Особенности эксплуатации электродвигателей напряжением до 1000 В

Сведения об асинхронных электродвигателях общего назначения переменного тока. Допустимые температуры нагрева частей электрических машин. Основные причины отказов электрических машин. Выбор защиты электродвигателей. Электромагнитная совместимость.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 27.10.2012
Размер файла 28,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности эксплуатации электродвигателей напряжением до 1000 В

1. Общие сведения об электродвигателях переменного тока

электродвигатель асинхронный защита ток

Низковольтные асинхронные электродвигатели общего назначения мощностью 0,25…400 кВт, именуемые во всем мире стандартные асинхронные двигатели, составляют основу силового электропривода, применяемого во всех областях человеческой деятельности. Они потребляют до 40% производимой электроэнергии, поэтому их совершенствованию в промышленно развитых странах придают большое значение. Также в этом реферате будут рассмотрены и синхронные двигатели. В настоящее время внутренний рынок России, призванный отражать интересы потребителей, не формулирует сколько-нибудь определенных требований к стандартным асинхронным двигателям, кроме ценовых. В связи с этим для выявления тенденций их совершенствования будем исходить из требований внешнего рынка, на котором уже работают российские заводы, и из достижений основных зарубежных производителей стандартных двигателей.

В основе работы электродвигателей лежит процесс электромагнитной индукции, которая возникает при движении проводящей среды в магнитном поле. В качестве проводящей среды обычно используется обмотка, состоящая из достаточно большого количества проводников, соединенных между собой надлежащим способом. Магнитное поле в электродвигателе создается либо с помощью постоянных магнитов, либо возбуждающими обмотками, которые обтекаются токами. Электродвигатели обратимы, то есть могут работать по преобразованию электрической энергии в механическую и, наоборот, в режиме генератора. В корпусе электродвигателя находится неподвижный полый цилиндрический статор, набранный из отдельных, изолированных друг от друга пластин электротехнической (магнитной) стали. На внутренней стороне статора в пазах расположены витки обмотки возбуждения из медной проволоки. Внутри статора располагается подвижный, вращающийся на валу ротор, состоящий тоже из стальных пластин, также изолированных друг от друга термостойким лаком. В пазах ротора располагаются витки медной обмотки. Обмотка статора подсоединяется к источнику переменного тока. Электродвигатели переменного тока делятся на синхронные и асинхронные, в зависимости от того, в каком отношении находится скорость вращения к частоте. При изготовлении и выборе электродвигателей большое значение имеют условия их эксплуатации и климатические условия, в зависимости от которых используются разные виды электродвигателей, имеющие конструкционные особенности, делающие их пригодными для эксплуатации в различных условиях.

При выборе электродвигателя необходимо учитывать коэффициент их полезного действия и потери электроэнергии в проводниках, питающих электродвигатель. Синхронные электродвигатели используются в качестве двигателей в крупных установках, таких, как привод поршневых компрессоров, воздуховодов, гидравлических насосов и т.д. Асинхронные двигатели также применяются в промышленности, например, для приводов крановых установок общепромышленного назначения, а также различных грузовых лебедок и других устройств, необходимых в производстве. Электродвигатели переменного тока имеют огромное значение для большинства видов промышленности.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные.

Скорость вращения синхронных электрических двигателей находится в постоянном отношении к частоте электрической сети, для асинхронных - отношение непостоянно. Скорость вращения асинхронных двигателей изменяется с изменением нагрузки. Асинхронные электродвигатели могут иметь преобразовательное устройство в виде коллектора (коллекторные машины) или не иметь (бесколлекторные).

Наиболее важные номинальные величины указываются на специальном щитке электрического двигателя.

Наибольшее распространение среди электрических двигателей переменного тока получили асинхронные электродвигатели с трехфазной симметричной обмоткой на статоре, питаемые от сети переменного тока и с трехфазной или многофазной обмоткой на роторе. Асинхронные двигатели в основном используются как двигатели, в то время как синхронные двигатели в основном используются как генераторы, так как электрический двигатель может работать как в двигательном, так и в генераторном режиме.

