоляции обмотки более равномерно при выпрямленном напряжении, благодаря чему одинаково испытываются низовые и лобовые части ее. 3. Требуемая мощность выпрямительных установок высокого напряжения значительно меньше, чем установок переменного напряжения, благодаря чему передвижные установки всегда менее громоздки и поэтому более портативны и представляется возможным проводить испытание объектов с большой емкостью (кабелей конденсаторов и др.). Кроме того, при таких испытаниях имеется возможность измерения токов утечки, являющихся дополнительным критерием оценки состояния изоляции. Испытания изоляции выпрямленным напряжением более продолжительны, чем испытания переменным напряжением, и составляют от 10 до 20 мин. В тех случаях, когда испытание изоляции производится как переменным, так и выпрямленным напряжением, испытание выпрямленным напряжением должно предшествовать испытанию переменным напряжением. Испытание изоляции электрооборудования повышенным напряжением проводится после предварительного осмотра и проверки состояния изоляции с помощью мегомметра и других косвенных дополнительных методов (измерения tgд, ДС/С, С250) при положительных результатах этой проверки. Испытательное напряжение и продолжительность испытания для каждого вида оборудования определяется установленными нормами.

Испытания повышенным напряжением в общем случае проводятся по схеме представленной на рис. 9 Скорость повышения напряжения до одной трети испытательного значения может быть произвольной, в дальнейшем испытательное напряжение следует повышать плавно, со скоростью, допускающей визуальный отсчет на измерительных приборах. После установленной продолжительности испытания напряжение плавно снижается до значения, не превышающего одной трети испытательного, и отключается. Резкое снятие напряжения допускается только в случаях обеспечения безопасности людей или сохранности электрооборудования. Для предотвращения недопустимых перенапряжений при испытаниях (из-за высших гармонических составляющих в кривой испытательного напряжения) испытательная установка должна быть включена по возможности на линейное напряжение сети (наиболее опасная третья гармоника в линейном напряжении отсутствует).

Испытательное напряжение как правило измеряют на стороне низкого напряжения. Исключения составляют ответственные испытания изоляции генераторов, крупных электродвигателей и т. д.

1 - автоматический выключатель; 2 - регулировочная колонка; 3, 10 - вольтметр; 4 - амперметр для измерения тока на стороне низкого напряжения; 5 - трансформатор испытательный; 6 - миллиамперметр для измерения тока утечки испытуемой изоляции; 7 - кнопка, шунтирующая миллиамперметр для его защиты от перегрузки; 8 - трансформатор напряжения; 9 - резистор для ограничения тока в испытательном трансформаторе при пробоях в испытуемой изоляции (1-2 Ом на 1 В испытательного напряжения); 11 - то же для ограничения коммутационных перенапряжений на испытуемой изоляции при пробое разрядника (1 Ом на 1 В испытательного напряжения); 12- разрядник; 13 - испытуемый объект.

Рисунок 9 Схема испытания изоляции электрооборудования повышенным напряжением переменного тока

Существенное влияние на испытания может оказывать емкость испытываемого объекта. Так для объектов с большой емкостью испытательное напряжение может превышать нормированное из-за емкостной вольтодобавки. Также емкость оказывает существенное влияние на выбор мощности испытательной установки, которая определяется

где С - емкость испытываемой изоляции, пФ; Uисп - испытательное напряжение, кВ; щ - угловая частота испытательного напряжения (щ = 2рf).

Ориентировочная емкость некоторых объектов испытания приведена в табл. 3 Мощность испытательной установки корректируется с учетом номинального напряжения испытательного трансформатора

Таблица 3. Ориентировочная емкость электрооборудования

Наименование электрооборудования

Емкость одной фазы, пФ

Турбогенераторы мощностью, МВт от 15 до 150 от 150 до 300

100000-300000 300000-500000

Силовые трансформаторы (обмотки низкого напряжения)

1000-25000

Электрические двигатели мощностью, кВ А до 100 свыше 100

1000-10000 10000-100000

Вводы трансформаторов и масляных выключателей напряжением, кВ до 220 от 330 до 500

50-300 800-1300

Трансформаторы напряжения и тока

100-1000

ИПТ - изолирующий промежуточный трансформатор; НОМ - трансформатор напряжения однофазный; а)испытываемая изоляция изолированы от корпуса.

Рисунок 10 Схемы удвоения испытательного напряжения

В случае, если необходимая мощность для испытания превышает мощность имеющихся в наличии трансформаторов прибегают к снижению ее за счет компенсации емкостного тока нагрузки испытываемой изоляции. Компенсация осуществляется индуктивностью (дугогасящий реактор, специально изготовленный дроссель), подключаемой параллельно испытываемой изоляции. Если номинальное напряжение испытательной установки меньше необходимого нормированного испытательного напряжения, то используют схемы последовательного включения двух испытательных трансформаторов (или измерительных трансформаторов напряжения). Возможные схемы включения представлены на рис. 10. При использовании трансформаторов напряжения НОМ допускается повышение напряжения на первичной обмотке измерительного трансформатора до 150-170% от номинального напряжения. Для защиты от случайных опасных повышений напряжения в испытательных установках предусматриваются защитные разрядники. Разрядник представляет собой два латунных шара диаметром до 10 см, смонтированных на бакелитовых стойках. Один шар закреплен неподвижно, а второй может перемещаться по направляющим основания. В зависимости от необходимого напряжения пробоя с помощью микрометрического винта устанавливается расстояние между шарами. Напряжение пробоя воздушного промежутка между шарами не должно превышать 10-15% от величины нормированного испытательного напряжения. Для предохранения поверхности шаров от сгорания при пробоях, последовательно с ними включается безындукционные резисторы (фарфоровые или стеклянные, заполненные водой) 2-20 кОм. При проведении испытаний необходимо исключить возможность перекрытия по воздуху изоляции на заземленные части испытываемого объекта и частей, находящихся под рабочим напряжением (см. табл. 4).

