Тепловые явления
Основные виды измерения теплоты. Способы переноса тепла. Тепловые потери и конвекция. Термическое сопротивление и коэффициент теплопередачи. Общий коэффициент теплопроводности и перенос тепла через пространство при помощи электромагнитных волн.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 15.10.2012 |
Размер файла | 15,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Тепловые явления
Тепловые явления
Количество теплоты
Рассматривать тепловой режим зданий и проектировать солнечное отопление невозможно без понимания природы тепла и механизмов его переноса. Существуют два основных вида измерения теплоты:
? количественный;
? качественный.
Таким образом, единица количества теплоты определяется как количество теплоты, подвод (или отвод) которого вызывает нагревание (или охлаждение) 1 кг воды при атмосферном давлении на 1°К. В качестве базисного материала используется вода в силу своей общедоступности.
Теплоемкость
Другой мерой теплоты, тесно связанной с температурой и количеством теплоты, является теплоемкость или удельная теплоемкость. Не все материалы поглощают одинаковое количество тепла при определенном повышении температуры. Если для нагрева 100 кг воды на 1°C потребуется 418,3 кДж, то для нагрева того же количества алюминия -- лишь 94,1 кДж. Удельная теплоемкость представляет собой отношение количества теплоты, необходимого для повышения температуры определенной массы данного материала на определенное число градусов, к количеству теплоты, необходимому для повышения температуры той же массы воды на то же число градусов. Это отношение одинаково для любой системы единиц измерения.
Тепловые потери
Значение всего сказанного, по крайней мере, что касается зданий, заключается в том, что производство тепла стоит денег и требует ресурсов. Стоимость зависит от расхода тепла, который в свою очередь зависит от плотности потока тепловых потерь из здания в окружающую среду (зимой) или притока тепла из окружающей среды в здание (летом). Величина теплового потока пропорциональна разности температур между источником тепла и предметом или помещением, в которое тепло поступает. Таким образом, тепло будет покидать здание быстрее в холодный день, чем в умеренный. Это, конечно, предполагает, что в здании применяются некоторые средства для поддержания постоянной температуры, например: калорифер, отопитель или дровяная печь. Если плотность потока пропорциональна разности температур, то количество реально поступающего тепла зависит от величины сопротивления этому потоку. Поскольку разность температур между внутренним помещением и внешней средой в основном определяется климатическими условиями, за исключением случаев искусственного понижения температуры внутри помещения, то, очевидно, что основные усилия затрачиваются на увеличение сопротивления потоку тепловых потерь.
Способы переноса тепла
Механизмы теплового потока и методы создания сопротивления ему многочисленны. Поэтому, прежде чем перейти к рассмотрению теплового сопротивления, необходимо сделать обзор основных способов переноса тепла от теплого предмета к более холодному, а именно рассмотреть:
? конвекцию;
? радиацию;
? теплопроводность.
Конвекция
Конвекция -- явление, состоящее в теплопередаче путем движения теплоносителей, т.е. жидкостей или газов. Нагретый теплоноситель может перемещаться или быть перемещаем в более холодную зону, где он отдаст свое тепло для нагрева этой зоны. Нагретая вода со дна чайника, стоящего на плите, поднимается вверх и смешивается там с более холодной водой, распространяя тепло и, нагревая всю массу намного быстрее, чем это происходило бы только за счет теплопроводности.
Жилой дом, оборудованный калорифером, обогревается таким же способом. Воздух нагревается газовой горелкой и подается в жилые помещения. Поскольку предметы в доме холоднее, чем горячий воздух, поступающий от горелки, тепло от воздуха передается помещению.
Нагретые теплоносители могут перемещаться путем естественной конвекции. При нагреве теплоноситель расширяется, распространяется в окружающей его более холодной среде и поднимается вверх. Более холодный теплоноситель занимает его место и в свою очередь нагревается. В то же время нагретый теплоноситель перемещается затем в место, где тепло поглощается, охлаждая теплоноситель. Охлажденный таким образом теплоноситель, становясь тяжелее, стремится опуститься вниз, и цикл повторяется. Если мы хотим лучше использовать запасенное в теплоносителе тепло или если мы хотим повысить интенсивность переноса тепла по сравнению с естественной конвекцией (например, в помещении, удаленном от калорифера), то для перемещения нагретого теплоносителя можно воспользоваться насосом или вентилятором.