Асинхронные электродвигатели малой мощности часто выполняют однофазными, что позволяет использовать их в устройствах, питаемых от двухпроводной сети. Эти двигатели широко применяются в бытовой технике. В промышленности широкое применение получили трехфазные электрические двигатели, питаемые от трехпроводной промышленной сети. В большинстве асинхронных электродвигателей применяется короткозамкнутый ротор. Обмотка короткозамкнутого ротора выполняется в виде цилиндрической клетки из медных или алюминиевых стержней, которые без изоляции вставляются в пазы сердечника ротора. Асинхронные электродвигатели выпускаются в виде единых серий, охватывающих все необходимые мощности и частоты вращения. В основном выпускаются двигатели для питания от сети с частотой 50 Гц. Двигатели общего применения имеют твердую шкалу мощностей при всех частотах вращения. Для правильного выбора электрооборудования следует учесть следующие условия:

1. Климатическое исполнение.

2. Место (категория) размещения.

3. Степень защиты от проникновения твердых тел и жидкости.

4. Специфические условия эксплуатации (взрывоопасность, химически агрессивная среда).

Климатическое исполнение определяется ГОСТ 15150-69. В соответствии с климатическими условиями обозначается следующими буквами:

У(N) - умеренный климат,

ХЛ(NF) - холодный климат,

ТВ(TH) - тропический влажный климат,

ТС(ТА) - тропический сухой климат,

О(U) - все климатические районы, на суше, реках и озерах,

М - умеренный морской климат,

ОМ - все районы моря,

В - все макроклиматические районы на суше и на море.

Категории размещения:

1. На открытом воздухе,

2. Помещения, где колебания температуры и влажности не существенно отличаются от колебаний на открытом воздухе,

3. Закрытые помещения с естественной вентиляцией без искусственного регулирования климатических условий. Отсутствуют воздействия песка и пыли, солнца и воды (дождь),

4. Помещения с искусственным регулированием климатических условий. Отсутствуют воздействия песка и пыли, солнца и воды (дождь), наружного воздуха,

5. Помещения с повышенной влажностью (длительное наличие воды или конденсированной влаги)

Климатическое исполнение и категория размещения вводится в условное обозначение типа электротехнического изделия.

Например: 4А200М2 У3, где У - климатическое исполнение, 3 - категория размещения.

Степень защиты от проникновения твердых тел и жидкости определяется ГОСТ 14254-80. В соответствии с ГОСТ устанавливается 7 степеней от 0 до 6 от попадания внутрь твердых тел и от 0 до 8 от проникновения жидкости.

Для обозначения степени защиты используется аббревиатура «IP». Например: IP54.

Обозначение степеней защиты

Защита от проникновения твердых тел и соприкосновения персонала с токоведущими и вращающимися частями

Защита от проникновения воды

0

Специальная защита отсутствует

1

Большого участка человеческого тела, например, руки и твердых тел размером более 50 мм.

Капель, падающих вертикально

2

Пальцев или предметов длиной не более 80 мм и твердых тел размером более 12 мм

Капель при наклоне оболочки до 15 в любом направлении относительно нормального положения.

3

Инструмента, проволоки и твердых тел диаметром более 2,5 мм

Дождь, падающий на оболочку под углом 60 от вертикали

4

Проволоки, твердых тел размером более 1 мм

Брызг, падающих на оболочку в любом направлении

5

Пыли в количестве недостаточном для нарушения работы изделия

Струй, выбрасываемых в любом направлении

6

Защита от пыли полная (пыленепроницаемые)

Волн (вода при волнении не должна попасть внутрь)

7

-

При погружении в воду на короткое время

8

-

При длительном погружении

Применительно к электродвигателям существуют следующие виды исполнения:

1. Защищенные IP21, IP22 (не ниже).

2. Брызгозащищенные, каплезащищенные IP23, IP24

3. Водозащищенные IP55, IP56

4. Пылезащищенные IP65, IP66

5. Закрытое IP44 - IP54, у этих двигателей внутренние пространство изолированно от внешней среды

6. Герметичное IP67, IP68. Эти электродвигатели выполнены с особо плотной изоляцией от окружающей среды.

Конструктивное исполнение электродвигателей по способу монтажа (IM).

Условные обозначения установлены ГОСТ2479-79.

