Закон Ома электропроводности как следствие нетеплового действия электрического тока

Понятие электропроводности, ее значение при взаимодействии металлов с электромагнитным полем. Сущность закона Ома. Уравнение энергетического баланса процесса электропроводности в металлах. Деформационная поляризация под действием электрического тока.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 03.11.2012
Размер файла 57,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

14

Размещено на http://www.allbest.ru/

ЗАКОН ОМА ЭЛЕКТРОПРОВОДНОСТИ КАК СЛЕДСТВИЕ НЕТЕПЛОВОГО ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

В.В. Сидоренков,

МГТУ им. Н.Э. Баумана

Содержание

  • Введение
  • Уравнение энергетического баланса процесса электропроводности в металлах
  • Деформационная поляризация металлов под действием электрического тока
  • Заключение
  • Список литературы

Введение

При взаимодействии металлов с электромагнитным полем главную роль играет их высокая электропроводность, поэтому важным аспектом анализа указанного взаимодействия является выяснение физической природы отклика проводящей среды на наличие в ней электрического тока, нетривиально проявляющего себя за счет своего нетеплового действия. Впервые эксперименты по исследованию нетеплового влияния электрического тока на физические свойства металлов были проведены Г. Вертгеймом [1] еще в 1844 г. По удлинению проволочных образцов различных металлов при постоянной внешней механической нагрузке в условиях пропускания электрического тока (j ~ 107…108 А/м2) либо только при термическом воздействии и одной и той же температуре образца определялись соответственно модули упругости G1 и G2 исследуемого материала. Наличие указанных величин разности ДG = |G1 - G2| служило доказательством дополнительного нетеплового действия электрического тока на величину модуля упругости металла. Эти исследования считаются уникальным физическим экспериментом, и именно Вертгейму принадлежит приоритет открытия явления упорядоченного механически напряженного состояния металла, возникающего в процессе электропроводности.

В настоящее время указанный феномен исследуется в основном с целью применений на практике электропластического разупрочнения металлов под действием электрического тока высокой плотности j ~ 108…109 А/м2 [2, 3]. Однако дискуссия о природе этого сложного и многогранного явления продолжается и отражена во многих публикациях (например, в [2-7]). В частности, в данной работе дается ответ на физически принципиальный вопрос о связи гальваномеханических деформаций (нетепловых деформаций под действием тока) с электрическим полем в металле при электропроводности.

Уравнение энергетического баланса процесса электропроводности в металлах

Оставаясь в рамках теории Друде электрической проводимости металлов [8], рассмотрим уравнение энергетического баланса для металлического проводника при наличии в нем электрического тока в следующем приближении:

. (1)

Здесь представлены зависящие от плотности тока объемные плотности тепловой энергии wТ, потенциальной энергии электрического поля we и кинетической энергии дрейфового движения электронов wj.

Тепловая энергия, выделяющаяся с течением времени в единице объема проводника с электрическим током, описывается законом Джоуля-Ленца:

, (2)

где у - удельная электрическая проводимость материала. Эта энергия равна работе сторонних сил, постоянно совершаемой над электронами проводимости в их дрейфовом движении, причем приращение внутренней энергии проводника проявляется в его нагреве.

Объемную плотность электрической энергии /2, связанную с присутствием в проводнике при электропроводности электрического поля, найдем, учитывая закон Ома и поле электрического смещения в таких условиях , где - относительная диэлектрическая проницаемость, 0 - электрическая постоянная. В результате энергия электрической поляризации проводника под действием тока запишется в виде

. (3)

Физический смысл коэффициента ф определяется с учетом теоремы Гаусса: , где - объемная плотность электрического заряда, из уравнения непрерывности , решение которого описывает закон релаксации заряда в проводящей среде. Следовательно, есть постоянная времени релаксации электрического заряда (далее ) для данного материала.

Поскольку электрический ток представляет собой упорядоченное движение носителей заряда ненулевой массы, то в проводнике присутствует также кинетическая энергия дрейфового движения этих зарядов. Тогда для электронов проводимости металла получим:

, (4)

где учтены выражения для вектора плотности тока и удельной электрической проводимости [8].