Следует отметить, что конвекция и теплопроводность как физические явления проявляются одновременно. Тепло от нагретой поверхности передается теплоносителю в результате теплопроводности до того, как это тепло будет унесено потоком; тепло от нагретого теплоносителя также передается холодной поверхности теплопроводностью. Чем больше разность температур между теплой и холодной поверхностями, тем больше тепловой поток между ними. Удельная теплоемкость теплоносителя, его коэффициент теплопроводности и сопротивление потоку теплоносителя являются другими факторами, влияющими на конвективный теплообмен.
Радиация
Радиация представляет собой перенос тепла через пространство при помощи электромагнитных волн; большинство предметов, стоящих на пути видимого света, также препятствуют распространению тепловой энергии в виде излучения. Как мы знаем, земля получает тепло от солнца путем радиации. Мы также участвует в радиационном теплообмене, когда стоим перед камином или горячей плитой. Радиация тепла осуществляется главным образом за счет невидимого длинноволнового излучения. Мы чувствует излучение тепла горячей плитой, даже тогда, когда она недостаточно горяча. Тепло постоянно переносится излучением от более теплых предметов к более холодным пропорционально разности их температур и расстоянию между ними. Тот же эффект, хотя и менее явный и труднее воспринимаемый, получается тогда, когда мы, сидя у окна зимней ночью, ощущаем холод: как источник тепла наше тело излучает его в холодную ночную атмосферу и в течение этого процесса охлаждается. Из трех основных способов теплообмена радиация труднее всего поддается количественному определению для зданий.
Теплопроводность
измерение теплота перенос конвекция
О теплопроводности мы узнаем в раннем возрасте интуитивным, но непосредственным образом. Когда сковорода в течение некоторого времени стоит на огне, ее ручка становится горячей. Это происходит потому, что тепло передается через металл от горелки к ручке. Тепло поступает к ручке, потому, что она намного холоднее горелки. Скорость потока тепла к ручке чугунной сковороды значительно ниже, чем для медной, так как чугун имеет меньший коэффициент теплопроводности (обладает большим сопротивлением тепловому потоку) и более высокую удельную теплоемкость, чем медь. Это значит, что потребуется меньшее количество теплоты и меньшее время для нагрева меди. Изложенные принципы являются основополагающими для расчета теплообмена за счет теплопроводности.
Термическое сопротивление
Из факторов, влияющих на степень передачи тепла за счет теплопроводности, наиболее важным при оценке сезонной потери тепла является термическое сопротивление строительных материалов. Все материалы обладают определенным конечным сопротивлением тепловому потоку; материалы, имеющие особо высокую величину, называются изоляционными.
Коэффициент теплопередачи
Противоположным по смыслу термическому сопротивлению является коэффициент теплопередачи, показывающий, какое количество тепла будет перенесено через здание во внешнюю среду зимой и получено от нее летом. Коэффициент теплопередачи K является мерой способности данного материала пропускать тепло; он выражается в количестве теплоты в Дж, которое пройдет в 1 час через материал площадью 1 м2 и толщиной 1 м, когда между двумя поверхностями материала поддерживается разность температур в 1 °C; K измеряется в Дж/(час*м2*°C) или Вт/(м2*°C). Коэффициент C является коэффициентом, аналогичным K, но он выражает мощность теплового потока в Дж/ч (или Вт) через материал на единицу толщины. Деление K на толщину материала в метрах дает величину C для данного материала; чем ниже K или C, тем выше изоляционные свойства.
Общий коэффициент теплопроводности
Общий коэффициент теплопроводности U является мерой способности какой-либо конструкции здания (например, стены) пропускать поток тепла. Это -- комбинированная тепловая величина, включающая свойства всех материалов строительной конструкции с учетом воздушных промежутков и воздушных пленок. Чем ниже величина U, тем выше изоляционные свойства конструкции. Величина U выражается в Вт/(м2*°C). Чтобы найти общие потери тепла, величина U умножается на количество часов, на общую площадь поверхности и на разность температур внутренней и наружной поверхностей. Например, для определения теплопотерь через стену площадью 5 м2 с величиной U, равной 0,67 за 8 час при внутренней температуре 18,5°С, а наружной -5°С, нужно перемножить 0,67*8*5*(18,5 - 5).