1-ая цифра обозначает группу по способу монтажа от IM1до IM9, наиболее распространена IM1 - на лапах и с подшипниковыми щитами.

IM2 - на лапах с двумя подшипниковыми щитами и фланцами

IM3 - без лап с фланцами на щитах

2-я цифра обозначает более детально

0 - обычные или приподнятые лапы

3-я цифра обозначает характер направления конца вала

4-я цифра обозначает исполнение конца вала (цилиндрический или конический)

Способ охлаждения электродвигателей (IC).

Система охлаждения может включать в себя одну или две цепи циркулярного хладореагента. Она регламентируется ГОСТ 20459-75.

Для каждой цепи циркуляций вводится группа знаков. Буква обозначает вид охлаждения: А - воздух,

W - вода.

1-я цифра от 0 до 9 обозначает устройство цепи циркуляции. 0 - свободная циркуляция.

2-я цифра от 0 до 9 обозначает способ перемещения хладореагента. 0 - свободная циркуляция.

Большинство взрывозащищенных двигателей имеют две цепи охлаждения.

Электродвигатели выпускаются сериями, а для массового применения - едиными сериями. Для единых серий характерен высокий уровень унификации деталей и узлов, максимальная взаимозаменяемость. Для этого используют одни и те же штампы. Например, для того, чтобы пластины роторов и статоров использовались в машинах разной мощности, наращивание мощности достигается изменением длины пакетов пластин. Выпускаются специальные серии - крановые, металлургические, судовые, тяговые и т.д.

В основу разделения на тип и размер положен параметр - высота оси вращения h.

h=50?355 мм

Каждая h выпускается двух типов размеров с разной длиной пакета S и M, L и М, S и L.

Синхронные частоты вращения n0 = 3000, 1500, 1000, 750, 500 об/мин.

Изготавливаются в двух исполнениях:

1. Закрытое обдуваемое,

2. Защищенное с внутренней самовентиляцией IP23.

h = 50?132 мм изоляция класса В,

h = 160?355 мм изоляция класс F.

Синхронные электродвигатели - двухобмоточные электрические машины, одна из обмоток которых присоединяется к электрической сети с постоянной частотой вращения, а вторая обмотка возбуждается постоянным током, частота вращения ротора не зависит от нагрузки. Применяются в качестве двигателей в крупных установках (привод поршневых компрессоров, воздухопроводов и т.д.), в основном используются в качестве генераторов.

Номинальные данные для синхронных двигателей:

· механическая мощность на валу двигателя, кВт;

· коэффициент мощности;

· КПД;

· схема соединений фаз обмоток статора;

· линейное напряжение обмотки статора, В;

· частота вращения, об/мин;

· частота тока статора, Гц;

· линейный ток статора, А;

· напряжение и ток обмотки возбуждения.

2. Допустимые температуры нагрева частей электрических машин

Предельные допустимые превышения температуры частей электрических машин при температуре газообразной охлаждающей среды 40°С и высоте над уровнем моря не более 1000 м должны быть не более значений, указанных в табл. 1. При температурах больше 40 С и высоте более 1000 м эти значения должны быть уменьшены в соответствии с ГОСТ 183-74 (Машины электрические вращающиеся. Общие технические требования).

Таблица 1. Предельные длительно допустимые превышения температуры частей электрических машин: At - превышение температуры при измерении методом термометра, °С, А/' - превышение температуры при измерении методом сопротивления, °С

При классе нагревостойкости изоляции

А

Е

В

F

H

Части электрических машин

t

t'

t

t'

t

t'

t

t'

t

t'

1. Обмотки переменного тока машин мощностью менее 5000 кВ-А или с длиной сердечника менее 1 м

50

60

65

75

70

80

85

100

105

125

2. Однорядные обмотки возбуждения с оголенными поверхностями

65

65

80

80

90

90

110

110

135

135

3. Обмотки возбуждения малого сопротивления и компенсационные

60

60

75

75

80

80

100

100

125

125

4. Обмотки возбуждения, кроме указанных

50

60

65

75

70

80

85

100

105

125

5. Якорные обмотки, соединенные с коллектором

50

60

65

75

70

80

85

100

105

125

6. Сердечники и другие стальные части, соприкасающиеся с изолированными обмотками

60

-

75

-

80

-

100

-

125

-

7. Коллекторы и контактные кольца

60

-

70

-

80

-

90

-

100

-

Методом сопротивления измеряют среднюю температуру. Он основан на изменении сопротивления проводника с изменением его температуры. Замеряя сопротивление проводника в холодном и горячем состоянии, рассчитывают температуру проводника.