Здесь me и e - масса и заряд электрона,

n и - концентрация и дрейфовая скорость электронов проводимости,

- среднее время свободного пробега электронов между столкновениями.

В итоге уравнение энергетического баланса процесса электропроводности в металле (1) запишется следующим образом:

. (5)

Видно, что при стационарном токе, в отличие от первого слагаемого , линейно нарастающего во времени, два других, и от времени не зависят и соотносятся друг с другом в соответствии с численными значениями временных коэффициентов и . Определяемый аналитически коэффициент для металлов при комнатной температуре [8] по порядку величины равен 10-13…10-14 с, а значение , cогласно [8, 6], примем ~ 10 - 6 с. Несмотря на то, что wj численно меньше на 7-8 порядков, тем не менее, это слагаемое важно физически, так как отвечает за магнитную энергию проводника с током, и только оно сохраняется при переходе к сверхпроводимости, когда .

Таким образом, в случае нормального (несверхпроводящего) металла энергетика процесса электропроводности количественно в основном определяется тепловой и электрической энергиями, поставляемыми источником стороннего поля, причем физический механизм их реализации един и обусловлен передачей ионам кристаллической решетки проводника энергии упорядоченного движения электронов проводимости.

Деформационная поляризация металлов под действием электрического тока

В контексте рассматриваемого вопроса главной целью является выяснение природы электрической энергии , запасаемой в проводнике с током. Покажем, что закон Ома электропроводности обусловлен откликом среды на нетепловое воздействие со стороны электрического тока и проявляет себя в виде электрической поляризации металла. Представления о векторе электрической поляризации вещества как дипольном моменте единицы объема в линейном приближении, прямо пропорциональном напряженности электрического поля: (|| - плечо диполя), приводят к выражению

, (6)

позволяющему описать электрическое поле в металлической среде при ее поляризации; металл здесь рассматривается как диэлектрик с предельно большой восприимчивостью. В общем случае соотношение (6) является тензорным, но применять тензорную запись в наших рассуждениях нет необходимости.

В однородной проводящей среде значение объемной плотности заряда при квазистационарной () электропроводности близко к нулю, поэтому процесс электрической поляризации металла в таких условиях будет протекать в локально электронейтральной среде, когда . Физически поле E (lj) обусловлено законом сохранения импульса в системе "электронный газ - ионный остов" кристаллической решетки проводника, где при наличии тока "центры масс” положительных и отрицательных зарядов в атомах смещаются относительно друг друга, создавая тем самым деформационную поляризацию среды. При этом индуцируемое в проводнике электрическое поле уравновешивает поле сторонних сил и в указанных условиях результирующая сила, действующая на дрейфующие со скоростью электроны проводимости, равна нулю, что и определяет линейную зависимость j ~ E. Аналогией этому может служить, например, установившееся движение твердой частицы при падении ее в вязкой жидкости в поле силы тяжести.

Целесообразно отметить, что вывод об отсутствии в однородном проводнике с током объемного электрического заряда следует из предположения справедливости при электропроводности закона Ома, когда j ~ E. При этом игнорируется воздействие собственного магнитного поля тока на движущиеся носители заряда посредством магнитной компоненты силы Лоренца , величина которой в такой ситуации является квадратичной функцией тока. Здесь - вектор магнитной индукции, зависящий от соответствующей напряженности, - относительная магнитная проницаемость среды, 0 - магнитная постоянная. Это обстоятельство должно приводить к нарушению локальной электронейтральности среды () за счет ухода вглубь проводника части электронов проводимости, где их кулоновское отталкивание компенсируется действием магнитного поля тока. Данный вопрос подробно рассмотрен в работах [9, 10], поэтому ограничимся только этим замечанием.

Однако именно таким нарушением электронейтральности можно объяснить наблюдаемую в условиях, близких к изотермическим, квадратичную нелинейность вольтамперной характеристики медного проводника на постоянном токе [6], аппроксимируемую строгой аналитической зависимостью , в которой квадратичное по току слагаемое заметно проявляет себя при плотности тока j ~ 108 А/м2 и более. Поэтому при обычной плотности тока j << 108 А/м2 эта нелинейность не может существенным образом повлиять на результаты наших рассуждений, что подтверждают также и выводы проведенного выше анализа уравнения энергетического баланса процесса электропроводности (5).