Таблица 4. Минимально допустимые расстояния по воздуху при испытаниях

Испытательное напряжение, кВ

Расстояние, см

до заземленных частей

до частей установки, находящихся под напряжением, кВ

до 10

35

110

154

220

400

20

5

25

30

10

25

40

20

30

50

25

30

50

110

150

210

60

30

55

115

155

215

70

40

60

120

160

220

80

45

65

120

160

220

90

50

70

125

165

225

100

60

75

130

170

230

390

150

80

150

190

250

410

200

90

170

205

265

425

250

120

190

230

290

450

300

140

215

255

310

470

350

150

270

320

480

400

180

300

330

490

450

190

350

515

500

200

370

530

550

220

390

550

600

240

570

650

260

600

700

300

615

800

360

660

900

400

710

Для испытания изоляции выпрямленным напряжением, как правило, применяется схема однополупериодного выпрямления (рис. 11).

1 - автоматический выключатель; 2 - регулировочная колонка; 3 - вольтметр; 4-испытательный трансформатор; 5 - выпрямитель; 6 - миллиамперметр для измерения тока утечки испытуемой изоляции; 7 - кнопка, шунтирующая миллиамперметр для его защиты от перегрузки; 8 - ограничительный резистор; 9 - испытуемый объект.

Рисунок 11 Схема испытания изоляции электрооборудования выпрямленным напряжением

Порядок проведения испытаний аналогичный испытаниям на переменном токе, кроме того дополнительно должен проводиться контроль за током утечки. Нагрузка испытательного трансформатора незначительна, т. к. она определяется потерями в сопротивлении изоляции постоянному току, поэтому при испытаниях можно использовать измерительный трансформатор напряжения. Измерение испытательного напряжения осуществляется, как правило, на стороне низкого напряжения испытательного трансформатора. Поэтому, при замерах необходимо учитывать коэффициент трансформации трансформатора, а окончательный результат умножить на v2 (т. к. выпрямленное напряжение определяется амплитудным значением, а вольтметр фиксирует эффективное значение приложенного напряжения). После испытания выпрямленным напряжением необходимо особенно тщательно разрядить объект испытания. Для снятия заряда с объекта испытания используются заземляющие штанги, в электрическую цепь которых включается сопротивление 5-50 кОм. В качестве последних для объектов, обладающих большой емкостью, применяют наполненные водой резиновые трубки. После разряда объекта испытания он должен быть наглухо заземлен.

Установка АИИ-70, предназначена для испытания электрической прочности изоляции элементов электроустановок, в т.ч. силовых кабелей и жидких диэлектриков (трансформаторного масла) постоянным (выпрямленным) или переменным током высокого напряжения. Выпрямленное высокое напряжение - 70 кВ, переменное высокое - 50 кВ. Напряжение питающей сети 127, 220 В. Наибольший выпрямленный ток - 5 мА; выходная одноминутная мощность высоковольтного трансформатора 2 кВА. Время работы под нагрузкой (с кенотронной приставкой) - 10 мин.; интервал между включениями - 3 мин.; масса - 175 кг. В анодную сеть кенотрона включен блок микроамперметра с пределами измерения 200, 1000 и 5000 мкА. Испытательное напряжение измеряется вольтметром, включенным с низкой стороны трансформатора и проградуированным для эффективных значений (до 50 кВ) и максимальных значений (до 70 кВ). В кенотронный аппарат встроена защита (чувствительная и более грубая) от к.з. на стороне высокого напряжения. В комплект аппарата входят заземляющая штанга, предназначенная для снятия емкостного заряда с испытуемого объекта и его глухого заземления. Установки АИМ-80 обеспечивает получение испытательного напряжения до 80 кВ. В настоящее время применяются установки, в которых вместо кенотрона используются полупроводниковые высоковольтные выпрямители типа ВВК-0,05/140, ВВК-05/200 и др. Установка ВВК-0,05/140 имеет следующие технические характеристики: максимальное выпрямленное напряжение - 70 кВ; максимальный выпрямленный ток 50 мА; максимальное обратное напряжение - 140 кВ. Габаритные размеры - диаметр 130 мм, высота 440 мм, масса 6 кг. Установка представляет собой набор диодов Д-1008 (10 кВ, 50 мА), зашунтированных конденсатором ПОВ (15 кВ) и помещенных в трубку из изоляционного материала. Универсальный аппарат ВЧФ-4-3 предназначен для испытания электрической прочности витковой изоляции обмоток электрических машин переменного и постоянного тока мощностью 0,1 - 100 кВт и больше; обмоток роторов турбогенераторов; полюсных катушек синхронных генераторов и машин постоянного тока; обмоток силовых трансформаторов 1, 11, 111 габаритов; обмоток трансформаторов тока. Напряжение питания 220 В, потребляемая мощность до 800 ВА; выходное (регулируемое) напряжение 3000 В. Передвижные электротехнические лаборатории на базе автошасси ГАЗ-51 (старые модели) ЭТЛ-10М предназначены для измерений и испытаний при приеме в эксплуатацию и при профилактическом обслуживании электроустановок напряжением до 10 кВ включительно, а также для сушки трансформаторного масла и электросварочных работ.

ЭТЛ-35-02 на базе автошасси ГАЗ-66 предназначены для проведения полного комплекса измерительных и испытательных работ на оборудовании подстанций 35/10 кВ мощностью до б300 кВА и электростанций, воздушных и кабельных линий до 35 кВ, а также для определения мест повреждения в кабельных линиях напряжением до 10 кВ. Более современная из вышеперечисленных установок является лаборатория ЛВИ2Г, возможности и технические характеристики которой аналогичны передвижной лаборатории ЭТЛ-35-02. В состав передвижных лабораторий входят прожигательные установки ПКЛС-10, ПГУ.

«Измерение сопротивления изоляции»

Сопротивление изоляции является важной характеристикой состояния изоляции электрооборудования. Поэтому измерение сопротивления производится при всех проверках состояния изоляции. Сопротивление изоляции измеряется мегомметром. Широкое применение нашли электронные мегомметры типа Ф4101, Ф4102 на напряжение 100, 500 и 1000 В. В наладочной и эксплуатационной практике до настоящего времени находят применение мегомметры типов М4100/1 - М4100/5 и МС-05 на напряжение 100, 250, 500, 1000 и 2500 В. Погрешность прибора Ф4101 не превышает ±2,5%, а приборов типа М4100 - до 1% длины рабочей части шкалы. Питание прибора Ф4101 осуществляется от сети переменного тока 127-220 В или от источника постоянного тока 12 В. Питание приборов типа М4100 осуществляется от встроенных генераторов.

