Разрешающая способность оптической системы
Определение физического предела разрешения оптических систем при учете волновой природы излучения. Картина дифракции на диафрагме и распределение интенсивности света на экране. Теория Аббе (интересный прием определения разрешающей силы микроскопа).
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 18.10.2012 |
Размер файла | 880,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Разрешающая способность оптической системы
В рамках приближений геометрической оптики невозможно определить физический предел разрешения оптических систем. Эта задача решается при учете волновой природы излучения. Ограниченность разрешающей способности микроскопа обусловлена явлением дифракции, обусловленном волновой природой света.
Если на пути световой волны находится препятствие типа непрозрачного экрана, то часть волны, задерживаясь препятствием, перестает действовать, и образуется тень. Однако при этом возникает специфическое явление огибания препятствия волной, носящее название дифракции. В результате на краях отверстия возникает отклонение направления распространения светового луча от первоначального и связанное с ним угловое расширение пучка, что приводит к размазыванию границы тени (рис. 1) и, следовательно, к появлению несоответствия между объектом и его теневым изображением.
Рис.1 Картина дифракции на диафрагме (а) и распределение интенсивности света (б) на экране.
Теория Аббе
Сказанное выше справедливо для случая некогерентных источников, т.е. для самосветящихся объектов наблюдения. Однако для практики гораздо важнее ситуация освещенных объектов. Это означает, что отдельные точки объекта рассеивают волны, падающие на них из одного источника, т.е. сами являются источниками когерентного излучения.
Аббе (1873) указал весьма интересный прием определения разрешающей силы микроскопа для такого случая.
Рассмотрим для простоты случай, когда освещение производится параллельным пучком, а объект имеет простую форму дифракционной решетки, период которой d имеет размер (и смысл) мельчайшей различимой детали.
Рис.2 Изображение дифракционной решетки
Свет перед попаданием на линзу микроскопа претерпевает дифракцию (рис.2), формируя в результате интерференции в фокальной плоскости FF ряд главных максимумов, угловые расстояния между которыми определяются периодом решетки - объекта наблюдения (по Аббе - первичное изображение или спектр).
В описанной ситуации положение дифракционных максимумов Ат задается условием:
dsinm = mл
где т - целое число.
Так как все дифракционные максимумы соответствуют когерентным лучам, то за фокальной плоскостью объектива эти лучи опять интерферируют между собой, давая в плоскости Р2Р2', сопряженной относительно объектива 00' с плоскостью Р1Р1', изображение самого объекта (т. н. вторичное изображение).
Только полная совокупность дифракционных максимумов определит вторичное изображение в полном соответствии с объектом.
Чем крупнее деталь изображения, тем меньший угол дифракции ей соответствует. Детали структуры меньше длины волны вообще не могут быть наблюдаемы, т.к. волны, дифрагировавшие на таких деталях, не доходят до экрана Р2Р2'
Если диафрагма, расположенная в фокальной плоскости обрезает дифрагировавшие пучки так, что в формировании изображения будет участвовать только центральный луч, то мы не увидим изображения объектов, дающих дифракцию от периодической структуры.
Правило Луммера гласит: если оптическая система формирует изображение без искажений и улавливает весь дифрагированный объектом свет, то изображение правильно передает распределение амплитуд и фаз излучения, рассеянного объектом.
При исследовании реальных объектов в ТЕМ следует иметь в виду, что дифракционная картина формируется не только атомами, но и зернами и дефектами решетки. Так как размер зерен гораздо больше межатомных расстояний, то углы дифракции на зернах гораздо меньше углов дифракции на атомной структуре. Поэтому при отсечении апертурной диафрагмой пучков, сформированных дифракцией на атомах, изображение в плоскости изображения микроскопа образуется лучами, дифрагировавшими на зернах. Поэтому на экране мы наблюдаем зерна, а не атомы. Для того, чтобы увидеть атомы, необходимо, чтобы лучи, дифрагировавшие на атомах, прошли через апертурную диафрагму и также принимали участие в формировании картины объекта в плоскости изображения. Для этого необходимо, чтобы углы дифракции на атомах, были весьма малыми. Этого можно достичь, уменьшив длину волны электронов, что аппаратно реализуется повышением ускоряющего напряжения в источнике электронов микросокпа до 200-400 кВ и выше. Так получают изображения дифрагирующих решеток в электронных микроскопах, работающих в режиме высокого разрешения (HR TEM - high resolution transmission electron microscopy).