закон ом электропроводность металл

Сопоставляя соотношение (6) с законом Ома , получаем формулу указанного выше динамического смещения "центров масс” разноименных зарядов

, (7)

вызывающего деформационную электрическую поляризацию металлического проводника с током. Интересно, что последнее соотношение (7) аналогично по виду формуле для среднего значения "длины свободного пробега" электронов проводимости в металле: , где vT - их средняя тепловая скорость. Таким образом, процесс электрической проводимости порождает в металле электронейтральные микрообласти (), образно говоря, "полярные молекулы”, с дипольным моментом , ориентированным коллинеарно направлению тока.

Фундаментальность величины динамического смещения , по сути свой "длина релаксации” заряда в проводнике, состоит в том, что на участках проводника такой длины падение электрического напряжения (разность электрических потенциалов)

(8)

равно отношению объемных плотности электрической энергии (3) к плотности носителей заряда в металле. Данный результат нетривиален, поскольку он в явном виде раскрывает физическую сущность разности электрических потенциалов в проводнике, представляющей собой последовательно ориентированную совокупность "элементарных ячеек" удельной электрической энергии (8), созданных током в локально электронейтральной среде.

Численные оценки параметров "полярных молекул”, отвечающих соотношениям (7,8), дают по порядку величины их максимальный, ограниченный токами разупрочнения реального металла ( 109 А/м2) размер вдоль направления дипольного момента 10-7 м, и, соответственно, значения момента ~ 10-26 Клм и напряжения 10-6 В.

Согласно выражениям (6-8), физически естественно ожидать, что даже при реализации тем или иным способом условий, близких к изотермическим при пропускании тока, электрическое поле в металле должно сопровождаться упорядоченной механической деформацией (удлинением вдоль тока) проводника, связанной с полем линейной зависимостью. Справедливость такого вывода подтверждена экспериментом [6], где феномен E (lj) условно назван электроупругим эффектом.

Заключение

Из результатов проведенных рассуждений непосредственно следует, что поле электрической поляризации металла порождается упорядоченным механически напряженным состоянием кристаллической решетки проводника, возникающим в процессе электрической проводимости. При этом описываемые законами электропроводности и поляризации электрические векторы напряженности и смещения сущностно различны, соответствуют и находятся в том же отношении друг с другом, как и растягивающие усилия и смещения частиц среды, а объединяющее их соотношение по сути дела есть прямой аналог закона Гука в теории упругости. Следовательно, объемные плотности электрической и упругой энергий в проводящей среде, обусловленные нетепловым действием электрического тока, принципиально равны по величине, а физические механизмы их реализации тождественны.

Подводя итог, с необходимостью приходим к выводу, что нетепловое действие электрического тока фундаментально проявляет себя именно в законе Ома электропроводности металлов, где реализуется неразрывным единством двух физических явлений: гальваномеханической деформацией металла lj и вызванной этим явлением его электрической поляризацией, величина напряженности поля E (lj) которой прямо пропорциональна удлинению проводника в таких условиях. При этом энергетически процесс электропроводности сопровождается не только выделением тепловой энергии по закону Джоуля-Ленца wT (j), но и созданием дополнительной потенциальной энергии we (j) за счет работы сторонних сил, запасенной в кристаллической решетке металла при изменении ее конфигурации, которая, в соответствии с соотношением (8), определяет физическую природу падения электрического напряжения в проводнике с током. Более подробно углубление в рамках классической электродинамики физических представлений о процессе стационарной электрической проводимости в металле и их современное полевое развитие рассматривается в работе [11].

Список литературы

1. Wertheim G. Untersuchungen ьber die Elasticitдt // Ann. Phys. und Chem. - 1848. - Bd.11/11. - S.1-114; cм. также в кн. Белл Дж.Ф. Экспериментальные основы механики деформируемых твердых тел. Часть I. Малые деформации - М.: Наука, 1984. - 559 с.

2. Спицын В.И., Троицкий О.А. Электропластическая деформация металлов. - М.: Наука, 1985. - 160 с.