Измерение изоляции осуществляется по схемам рис. 12 В случае, если результат измерения может быть искажен поверхностными токами утечки, на изоляцию объекта измерения накладывается электрод, присоединяемый к зажиму Э (экран) для исключения возможности прохождения токов утечки через рамку логометра, используемого в приборах в качестве измерительного органа. При измерении сопротивления изоляции кабеля таким экраном может служить металлическая оболочка кабеля. Перед началом измерения прибор необходимо проверить замыканием зажимов З и Л накоротко. Прибор должен показывать сопротивление 0, а при удаленной закоротке - сопротивление равно бесконечности. Непосредственно перед измерением объект измерения должен быть заземлен на 2 - 3 мин для снятия остаточных зарядов. При измерении абсолютного значения сопротивления изоляции электрооборудования ее токоведущая часть присоединяется проводами с усиленной изоляцией (типа ПВЛ) к выводу Л мегомметра. Вывод 3 и корпус или конструкции, относительно которых производится измерение, надежно заземляют через общий контур заземления. Сопротивление изоляции определяется показанием стрелки мегомметра, установившейся по истечении 60 с после подачи нормального напряжения.

Рисунок 12 Схемы измерения мегомметром сопротивления изоляции

1. а - относительно земли; б - между токоведущими (стержнями); в - между токоведущими жилами при исключении влияния токов утечки

Значение сопротивления изоляции в большой степени зависит от температуры.

Измерение следует производить при температуре изоляции не ниже +5°С, кроме случаев, оговоренных специально.

«Измерение тангенса угла диэлектрических потерь»

Изоляция электрооборудования в общем случае может быть представлена эквивалентной схемой замещения (рис. 13,а). Ток, протекающий в изоляции (диэлектрике) под действием приложенного напряжения, представляется на векторной диаграмме (рис. 13,б) активной 1А и емкостной 1С составляющими. Потери мощности в изоляции (диэлектрические потери) существенно зависят от состояния изоляции и определяются:

Р = U*IA = U*I*cosц = U*IC*tgд = C*U2*tgд.

Таким образом потери мощности Р пропорциональны tgд (тангенсу угла диэлектрических потерь). Измерение tgд используют для оценки состояния изоляции независимо от массогабаритных характеристик последней. Чем больше tgд тем больше диэлектрические потери, тем хуже состояние изоляции.

Рисунок 13 Эквивалентная схема замещения диэлектрика.

а - схема замещения диэлектрика; б - векторная диаграмма.

На практике tgд измеряют в процентах. Значение tgд нормируется для электрооборудования и зависит от температуры и величины прикладываемого напряжения. Измерение tgд следует производить при температуре не ниже +10°С. Для приведения измеренных значений tgд к необходимой температуре (например, температуре при измерениях на заводе) используют поправочные коэффициенты. Измерение tgд производится мостами P5026, МД-16 и P595 на высоком (3 - 10 кВ) и низком напряжении. Для тангенса угла диэлектрических потерь справедливо отношение:

tgд = RХХ = щ*RХХ (см. рис. 13).

При равновесии моста имеет место равенство:

щ*Rх*Cх = щ*R4*C4 (см. рис. 14).

Таким образом измеряемый tgд пропорционален изменяющейся для уравновешивания моста емкости С4. На этом основан принцип измерения tgд указанными выше мостами.

Tp - испытательный трансформатор; СN - образцовый конденсатор; СХ - испытываемый объект; G - гальванометр; R3 - переменный резистор; R4 - постоянный резистор; С4 - магазин емкостей.

Рисунок 14 Нормальная (прямая) схема включения моста переменного тока

На рис. 14 представлена нормальная (прямая) схема включения измерительных мостов. Данная схема включения используется при измерениях на объектах, у которых оба электрода изолированы от земли. Применяется также перевернутая (обратная) схема включения мостов, в которой зажимы моста для заземления и подачи напряжения меняются местами. Перевернутая схема менее точна, чем нормальная. Однако, измерения tgд изоляции трансформаторов, а также установленных на оборудовании вводов могут производится только по перевернутой схеме, т. к. один из электродов в этих случаях заземлен. Значение tgд изоляции измеряют при напряжении, равном номинальному напряжению объекта измерения, но не выше 10 кВ. При номинальном напряжении объекта менее 6 кВ измерения производят на напряжении 220 - 380 В. Измерения производят при удовлетворительных результатах оценки состояния изоляции с помощью мегомметра и другими способами и удовлетворительных результатах испытаний пробы масла маслонаполненных аппаратов. Измерения при сушке изоляции производят на напряжении 220 - 380 В. Результаты измерений tgд сравнивают с допустимыми нормами и результатами предыдущих измерений, в том числе заводских. В качестве испытательного трансформатора используют трансформаторы напряжения НОМ-6 или НОМ-10. Трансформатор подключается по схеме рис. 15. Для обеспечения точности измерения мост и вспомогательное оборудование, необходимое для измерения, располагаются в непосредственной близости от проверяемого объекта (рис. 16), т. к. мост учитывает потери в соединительном проводе.

1 - рубильник; 2 - регулировочный автотрансформатор; 3 - вольтметр; 4-переключатель полярности выводов испытательного трансформатора 5.

Рисунок 15 Схема включения испытательного трансформатора при измерении

ОИ - объект измерения; С - образцовый конденсатор; Т - испытательный трансформатор; М - мост; РАТ - регулировочный автотрансформатор; 0 - переносное ограждение.