Световая энергия в дифракционном изображении точки распределяется неравномерно. Впервые распределение освещенности в дифракционных кольцах было исследовано английским ученым Эйри (1811-1892), и центральный кружок дифракционного пятна получил название кружка Эйри. Большая часть световой энергии изображения сосредоточена в кружке Эйри (около 84%) и первых двух-трех кольцах.
Математически расчет распределения освещенности в дифракционных кольцах сводится к определению корней функции Бесселя J1 (u). Распределение интенсивности I при дифракции плоской волны на круглом отверстии задается функцией
Аргумент функции Бесселя
где а - радиус отверстия, . угол дифракции, Первый корень, соответствующий первому минимуму освещенности (т.е. границе центрального светлого пятна в дифракционной картине), получается при значении
.
Тогда радиус центрального, самого интенсивного кружка, называемого кружком Эйри или кружком рассеяния,
где
· л - длина волны;
· n - показатель преломления для пространства между объектом и объективом;
· М - увеличение объектива;
· ц - апертурный угол.
Появление на искаженном изображении кружка вместо точки равносильно изображению идеальной линзой объекта в виде кружка радиусом
r называют радиусом кружка рассеяния.
Таким образом, по мере уменьшения апертурного угла или диаметра диафрагмы, как показано на рис.3, размер возникающего изображения все в большей степени будет отличаться от идеального.
Рис.3
Предельное разрешаемое расстояние при учете только рассматриваемой здесь дифракционной ошибки равно радиусу кружка рассеяния, отнесенного к объекту, т.е.
Видимая часть спектра ограничена узкой областью длин волн от 0,4 до 0,8 мкм, поэтому повышение разрешающей способности (а с ним и полезного увеличения) в световой микроскопии осуществляется за счет применения специальной иммерсионной жидкости с показателем преломления n ? 1,5. Величина апертурного угла для высококачественных объективов составляет примерно 70° (sin 0 ? 0,9), так что для предельно разрешаемого расстояния получается величина, примерно равная половине длины волны используемого света, т.е.0,2 мкм.
Если лучи от точечного источника света проходят через реальную оптическую систему (объектив, линзу и т.п.), то в плоскости изображения системы образуется элементарная интерференционная картина в виде кружка Эйри.
Если применить - протяженный источник света, то при прохождении лучей через, систему каждая точка источника будет давать свой кружок, в результате чего в плоскости изображения системы образуется сложная интерференционная картина.
Рис. 4 К понятию разрешающей способности оптической системы:
a) положение дифракционных изображений точек А и B при условии их разрешения;,
b) график распределения интенсивности в дифракционном изображении двух светящихся точек
разрешающая способность оптическая система
В случае, когда две светящиеся точки, изображаемые оптической системой, находятся на очень малом расстоянии одна от другой, дифракционные фигуры рассеяния могут частично накладываться или сливаться в одну. Если в такой сложной картине оптическая система позволяет наблюдать две близко расположенные точки раздельно, то говорят, что система эти точки "разрешает".
Если расстояние между центрами дифракционных картин точек А и В обозначить r (рис.4, а), то эти точки будут видны раздельно при условии, что r>с, где с - радиус первого минимума (или кружка Эйри).
Обычно при оценке разрешающей способности систем применяют критерий Рэлея. По Рэлею, за предел разрешения принимается такое положение, при котором темное кольцо одного дифракционного кружка проходит через светлый центр соседнего (рис.4). В этом случае сумма ординат кривых интенсивности в точке С будет равна примерно 0.8 от ординаты в точке максимума. Разница в 20% считается достаточной для разделения изображений. Изложенное - суть т. н. критерия Рэлея для разрешения оптических систем.