В отдельных точках частей машины температура может быть выше средней. Так, например, в открытых машинах с воздушным охлаждением, у которых хорошо охлаждаются лобовые части обмоток, пазовые части нагреваются больше, чем лобовые. Превышения температуры в отдельных наиболее нагретых точках должны быть не более: 65° - для изоляции класса А, 90°С - для изоляции класса В, ПО и 135°С - соответственно для изоляции классов F и Н.

Классы нагревостойкости

Класс нагревостойкости

Температура, характеризующая нагревостойкость данного класса,°С

Электроизоляционные материалы, соответствующие данному классу нагревостойкости

A

105

Волокнистые материалы из целлюлозы или шелка, пропитанные или погруженные в жидкий электроизоляционный материал, а также соответствующие данному классу другие материалы и сочетания материалов

E

120

Некоторые синтетические органические пленки, а также соответствующие данному классу другие материалы и сочетания материалов

B

130

Материалы на основе слюды (в том числе на органических подложках), асбеста и стекловолокна, применяемые с органическими связующими и пропитывающими составами, а также соответствующие данному классу другие материалы и сочетания материалов

F

155

Материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с синтетическими связующими и пропитывающими составами, а также соответствующие данному классу другие материалы и сочетания материалов

H

180

Материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические эластомеры, а также соответствующие данному классу другие материалы и сочетания материалов

C

Более 180

Слюда, керамические материалы, стекло, кварц, применяемые без связующих составов или с неорганическими связующими составами, а также соответствующие данному классу другие материалы и сочетания материалов

3. Основные причины отказов электрических машин

Электрические машины чаще всего повреждаются из-за недопустимо длительной работы без ремонта (износ), из-за плохого хранения и обслуживания, из-за нарушения режима работы, на который они рассчитаны. Все отказы можно разделить на две категории (по причине, повлекшей отказ) - электрические, механические.

К электрическим отказам относятся отказы по причине пробоя изоляции на корпус и между фазами, обрыва проводников в обмотке, замыкания между витками обмотки, нарушения контактов и соединений (паяных и сварных), недопустимого снижения сопротивления изоляции вследствие ее старения или чрезмерного увлажнения, нарушения межлистовой изоляции магнитопроводов, чрезмерного искрения в коллекторных машинах.

К механическим отказам относятся отказы по причине выплавки баббита в подшипниках скольжения, разрушения сепаратора, шариков или роликов в подшипниках качения, деформации вала ротора, образования глубоких дорожек на поверхности коллектора или контактных колец, ослабления крепления сердечников полюсов и статоров к станине, обрыва бандажей или их сползания, ослабления прессовки сердечников, ухудшения охлаждения машины из-за засорения охлаждающих каналов.

Неисправности и повреждения электрических машин, вызывающие отказ, не всегда удается обнаружить путем внешнего осмотра, так как некоторые из них (в основном электрические) носят скрытый характер и могут быть обнаружены только после соответствующих испытаний и разборки машины. Работа по предремонтному выявлению неисправностей и повреждений электрических машин называется дефектацией.

Рассмотрим характерные причины отказа электрических машин.

Пробой изоляции обмотки ротора на корпус приводит к медленному увеличению частоты вращения при пуске асинхронного двигателя. Ротор сильно нагревается даже при небольшой нагрузке. К тем же явлениям приводит нарушение изоляции между контактными кольцами и валом ротора.

Пробой изоляции между фазами приводит к короткому замыканию в обмотке. При коротком замыкании обмотки статора наблюдаются сильные вибрации двигателя переменного тока, которые прекращаются после отключения его от сети, сильное гудение, несимметрия токов в фазах, быстрый нагрев отдельных участков обмотки. В случае короткого замыкания обмотки фазного ротора наблюдается такой же эффект, как при нарушении изоляции между контактными кольцами и валом.