Рисунок 16 Схема расположения аппаратов при измерении

На результаты измерений существенное влияние оказывают паразитные токи, обусловленные внешними магнитными и электростатическими полями и утечками по поверхности проверяемых изоляторов. Для исключения влияния магнитных и электростатических полей в мостах осуществлено экранирование, а поверхностных токов утечки - наложением охранного кольца на измеряемый объект. Паразитные токи существенно влияют на результаты измерений тангенса угла диэлектрических потерь объектов с малой емкостью (вводы, измерительные трансформаторы, конденсаторы связи). На результаты измерения tgд изоляции силовых трансформаторов они влияют незначительно, т. к. последние обладают достаточно большой емкостью, а токи измерения существенно превышают паразитные токи. Для уменьшения влияния паразитных токов необходимо надежное заземление корпусов проверяемого объекта, испытательного трансформатора, моста, регулировочного автотрансформатора. На практике, для учета влияния паразитных токов, производят четыре измерения tgд изоляции при разных полярностях подаваемого на схему напряжения и включения гальванометра.

Раздел 2. Эксплуатация электрооборудования

Тема 2.1 Эксплуатация генераторов и синхронных компенсаторов

«Особенности конструктивного выполнения турбогенераторов»

В турбогенераторах с водородным охлаждением корпус газоплотный и должен выдерживать гидравлическое испытание давлением воды, превышающим номинальное давление водорода в генераторе на 0,5 МПа в течении 30 минут. Его торцевые щиты должны быть не только газоплотными, но и иметь достаточную жесткость. У машин мощностью 300 МВт и выше корпус разъемный. Характерный, хотя и не частый вид повреждения корпуса - появление трещин в сварных швах в результате усталости металла от длительной вибрации. В генераторах с водородным охлаждением трещины вызовут утечку водорода.

1 - клин; 2 - корпусная изоляция стержня; 3 - сплошной элементарный проводник; 4 - полый элементарный проводник; 5 - трубка для газа

Рисунок 17 Сечение стержня статора с косвенным охлаждением (а), с непосредственным охлаждением водородом (б) и непосредственным охлаждением водой (в)

Сердечник турбогенераторов, гидрогенераторов и компенсаторов собирается из листов высоколегированной горячекатаной стали марок 1513, 1514 и холоднокатаной марки 3413 и др. толщиной 0,5 мм. При мощности генераторов выше 100 МВт применяется холоднокатаная сталь, листы которой располагаются так, чтобы направление магнитного потока в спинке сердечника совпадало с направлением прокатки стали. Из листов стали набираются пакеты, а из пакетов - сегменты сердечника. Вентиляционные каналы между пакетами выполняются при помощи распорок (тавриков) из немагнитной стали.

По мере сборки сердечника ведется его опрессовка с созданием давления 1,0-1,7 МПа. Окончательно опрессованный сердечник закрепляется нажимными кольцами из немагнитной стали и стяжными болтами, пропускаемыми за спинкой сердечника. Под нажимные кольца устанавливаются нажимные пальцы из немагнитной стали, создающие опрессовку крайних пакетов в зоне зубцов.

Ослабление прессовки сердечника вызовет вибрацию листов активной стали, что может привести к повреждению изоляции между ними и появлению вихревых токов, создающих дополнительный нагрев стали. Вибрация листов стали в зубцовой зоне может вызвать истирание изоляции стержней обмотки статора или поломку листов и прорезание изоляции отломившейся частью листа. Признаком ослабления прессовки стали является появление на поверхности спинки или в расточке сердечника налета ржавчины от контактной коррозии в месте соприкосновения вибрирующих листов.

Обмотки статора выполняются двухслойными корзиночного типа. В каждом пазу укладываются два стержня, принадлежащих двум разным секциям. В этих обмотках применяется непрерывная изоляция прямого участка и лобовых частей стержня наложением микаленты, изготовляемой на асфальтовом масляном лаке. При изолировании стержень подвергается многократной компаундировке, заключающейся в сушке его в вакууме при температуре 150-160 °С после наложения нескольких слоев микаленты, и последующей пропитке под давлением компаундом, состоящим почти из чистого битума. При сушке из изоляции стержней удаляются влага, Воздух и летучие составляющие лака, а при пропитке под давлением заполняются все поры, что препятствует затем проникновению в изоляцию влаги и воздуха.

Микалентная изоляция длительное время являлась основным видом изоляции статорной обмотки турбо- и гидрогенераторов. Однако в связи с ростом единичных мощностей генераторов и увеличением в 1,5-2 раза удельных токовых нагрузок в обмотках стала сказываться ее недостаточная механическая прочность в нагретом состоянии. Поэтому в настоящее время для мощных генераторов применяют термореактивную изоляцию.

В термореактивной изоляции основным изолирующим материалом является стекломикалента, изготовленная из лепестков слюды и подложки из стеклоткани. Связующим элементом служит искусственная термореактивная смола (главным образом эпоксидная), затвердевающая при температуре 150-160° С и не размягчающаяся при повторных нагреваниях. Термореактивная изоляция имеет лучшие электрические характеристики. Механическая прочность новой изоляции значительно выше, что позволяет выполнить более плотную обтяжку стержней лентой. Для исключения вредного влияния ионизации между стержнем и пазом поверх изоляции стержни покрываются полупроводящей асбестовой лентой.

На рис. 17 показаны сечения стержня статора для различных систем охлаждения. Непосредственное охлаждение обмотки статора в генераторах серии ТГВ выполняется путем циркуляции водорода по трубкам из нержавеющей стали, уложенным между двумя рядами элементарных проводников стержня, а в генераторах серии ТВВ - за счет циркуляции воды (дистиллята) по полым проводникам стержня, уложенным вперемежку со сплошными элементарными проводниками. Подвод и отвод воды к стержням статора от кольцеобразных коллекторов генератора выполняются при помощи эластичных шлангов из фторопласта, обладающих высокой электрической прочностью. В пазах стержни плотно закрепляются клиньями из гетинакса или волокнита.

В крупных генераторах (мощностью 150 МВт и более) соединения стержней выполняются твердым припоем ПСр-15 (15% серебра). Твердая пайка обеспечивает хороший электрический контакт, если даже пропаялось только 50% контактной поверхности.

Ротор крупного турбогенератора выполняется из цельной поковки хромоникельмолибденовой или хромоникельмолибденованадиевой стали, обладающей весьма высокими механическими свойствами. Ротор турбогенератора меньшей мощности изготовляется из углеродистой стали повышенного качества.