Кардинальное улучшение разрешающей способности было достигнуто в электронной микроскопии, использующей для формирования изображения электронное излучение.
Согласно основному положению волновой механики, каждой частице с массой т, движущейся со скоростью v, соответствует волна длиной
(9)
Рабочая формула для вычисления длины волны электронов в ангстремах имеет вид
Где U - ускоряющее напряжение в киловольтах
В современных электронных микроскопах используются электроны со скоростями, которым соответствуют длины волн 0,003 - 0,007 нм,.
Практически достижимое разрешение электронных микроскопов превышает разрешение световых лишь в 1000 раз. Это расхождение связано с тем, что в электронно-оптических линзах по сравнению со световыми значительно больше ошибки изображения, так называемые аберрации. Для снижения влияния аберраций приходится уменьшать апертурные углы в 100-1000 раз по сравнению с апертурными углами светооптических микроскопов.
Размещено на Allbest.ru
Подобные документы
Теория явления. Дифракция – совокупность явлений при распространении света в среде с резкими неоднородностями. Нахождение и исследование функции распределения интенсивности света при дифракции от круглого отверстия. Математическая модель дифракции.
курсовая работа [75,6 K], добавлен 28.09.2007Определение увеличения зрительной трубы. Определение поля зрения оптической трубы. Определение разрешающей способности оптических систем. Предел разрешения. Определение предела разрешения глаза, систем зрительная труба – глаз.
лабораторная работа [212,8 K], добавлен 09.03.2007Обзор дифракции в сходящихся лучах (Френеля). Правила дифракции световых волн на круглом отверстии и диске. Схема дифракции Фраунгофера. Исследование распределения интенсивности света на экране. Определение характерных параметров дифракционной картины.
презентация [135,3 K], добавлен 24.09.2013Устройство микроскопа, история его разработок и тенденции к совершенствованию. Разрешающая способность микроскопов. Особенности оптических, электронных, сканирующих зондовых, рентгеновских, дифференциальных интерференционно-контрастных микроскопов.
презентация [393,7 K], добавлен 06.02.2014Исследование распределения интенсивности света на экране с целью получения информации о свойствах световой волны - задача изучения дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля, увеличение интенсивности света с помощью зонной пластинки.
презентация [146,9 K], добавлен 18.04.2013Определение дифракции в волновой и геометрической оптике. Сущность принципа Гюйгенса-Френеля. Виды дифракции и определение дифракционной решетки. Дифракция Фраунгофера на одной щели. Распределение интенсивности в дифракционной картине от двух щелей.
презентация [82,6 K], добавлен 17.01.2014Исследование распределения интенсивности света на экране с целью получения информации о свойствах световой волны. Основные виды дифракции. Объяснение проникновения световых волн в область геометрической тени с помощью принципа Гюйгенса. Метод фон Френеля.
презентация [146,9 K], добавлен 24.09.2013Анализ теорий распространения электромагнитных волн. Характеристика дисперсии, интерференции и поляризации света. Методика постановки исследования дифракции Фраунгофера на двух щелях. Влияние дифракции на разрешающую способность оптических инструментов.
курсовая работа [2,0 M], добавлен 19.01.2015Понятие дифракции световых волн. Распределение интенсивности света в дифракционной картине при освещении щели параллельным пучком монохроматического света. Дифракционная решетка, принцип Гюйгенса - Френеля, метод зон. Дифракция Фраунгофера одной щели.
реферат [43,7 K], добавлен 07.09.2010Определение фокусных расстояний собирающих и рассеивающих линз, увеличения и оптической длины трубы микроскопа, показателя преломления и средней дисперсии жидкости, силы света лампочки накаливания и ее светового поля. Изучение законов фотометрии.
методичка [1023,5 K], добавлен 17.05.2010