Величину U любой части здания (стены, крыши, окна и т.п.) можно вычислить, зная величины теплопроводности различных составных частей этой конструкции. В этот расчет входит и термическое сопротивление. Сопротивление каждого элемента строительной конструкции представляет собой величину, обратную его коэффициенту теплопередачи:
R = 1/C или R = (1/K) (толщина).
Чем больше величина R материала, тем выше его изоляционная способность. Величина Rt является суммой сопротивления отдельных элементов. Поэтому,
U = 1/(R1+R2+R3+...+Rx) или U = 1/Rt.
Таким образом, расчет предусматривает сложение всех величин R конструкции здания, считая в числе этих элементов и внутреннюю неподвижную пленку воздуха, любые воздушные промежутки в строительных материалах более 20 мм и пленку наружного воздуха.
Величины этих сопротивлений будут даны в приложении Изоляционные свойства материалов.
После определения величин U всех конструкций здания (окон, стен, крыши и перекрытий), можно начать расчет общих потерь тепла. Один из подходов к решению задачи заключается в определении общих потерь тепла зданием при наружных температурах, близких к минимальным; эти экстремальные температуры называются расчетными температурами.
Перечень рекомендуемых расчетных температур будет дан в приложении Расчетные температуры.
Размещено на Allbest.ru
Подобные документы
Изучение теплопроводности как физической величины, определяющей показатель переноса тепла структурными частицами вещества в процессе теплового движения. Способы переноса тепла: конвекция, излучение, радиация. Параметры теплопроводности жидкостей и газов.
курсовая работа [60,5 K], добавлен 01.12.2010Исследование свойств теплопроводности как физического процесса переноса тепловой энергии структурными частицами вещества в процесс их теплового движения. Общая характеристика основных видов переноса тепла. Расчет теплопроводности через плоскую стенку.
реферат [19,8 K], добавлен 24.01.2012Передача тепла через воздушную прослойку. Малый коэффициент теплопроводности воздуха в порах строительных материалов. Основные принципы проектирования замкнутых воздушных прослоек. Меры по повышению температуры внутренней поверхности ограждения.
реферат [196,7 K], добавлен 23.01.2012Определение коэффициента теплопроводности из уравнения Фурье. Механизмы теплопередачи: кондуктивный, конвективный перенос, радиационный теплообмен. Теплофизические явления в горных породах. Зависимости тепловых свойств минералов от температуры и давления.
презентация [440,5 K], добавлен 15.10.2013Элементарные виды теплообмена (теплопроводность, конвекция теплоты и тепловое излучение). Переход жидкости в пар (кипение). Пример распределения температуры в объеме кипящей воды. Процесс теплоотдачи при кипении. Уравнение и коэффициент теплоотдачи.
научная работа [531,6 K], добавлен 22.04.2015Понятие процесса переноса тепла и вещества, потенциалы переноса. Температурное поле, примеры одномерного и двухмерного полей. Стационарный и нестационарный процесс теплопередачи. Характеристика параметров материала: плотность, пористость, влажность.
контрольная работа [203,4 K], добавлен 21.01.2012Теплопередача как совокупность необратимых процессов переноса тепла, виды теплообмена: теплопроводность, конвекция, тепловое излучение. Основные термодинамические процессы и законы. Устройство энергетических установок тепловых и атомных электростанций.
реферат [224,0 K], добавлен 12.07.2015Основной закон теплопроводности. Теплоносители как тела, участвующие в теплообмене. Дифференциальное уравнение теплопроводности. Лучеиспускание как процесс переноса энергии в виде электромагнитных волн. Сущность теплопроводности цилиндрической стенки.
презентация [193,0 K], добавлен 29.09.2013Жидкостные тепловые аккумуляторы. Физические основы для его создания. Аккумуляторы тепла, основанные на фазовых переходах. Особенности тепловых аккумуляторов с твёрдым теплоаккумулирующим материалом. Конструкция теплового аккумулятора фазового перехода.
реферат [726,5 K], добавлен 18.01.2010Потери теплоты в теплотрассах. Конвективная теплоотдача при поперечном обтекании цилиндра при течении жидкости в трубе. Коэффициент теплопередачи многослойной цилиндрической стенки. Расчет коэффициента теплопередачи. Определение толщины теплоизоляции.
курсовая работа [133,6 K], добавлен 06.11.2014