Для укладки обмотки на бочке ротора профрезовываются пазы. По оси полюсов, где пазы отсутствуют, остаются большие зубцы. Жесткость ротора по оси зубцов значительно выше, чем по оси, перпендикулярной к ним. Для уменьшения вибрации ротора, возникающей вследствие неодинаковой его жесткости, в больших зубцах выполняются продольные пазы, заполняемые магнитными клиньями (генераторы серии ТГВ), или поперечные пазы (генераторы серии ТВВ).

Ротор турбогенератора кроме воздействия центробежных сил испытывает большие напряжения от знакопеременных изгибающих сил, так как, несмотря на его вращение, он остается прогнутым вниз. Высока и его тепловая нагрузка. В турбогенераторах 100-150 МВт с поверхностным охлаждением потери в роторе на 1 м3 активного объема в 1,4-1,5 раза выше соответствующих потерь в статоре. Чтобы выдержать большие механические нагрузки, изоляция обмотки ротора должна иметь высокую механическую прочность, сохраняющуюся при температуре 130-150 °С.

Для предотвращения деформации от центробежных сил лобовые части обмотки ротора закрепляются роторными бандажами (рис. 18), состоящими из бандажного и центрирующего колец. Бандажное кольцо представляет собой наиболее напряженно работающий узел ротора, так как оно испытывает центробежные усилия не только от собственной массы (около 60% всей нагрузки), но и от лобовых частей обмотки ротора, а также усилия, вызванные посадкой с натягом. Поэтому материал, из которого изготовляются бандажные кольца, должен иметь очень высокие прочностные и пластические свойства. В генераторах 30 МВт и выше бандажные кольца изготовляются из немагнитной высокопрочной хромоникельмарганцевой стали, подвергающейся сложной обработке.

а - жесткая посадка на бочку и вал (две посадки); б-посадка на полуэластичное центрирующее кольцо и на бочку ротора; в - посадка только на бочку ротора (консольная)

Рисунок 18 Конструкция роторных бандажей

Роторные бандажи подразделяются на двухпосадочные и однопосадочные. В бандажах с двумя жесткими посадками на рис. 18, а (одна - на бочку ротора и вторая - через центрирующее кольцо на вал ротора) носик бандажного кольца из-за прогиба вала ротора при его вращении стремится переместиться относительно бочки ротора. Такие бандажи работают удовлетворительно только в турбогенераторах мощностью не выше 30 МВт, имеющих сравнительно короткие роторы.

В турбогенераторах 50 МВт и выше из-за увеличения длины и прогиба ротора знакопеременные силы, вызывающие перемещение носика бандажного кольца, настолько возрастают, что от их длительного воздействия появляются наклепы, трещины и сколы на посадочных местах зубцов бочки ротора и кромок бандажей, ослабляется натяг в посадке, в результате чего в тех же местах появляются ожоги от нагрева токами, возникающими в роторе при несимметричных режимах. В целях уменьшения усилий, действующих на носик бандажа, применяют полуэластичные центрирующие кольца с зигзагообразной выточкой (рис. 18, б) или с более надежной выточкой в виде диафрагмы. Надежность работы двухпосадочных бандажей повышается установкой под носик бандажа изоляционной прокладки из стеклотекстолита.

Посадка с эластичным центрирующим кольцом и изоляционной прокладкой под носиком бандажа, применяемая в турбогенераторах серии ТВФ, обеспечивает надежную работу бандажного узла в роторах, масса которых не превышает 50 т.

В турбогенераторах серии ТГВ применяются бандажи с одной посадкой на бочку ротора - консольные (рис. 18, в). Центрирующее кольцо в этом бандаже служит только для опоры обмотки ротора в осевом направлении и с валом не соприкасается, благодаря чему полностью исключаются нежелательные воздействия на посадочные места бандажа от прогиба вала ротора. От смещения в осевом направлении бандажное кольцо удерживается кольцеобразной шпонкой.

На бочке ротора бандажи удерживаются при помощи специальной гайки, навинчиваемой на кромку бандажа. На бочке ротора эта гайка закреплена при помощи кольцеобразной шпонки. При номинальной частоте вращения витки обмотки ротора турбогенератора прижимаются центробежной силой к клиньям и друг другу настолько сильно, что возникающие между ними силы трения защемляют витки и не позволяют им удлиняться от нагрева при нагрузке. В результате в витках возникают силы сжатия. Если напряжение от сил сжатия превысит предел текучести меди, то после снятия нагрузки и остывания обмотки в витках появится остаточная деформация - они укоротятся. Наибольший нагрев имеют витки, лежащие внизу паза. От многократного нагрева и остывания они и укоротятся на большую величину (рис. 19). Деформация витков может привести к их замыканию, а в худшем случае и к разрушению мели проводников. Поэтому у крупных турбогенераторов обмотка ротора изготовляется из меди с присадкой серебра (0,07-0,15%), обладающей повышенной прочностью.

Рисунок 19 Укорочение витков в лобовой части

«Особенности конструктивного выполнения гидрогенераторов и синхронных компенсаторов»

Гидрогенераторы средней (25-125 МВт) и большой (150 МВт и более) мощности выполняются с вертикальным расположением вала, а гидрогенераторы небольшой мощности (менее 25 МВт) - с горизонтальным.

В зависимости от напора воды, определяемого высотой плотины, гидрогенераторы имеют различные частоты вращения: до 100 об/мин (тихоходные), 100-200 об/мин (среднеходные) и свыше 200 об/мин (быстроходные). Из-за сравнительно небольшой частоты вращения размеры и масса гидрогенераторов в несколько раз больше, чем у таких же по мощности турбогенераторов. Наивыгоднейшая номинальная мощность гидротурбин зависит от напора и расхода воды в створе реки. Поэтому гидрогенераторы для каждой ГЭС выполняются по индивидуальному заказу.