Обрыв проводников обмотки статора асинхронного двигателя вызывает несимметрию токов и быстрый нагрев одной из фаз (в крайнем режиме - обрыв фазы, ротор не вращается или его частота вращения мала, наблюдается сильный шум и быстрый нагрев двигателя).

Обрыв стержня короткозамкнутой обмотки ротора приводит к повышенным вибрациям, уменьшению частоты вращения под нагрузкой, пульсациям тока статора последовательно во всех фазах.

Витковое короткое замыкание обмотки статора или ротора приводит к чрезмерному нагреву электрической машины при номинальной нагрузке.

Нарушение контактов, паяных или сварных соединений в асинхронных двигателях эквивалентно по своему проявлению обрыву витков, стержней короткозамкнутых обмоток или фазы обмотки в зависимости от места нахождения данного соединения. Нарушение контакта в цепи щеток приводит к повышенному искрению между контактными кольцами и щетками.

Недопустимое снижение сопротивления изоляции может быть следствием сильного загрязнения изоляции, увлажнения и частичного разрушения, вызванных старением изоляции.

Нарушение межлистовой изоляции сердечников магнитопроводов приводит к недопустимому повышению температуры отдельных участков магнитопровода и всего магнитопровода в целом, повышенному нагреву обмоток, выгоранию части магнитопровода (пожар в стали).

Выплавка баббита в подшипниках скольжения и чрезмерный износ подшипников качения приводят к нарушению соосности валов электрической машины и механизма, к появлению эксцентриситета ротора. Выплавка баббита вызывает повышение вибраций электрической машины, которые не исчезают после отключения ее от сети. Износ подшипников качения приводит к появлению больших сил одностороннего притяжения, в результате чего двигатель не развивает номинальной скорости, а его работа сопровождается сильным гудением. Повышенные вибрации могут являться также следствием нарушения уравновешенности вращающихся частей (ротора, полумуфт или шкива).

Деформация вала ротора приводит к появлению эксцентриситета ротора и больших сил одностороннего притяжения.

Ослабление крепления полюсов и сердечников статоров приводит к повышенным вибрациям, исчезающим после отключения машины от сети.

Ослабление крепления листов магнитопровода вызывает шум и повышенные вибрации двигателя.

Засорение охлаждающих (вентиляционных) каналов приводит к недопустимому нагреву электрической машины или отдельных ее частей.

Как видно из анализа приведенных возможных неисправностей электрических машин и их влияния на рабочие свойства машин, одни и те же эффекты могут быть вызваны различными причинами. Это часто не позволяет однозначно назвать неисправность электрической машины по ее внешнему проявлению, а вынуждает ограничиться перечнем возможных неисправностей, которые будут уточняться при дефектации с целью последующего их устранения.

4. Выбор защиты электродвигателей

Правильный выбор и настройка защиты электродвигателей позволяют продлить ресурс их работы, обеспечить безаварийную работу и повысить их надежность в эксплуатации. Однако применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки.

Предусматриваются следующие виды защиты электродвигателей напряжением до 1000 В:

1) защита от многофазных коротких замыканий и от минимального напряжения, а в сетях с глухозаземленной нейтралью - дополнительно от однофазных замыканий для двигателей переменного тока;

2) защита от коротких замыканий и от недопустимого повышения частоты вращения для двигателей постоянного тока;

3) Защита от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска для ограничения длительности пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловыми реле. Защита должна действовать на отключение, или на сигнал, или на разгрузку, если последняя возможна;

4) Защита от асинхронного режима синхронных двигателей должна, как правило, осуществляться с помощью защиты от перегрузки по току статора для двигателей напряжением до 1000 В.

5. Электромагнитная совместимость

Вопросы электромагнитной совместимости (ЭМС) в настоящее время приобретают все большее значение при освоении и сертификации новых серий электродвигателей. ЭМС электродвигателя определяется его способностью в реальных условиях эксплуатации функционировать при воздействии случайных электрических помех и при этом не создавать недопустимых радиопомех другим средствам. Помехи от электродвигателя могут возникать в присоединенных к нему цепях питания, заземления, управления, в окружающем пространстве.