3. Троицкий О.А., Баранов Ю.В., Авраамов Ю.С., Шляпин А.Д. Физические основы и технологии обработки современных материалов. В 2-х томах. ”Институт компьютерных исследований”, 2004.

4. Климов К.М., Новиков И.И. Особенности пластической деформации металлов в электромагнитном поле // ДАН СССР. - 1980. - Т.253, № 3. - С.603-606.

5. Сидоренков В.В. О механизме текстурирования металлов под действием электрического тока // ДАН СССР. - 1989. Т.308, № 4. - С.870-873.

6. Корнев Ю.В., Сидоренков В.В., Тимченко С.Л. О физической природе закона электропроводности металлов // Доклады РАН. - 2001. - Т.380, № 4. - С.472-475.

7. Марахтанов М.К., Марахтанов А.М. Волновая форма электронного переноса теплоты в металле // Вестник МГТУ им. Н.Э. Баумана. Сер. "Машиностроение”. - 2001. - № 4. - С.84-94.

8. Зоммерфельд А. Электродинамика. - М.: ИЛ, 1958. - 501 с.

9. Мартинсон М.Л., Недоспасов А.В. О плотности заряда внутри проводника с током // Успехи физ. наук. - 1993. - Т.163, № 1. - С.91-92.

10. Сидоренков В.В. Об электромагнитной квадратичной нелинейности проводящей магнитоупорядоченной среды // Радиотехника и электроника. - 2003. - Т.48, № 6. - С.746-749.

11. Сидоренков В.В. Развитие физических представлений о процессе электрической проводимости в металле // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. - 2005. - № 2. - С.35-46.

Размещено на Allbest.ru


Подобные документы

  • Закон Ома электропроводности металлов. Состояние металла, возникающее в процессе электропроводности. Уравнение энергетического баланса процесса электропроводности в металлах. Деформационная поляризация металлов под действием электрического тока.

    реферат [56,3 K], добавлен 26.01.2008

  • Образование электрического тока в металлическом проводнике. Классификация жидкостей по степени электропроводности: диэлектрики, проводники (электролиты) и полупроводники. Определение понятия электролитической диссоциации и описание закона Фарадея.

    презентация [413,8 K], добавлен 16.05.2012

  • Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

    презентация [54,9 K], добавлен 28.01.2011

  • Исследование электропроводности высокодисперсных коллоидов ферромагнетиков. Механизм электропроводности магнитной жидкости и возникновение анизотропии электропроводности её при воздействии магнитных полей.

    доклад [45,9 K], добавлен 14.07.2007

  • Понятие электрического тока. Закон Ома для участка цепи. Особенности протекания тока в металлах, явление сверхпроводимости. Термоэлектронная эмиссия в вакуумных диодах. Диэлектрические, электролитические и полупроводниковые жидкости; закон электролиза.

    презентация [237,4 K], добавлен 03.01.2011

  • Нетепловые процессы ЭМ полей. Основы электродинамики нетепловых процессов в материальных средах. О физическом смысле поля электромагнитного векторного потенциала. Электродинамические аспекты теории нетеплового действия электрического тока в металлах.

    реферат [139,7 K], добавлен 20.01.2008

  • Тепловое действие электрического тока. Сущность закона Джоуля-Ленца. Понятие теплицы и парника. Эффективность использования тепловентиляторов и кабельного обогрева грунта теплиц. Тепловое воздействие электрического тока в устройстве инкубаторов.

    презентация [50,7 K], добавлен 26.11.2013

  • Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

    презентация [194,6 K], добавлен 15.05.2009

  • Понятие электрического тока и условия его возникновения. Сверхпроводимость металлов при низких температурах. Понятия электролиза и электролитической диссоциации. Электрический ток в жидкостях. Закон Фарадея. Свойства электрического тока в газах, вакууме.

    презентация [2,9 M], добавлен 27.01.2014

  • Причины электрического тока. Закон Ома для неоднородного участка цепи. Закон Ома в дифференциальной форме. Работа и мощность. Закон Джоуля–Ленца. Плотность тока, уравнение непрерывности. КПД источника тока. Распределение напряженности и потенциала.

    презентация [991,4 K], добавлен 13.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.