Вал ротора вертикального гидрогенератора вращается в направляющих подшипниках и, кроме того, опирается на упорный подшипник, называемый подпятником. Подпятник воспринимает осевую нагрузку, достигающую в мощных машинах нескольких тысяч тонн, от массы роторов генератора и гидротурбины, а также от реакции воды, проходящей через рабочее колесо турбины. Если подпятник установлен на верхней крестовине генератора, то исполнение гидрогенератора называется подвесным (рис. 20, а), а если на нижней крестовине, то зонтичным (рис. 20, б). Для мощных гидрогенераторов применяется зонтичное исполнение, позволяющее снизить массу и высоту агрегата и высоту ГЭС.

а - подвесное; б - зонтичное; 1 - возбудитель; 2 - верхний направляющий подшипник; 3 - подпятник; 4 - верхняя крестовина; 5 - ротор; 6 - нижний направляющий подшипник; 7 - нижняя крестовина

Рисунок 20 Исполнение гидрогенераторов

Статор гидрогенератора. При наружном диаметре гидрогенератора более 4 м его корпус и сердечник статора по условию перевозки выполняют разъемными (из отдельных сегментов). Обмотка статора крупных гидрогенераторов - двухслойная, стержневая, а у небольших - катушечная. При водяном охлаждении целесообразно применение однослойной обмотки статора. При этом за счет исключения изоляции между верхним и нижним стержнями уменьшается на 20% высота паза, повышается стойкость обмотки к воздействию токов КЗ и сокращается число выводов для подачи и отвода воды. Сердечник и изоляция статорной обмотки для гидрогенераторов и турбогенераторов одинаковы.

Ротор гидрогенератора в отличие от ротора турбогенератора явно-полюсный (рис. 21). Он состоит из пустотелого вала 1, дискового или спицевого остова 2 и сборного обода 3 с укрепленными на нем полюсами и катушками обмотки возбуждения 4, Остовы при диаметрах ротора до 4 м - дисковые неразъемные, 4-8 м - дисковые разъемные и свыше 8м - спицевые разборные. Обод, являющийся частью сердечника, набран из стальных пластин, скрепленных большим числом стяжных шпилек. Для обеспечения жесткости обод насаживается на остов в нагретом состоянии и расклинивается шпонками

Рисунок 21 Ротор гидрогенератора со спицевым остовом

Сердечники полюсов набраны из стальных пластин, уложенных между двумя коваными башмаками и опрессованных стяжными шпильками, или выполнены массивными из стальных поковок. К ободу они крепятся при помощи Т-образных хвостов с дополнительной расклиновкой стальными клиньями. Катушки обмотки возбуждения выполняются из полосовой меди. Витковая изоляция катушек обмотки возбуждения выполняется из миканита (изоляция класса В), а главная (корпусная) - из асбеста и микафолия. В крупных гидрогенераторах витки катушек изолируются термореактивной изоляцией, а корпусная изоляция выполняется из асботекстолита.

В наконечниках полюсов большинства гидрогенераторов укладывается успокоительная обмотка из латунных стержней, соединенных между собой накоротко медными или латунными шинами.

Синхронные компенсаторы изготовляются с явнополюсными роторами на 1000 и 750 об/мин с номинальными мощностями 10-160 MB-А. Компенсаторы с неявнополюсными роторами из-за большей стоимости и больших потерь не получили распространения. Расположение роторов у всех синхронных компенсаторов горизонтальное.

Синхронные компенсаторы имеют пусковую обмотку из стержней, уложенных в полузакрытые пазы на полюсах ротора (рис. 22) и замкнутых по торцам полюсов накоротко латунными или медными сегментами. Сегменты соседних полюсов соединяются шинами и образуют общее короткозамыкающее кольцо.

а- внешний вид ротора; б - разрез полюса ротора; 1-сердечник; 2 - катушка обмотки возбуждения; 3 - пусковая обмотка

Рисунок 22 Ротор синхронного компенсатора КСВ

«Системы охлаждения»

Системы охлаждения, применяемые в электрических машинах для поддержания температуры меди обмоток и активной стали в допустимых пределах, подразделяются на косвенные (или поверхностные) и непосредственные (или внутрипроводниковые). Некоторые машины имеют смешанную систему охлаждения.

По конструктивному исполнению системы охлаждения подразделяются в свою очередь на радиально-многоструйные, радиально-вытяжные (одноструйные), аксиальные и аксиально-радиальные.

При любой системе охлаждения температура активных частей машины превышает температуру охлаждающей среды. Но чем эффективнее система охлаждения, тем это превышение меньше и тем большую нагрузку может допустить машина при тех же размерах без превышения предельно допустимой температуры активных частей.

При косвенной системе охлаждения теплота от меди обмоток отдается охлаждающей среде не непосредственно, а через изоляцию обмоток и активную сталь. Косвенная система охлаждения характеризуется сравнительно высокими значениями превышения температуры меди над температурой охлаждающей среды, так как теплопередача происходит последовательно от меди к изоляции, от изоляции к активной стали, от стали к охлаждающей среде. В косвенных системах в качестве охлаждающей среды используется воздух или водород.

Косвенные воздушные системы охлаждения делятся на проточные и замкнутые. В проточной системе охлаждающий воздух, забираемый в машину из помещения или извне, проходит через машину и выбрасывается наружу.

В турбогенераторах мощностью более 2,5 МВт и в гидрогенераторах мощностью более 10-12 МВт воздушное охлаждение выполняется по замкнутой системе. При этой системе воздух, отобравший теплоту от обмоток и других элементов, поступает в воздухоохладитель, где отдает теплоту воде, проходящей по трубкам, и затем, охлажденный, вновь направляется в машину. С воздушным охлаждением изготовляются, как правило, турбогенераторы мощностью до 12 МВт, а синхронные компенсаторы- до 15 MB-А включительно.