ГОСТ Р 50034-92 устанавливает нормы на уровни устойчивости двигателей к отклонениям напряжения и частоты, несимметрии и несинусоидальности питающего трехфазного напряжения, а также методы испытания двигателей на устойчивость к помехам. Вместе с тем при проектировании и производстве асинхронных двигателей для внешнего рынка необходимо руководствоваться публикацией МЭК 1000-2-2, в которой установлены уровни совместимости для низкочастотных распространяющихся по проводам помех и передаче сигналов в низковольтных системах электропитания. При этом измерительное оборудование должно обеспечивать и спектральный анализ на базе компьютерных информационно-измерительных систем.

Список источников

1. Андрианов М.В., Родионов Р.В. Определение параметров фильтрующих устройств для обеспечения электромагнитной совместимости электроприводов // Электротехника. 1999. №11.

2. Электротехнический справочник под общей редакцией профессоров Московского энергетического института им. В.М. Молотова. Москва 1955

3. Газета промышленного оборудования «Северо-западное электромеханическое объединение». Февраль 2005 г.

Размещено на Allbest.ru


Подобные документы

  • Характеристика цеха ООО "Статор". Расчет электрических сетей напряжением 0,4 кВ. Технология ремонта электродвигателей. Установка для пропитки статоров асинхронных электродвигателей. Пожарная опасность технологических процессов и меры профилактики.

    дипломная работа [3,4 M], добавлен 11.07.2012

  • Защита электродвигателей в процессе их эксплуатации. Аварийные режимы работы электродвигателей. Виды защиты асинхронных электродвигателей. Электрические аппараты, применяемые для защиты электродвигателей. Схема электроснабжения ГУП ППЗ "Благоварский".

    отчет по практике [1,9 M], добавлен 13.08.2012

  • Общие сведения об электрических машинах. Неисправности, разборка, ремонт токособирательной системы электрических машин. Коллекторы. Контактные кольца. Щеткодержатели. Ремонт сердечников, валов и вентиляторов электрических машин. Сердечники. Вентиляторы.

    реферат [104,0 K], добавлен 10.11.2008

  • Выбор электродвигателей и силового трансформатора. Основные технические характеристики. Определение структуры ЭРЦ по ремонту электрических машин. Составление графика ППР. Правила техники безопасности при ремонтах электрооборудования насосной станции.

    курсовая работа [528,0 K], добавлен 07.08.2013

  • Описание устройства и работы асинхронного двигателя. Типы и характеристика электрических машин в зависимости от режима работы. Технические требования при выборе промышленных электродвигателей. Техника безопасности при монтаже электрических машин.

    реферат [16,5 K], добавлен 17.01.2011

  • Разборка машин средней мощности. Ремонт статорных обмоток машин переменного тока. Обмотки многоскоростных асинхронных двигателей с короткозамкнутым ротором. Ремонт якорных и роторных обмоток. Ремонт обмоток возбуждения. Сушка и пропитка обмоток.

    учебное пособие [3,4 M], добавлен 30.03.2012

  • Анализ основных положений теории электрических цепей, основ промышленной электроники и электрических измерений. Описание устройства и рабочих свойств трансформаторов, электрических машин постоянного и переменного тока. Электрическая энергия и мощность.

    курс лекций [1,5 M], добавлен 12.11.2010

  • Расчет электрических цепей переменного тока и нелинейных электрических цепей переменного тока. Решение однофазных и трехфазных линейных цепей переменного тока. Исследование переходных процессов в электрических цепях. Способы энерго- и материалосбережения.

    курсовая работа [510,7 K], добавлен 13.01.2016

  • Принцип действия асинхронного двигателя. Устройство асинхронных электродвигателей с фазным ротором. Схемы присоединения односкоростных асинхронных электродвигателей с короткозамкнутым ротором. Режимы работы электродвигателей, их монтаж и центровка.

    презентация [674,1 K], добавлен 29.04.2013

  • Общие теоретические сведения о линейных и нелинейных электрических цепях постоянного тока. Сущность и возникновение переходных процессов в них. Методы проведения и алгоритм расчета линейных одно- и трехфазных электрических цепей переменного тока.

    курсовая работа [1,2 M], добавлен 01.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.