Начиная с мощности 30 МВт для турбогенераторов и 37,5 MB-А для синхронных компенсаторов применяется косвенная водородная система охлаждения. В гидрогенераторах ввиду сложности создания надежного уплотнения машины из-за больших радиальных размеров водород для охлаждения не применяется. Водородное охлаждение по сравнению с воздушным имеет ряд преимуществ. Допустимая мощность при тех же размерах турбогенератора и давлении водорода в корпусе 0,005 МПа (здесь и далее - избыточном) повышается на 15-20%, а при давлении 0,2 МПа даже на 35% и для синхронных компенсаторов на 30%, так как коэффициент теплоотдачи от поверхности к газу выше, чем для воздуха: для водорода в 1,51 раза, а для его смеси с 3% воздуха - в 1,35 раза. Теплопроводность водорода в 7 раз превышает теплопроводность воздуха. При сохранении мощности на прежнем уровне экономится 15-30% активных материалов, необходимых для изготовления машины. Потери в машине на вентиляцию и трение ротора о газ уменьшаются в 10 раз, так как плотность чистого водорода в 14,3 раза, а в смеси с 3% воздуха (при давлении 0,005 МПа) - в 10 раз меньше плотности воздуха. Это позволяет повысить КПД машины примерно на 0,7-1%. Кроме того, в среде водорода изоляция обмоток работает более надежно и долговечно. Уменьшается опасность развития пожара в машине при ее повреждении, так как водород не поддерживает горения.

Вместе с тем водородное охлаждение в обслуживании сложнее, чем воздушное. При содержании водорода в смеси с воздухом от 4 до 75% (по объему), а в присутствии масляных паров от 3,3 до 81,5% образуется взрывоопасная смесь. Поэтому во избежание попадания воздуха в машину и образования взрывоопасной смеси давление водорода в ней приходится постоянно поддерживать выше атмосферного. Следовательно, корпус машины должен быть газоплотным. Приходится устанавливать уплотнения для предотвращения утечки водорода в местах прохода вала ротора через торцевые щиты и маслосистему для них.

При косвенной системе охлаждения допустимая по нагреву мощность турбогенератора заметно увеличивается при повышении давления водорода до 0,2 МПа. Повышение давления водорода сверх 0,2 МПа при этом малоэффективно, так как 50-60% перепада температуры между медью и газом приходится на изоляцию, а тепловое сопротивление ее при повышении давления водорода сверх 0,2 МПа практически не снижается.

При непосредственной системе охлаждения теплота от меди обмоток отбирается охлаждающей средой, непосредственно соприкасающейся с медью.

В качестве охлаждающей среды используется водород, вода или масло, а в некоторых случаях и воздух. Превышение температуры меди над температурой охлаждающей среды получается минимальным. В сравнении с воздушным охлаждением при одних и тех же габаритах генераторов их мощность увеличивается при непосредственном охлаждении: обмоток статора и ротора водородом - в 2,7 раза; обмотки статора маслом и обмотки ротора водой - в 3,6 раза, обмоток статора и ротора водой - в 4 раза.

Поскольку при непосредственном охлаждении превышение температуры меди обмоток состоит лишь из двух составляющих - превышения между поверхностью меди и охлаждающей средой и превышения в охлаждающей среде, а значение этих превышений с увеличением давления водорода понижается, то в машинах с непосредственным водородным охлаждением оказывается целесообразным иметь давление водорода равным 0,3-0,4 МПа.

Непосредственное водородное охлаждение обмотки ротора осуществляется по аксиальной или многоструйной радиальной системе, а охлаждение обмотки статора - только по аксиальной системе. Для охлаждения активной стали статора применяется радиально-вытяжная или аксиальная системы или сочетание той и другой.

Недостатком аксиальной водородной системы охлаждения является значительная неравномерность нагрева обмотки по длине стержней и необходимость иметь высоконапорный компрессор, усложняющий конструкцию и снижающий КПД машины из-за повышенного расхода энергии на вентиляцию.

Для непосредственного масляного охлаждения применяется трансформаторное масло. Оно обладает высокими изолирующими свойствами и поэтому позволяет выполнить обмотку статора с дешевой бумажной изоляцией. Для получения необходимой скорости движения масла, при которой обеспечивается эффективная теплоотдача с поверхности, из-за сравнительно высокой вязкости масла приходится устанавливать насосы с большим давлением и с повышенным расходом энергии.

В генераторах серии ТВМ сердечник и обмотка статора, отделенные от ротора изоляционным цилиндром, находятся в масле. Холодное масло подается насосами в камеру лобовых соединений и затем в аксиальные каналы обмотки статора и сердечника. Охладив обмотку и сердечник, оно выходит из аксиальных каналов на другой стороне машины и направляется в маслоохладители, после которых насосами вновь нагнетается в машину.

Основные серии турбогенераторов с непосредственным охлаждением обмоток статора и ротора приведены в табл. 5

Таблица 5 Турбогенераторы с непосредственным охлаждением обмоток

Серия турбогенератора

Мощность, МВт

Охлаждающая среда

ротора

статора

сердечника

ТВФ*

ТГВ

ТВВ

ТГВ

ТЗВ

ТВМ

60, 100

200, 300

200, 500, 800

500, 800

63, 800

300, 500

Водород

»

»

Вода

»

»

Водород

»

Вода

»

»

Масло

Водород

»

»

»

Вода

Масло

* Обмотка статора генераторов серии ТВФ имеет косвенное охлаждение

Непосредственное охлаждение обмоток статора и ротора водой с успехом применяется также и в крупных гидрогенераторах.

«Масляные уплотнения»

Для предотвращения утечки водорода из корпуса генератора или компенсатора в местах прохода вала ротора через торцевые крышки применяются масляные уплотнения кольцевого или торцевого типа.

Рисунок 23 Кольцевое уплотнение

Кольцевое уплотнение (рис. 23) состоит из вкладыша 2, охватывающего вал 1, и корпуса 3. Масло поступает в зазор между вкладышем и валом и разделяется на две части: в сторону водорода и в сторону воздуха.

Масло, идущее в сторону водорода, предотвращает утечку водорода из корпуса машины через зазор между валом и вкладышем.

Основное достоинство кольцевых уплотнений заключается в том, что при кратковременном прекращении подачи масла они, как правило, не повреждаются. Подплавление их вкладышей, если оно и случится, обычно не вызывает повреждения рабочей поверхности вала. Но из-за большого зазора между вкладышем и валом (0,3-0,4 мм) в ранее выпускавшихся конструкциях расход масла в сторону водорода достигал 40-60 л/мин. Из масла выделялся имевшийся в нем воздух, снижавший чистоту водорода. Это вызывало необходимость иметь вакуумную установку для очистки от воздуха масла, поступающего на уплотнения.

1 - диск на валу ротора; 2 - вкладыш; 3 -пружина; 4 - корпус; 5 - кольцевая канавка

Рисунок 24 Торцевое уплотнение

Торцевое уплотнение (рис. 24) имеет вкладыш 2, прижимаемый к упорному диску 1 на валу ротора. Как и в кольцевом уплотнении, масло, поступающее в кольцевую канавку на рабочей поверхности вкладыша, разделяется на две части. Большая часть направляется в сторону воздуха, обеспечивая смазку трущихся поверхностей, меньшая -в сторону водорода, предотвращая выход водорода через зазор между вкладышем и диском, поскольку давление масла в кольцевой канавке больше давления водорода в статоре на 0,03-0,09 МПа. Меньшая часть масла обеспечивает также смазку внутреннего запорного пояска вкладыша. Расход масла в сторону водорода ввиду малого зазора между вкладышем и диском, определяемого только толщиной масляной пленки, невелик (3-5 л/мин). Это является основным преимуществом торцевого уплотнения по сравнению с кольцевым, позволяющим отказаться от маслоочистительной установки.

Торцевые уплотнения разделяются на типы в зависимости от способа создания усилий, прижимающих вкладыш к диску, а также по количеству автономных камер для масла.

По способу создания усилий, прижимающих вкладыш к диску, все торцевые уплотнения в основном можно разбить на четыре типа (рис. 25).

Рисунок 25 Торцевые уплотнения

В табл. 6 приведены способы создания усилий, прижимающих вкладыш к упорному диску, и указано, в каком турбогенераторе применяется каждый из четырех типов уплотнений.

Таблица 6. Способы усилий на вкладыш

Тип уплотнения по рис. 25

Способ создания усилия, прижимающего вкладыш к упорному диску

В каких турбогенераторах

применяется

I

Давлением газа и пружин

ТГВ-200, ТГВ-200М, ТГВ-300, ТВФ-60-2,

ТВФ-120-2, ТВФ-100-2 поздних выпусков

II

Давлением газа, пружин и уплотняющего масла

ТВВ-165-2, ТВВ-200-2

III

Давлением газа и пружин.

Уплотняющее масло отжимает вкладыш от диска

ТВФ-60-2, ТВФ-100-2 ранних выпусков

ТВВ-200-2, ТВВ-200-2А, ТВВ-320-2

IV

Давлением газа и прижимающего масла

На надежность уплотнений большое влияние оказывает характер изменения усилия, прижимающего вкладыш к диску, в зависимости от снижения давления масла, когда из-за ухудшения смазки резко повышается напряженность работы уплотнения. В уплотнениях типа I при аварийном снижении давления масла усилие, прижимающее вкладыш, сохраняется на прежнем высоком уровне, а в уплотнениях типа III оно даже повышается. Характер изменения усилия на вкладыш определяет требования к надежности схемы маслоснабжения и, в частности, допустимую длительность перебоя в снабжении маслом.


Подобные документы

  • Структура подразделений и служб электроснабжения АО "ВК РЭК" - поставщика электроэнергии на рынке Восточного Казахстана. Организация и технология техобслуживания и ремонта генераторов и двигателей, силовых трансформаторов, электрических и кабельных линий.

    отчет по практике [963,5 K], добавлен 24.01.2013

  • Монтаж внутренних электрических сетей, прокладка кабельных линий в земле, внутри зданий, в каналах, туннелях и коллекторах. Электрооборудование трансформаторных подстанций, электрические машины аппаратов управления. Эксплуатация электрических сетей.

    курсовая работа [61,8 K], добавлен 31.01.2011

  • История создания Печорских Электрических сетей. Техническое обслуживание и ремонт трансформаторов. Непрерывная винтовая обмотки мощных трансформаторов электрического подвижного состава. Охрана труда и правила безопасности при монтаже электрооборудования.

    отчет по практике [570,1 K], добавлен 17.12.2012

  • Организация эксплуатации энергосистемы для обеспечения бесперебойного снабжения потребителей электроэнергией. Основные мероприятия, выполняемые при обслуживании электрооборудования для повышения эффективности его работы, виды профилактических работ.

    реферат [23,8 K], добавлен 05.12.2009

  • Характеристика электрического оборудования, электроснабжение открытых горных работ. Подсчет электрических нагрузок, выбор силовых трансформаторов. Расчет сечения воздушных и кабельных ЛЭП. Контроль за исправностью изоляции электроустановок карьера.

    курсовая работа [2,4 M], добавлен 02.12.2010

  • Обоснование периодичности текущего ремонта электрооборудования. Описание технологии текущего ремонта электродвигателя. Компоновка участка по проведению ТО и ТР электрооборудования. Выбор оборудования для диагностирования и ремонта. Задачи проектирования.

    курсовая работа [227,3 K], добавлен 27.02.2009

  • Назначение электрооборудования цеха. Организация технического обслуживания. Трудоемкость ремонтов электродвигателей. Эксплуатация цеховых сетей. Кабельные линии, пускорегулирующие аппараты. Техника безопасности при техобслуживании электрооборудования.

    курсовая работа [232,1 K], добавлен 16.05.2012

  • Послеремонтные испытания трехфазного трансформатора, автотрансформатора. Измерение сопротивления изоляции обмоток. Сушка изоляции синхронных компенсаторов. Способ нагрева обмоток постоянным током. Объемы текущих капитальных ремонтов электродвигателей.

    контрольная работа [126,8 K], добавлен 16.12.2010

  • Способы прокладки кабельных линий, техническая документация, инструкция. Предназначение сборных кабельных конструкций, способы крепления к основаниям. Эксплуатация кабельных линий внутрицеховых сетей, проверка состояния электроизоляционных материалов.

    курсовая работа [2,0 M], добавлен 06.06.2013

  • Назначение и устройство насосной станции. Техническая эксплуатация ее электрооборудования и сетей. Неисправности асинхронных двигателей насосной установки, влияющих на расход электроэнергии. Технология их ремонта и процесс их испытания после него.

    курсовая работа [173,5 K], добавлен 06.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.