Электроизмерительные приборы

Определение назначения и изучение общих характеристик электроизмерительных приборов как класса устройств, применяемых для измерения различных электрических величин. Изучение устройств магнитоэлектрических, электромагнитных и электродинамических приборов.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 26.09.2012
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

на тему: «Электроизмерительные приборы»

Содержание

1. Классификация электроизмерительных приборов

2. Магнитоэлектрические приборы

3. Электромагнитные приборы

4. Электродинамические и ферроденомические приборы

5. Индукционные приборы

1. Классификация электроизмерительных приборов

Электроизмерительные приборы -- класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений -- меры, преобразователи, комплексные установки.

Классификация электроизмерительных приборов:

Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:

Амперметры -- для измерения силы электрического тока;

Вольтметры -- для измерения электрического напряжения;

Омметры -- для измерения электрического сопротивления;

Мультиметры (иначе тестеры, авометры) -- комбинированные приборы

Частотомеры -- для измерения частоты колебаний электрического тока;

Магазины сопротивлений -- для воспроизведения заданных сопротивлений;

Ваттметры и варметры -- для измерения мощности электрического тока;

Электрические счётчики -- для измерения потреблённой электроэнергии и множество других видов

Кроме этого существуют классификации по другим признакам:

по назначению -- измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;

По способу представления результатов измерений -- показывающие и регистрирующие (в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);

по методу измерения -- приборы непосредственной оценки и приборы сравнения;

по способу применения и по конструкции -- щитовые (закрепляемые на щите или панели), переносные и стационарные;

по принципу действия:

электромеханические: магнитоэлектрические; электромагнитные, электродинамические; электростатические; ферродинамические; индукционные; магнитодинамические; электронные; термоэлектрические; электрохимические.

2. Магнитоэлектрические приборы

Рамка 1 с обмоткой помещается в зазоре 3 между магнитом 4, расположенным внутри рамки, и магнитным ярмом 5. Так как воздушный зазор вдоль окружности магнита постоянен, то магнитная индукция В в зазоре также постоянна. Если в обмотке с числом витков w существует ток I, то создается вращающий момент

Мвр = BwISp = wФ1,

где Sp -- площадь рамки в плоскости радиуса вращения; Ф = BSP -- магнитный поток.

Под действием вращающего момента рамка поворачивается на угол а и закручивает пружину 2. Противодействующий момент, создаваемый пружиной,

,

где т -- удельный противодействующий момент.

При некотором значении тока

I в обмотке рамки, учитывая, что Ф = const и w = const, вращающий момент Мвр = const. Следовательно, при некотором угле поворота рамки противодействующий момент пружины будет равен вращающему моменту: Мпр = Мвр, или т = wФI = kI, где wФ = k = const. Тогда

где с = k/m = const.

Угол поворота стрелки прибора -- это угол поворота рамки, поэтому из выражения видно, что шкала такого прибора равномерная.

Величина с = а/I получила название чувствительности прибора. Повышение чувствительности может быть получено за счет увеличения магнитной индукции В и произведения Spw и уменьшения т. Уменьшить удельный момент можно, переходя к использованию светового указателя и растяжек.

Магнитную индукцию в воздушном зазоре увеличивают за счет применения постоянных магнитов из сплавов, содержащих никель, алюминий и кобальт и обеспечивающих индукцию в зазоре 0,2...0,3 Тл. Увеличить произведение Spw можно в основном только за счет изменения w, так как увеличение площади рамки увеличивает размеры всех остальных элементов и ухудшает весовые характеристики подвижной части.

Магнитоэлектрические приборы пригодны только для измерения в цепях постоянного тока. При включении их в цепь переменного тока применяют преобразовательные устройства (выпрямители, термоэлектрические преобразователи и т. д.).

Широкое распространение получили узкопрофильные магнитоэлектрические приборы со световым указателем для установки их на щитах и пультах. Они занимают в 5... 10 раз меньшую площадь и имеют дополнительные информационные возможности за счет изменения при выходе измеряемой величины за устанавливаемые пределы цвета указателей или за счет появления сигнала от фотоконтактного устройства. Корпус прибора плоский, литой, высотой 80 мм.

Обмотку рамки измерительного механизма рассчитывают на токи до 100 мА, если прибор используют как амперметр, и до 10 мА, если как вольтметр. Большие токи вызвали бы увеличение сечения проводов обмотки рамки (обычно диаметр проводов не превышает 0,2 мм), а следовательно, массы и момента инерции подвижной части прибора. Пределы измерения по току в магнитоэлектрических приборах расширяют с помощью шунтов, а по напряжению -- с помощью добавочных резисторов.

При измерении тока I, который в п раз больше тока Iр в рамке прибора, сопротивление шунта RIII рассчитывают из условия равенства падений напряжения:

электроизмерительный магнитоэлектрический величина

где Rp -- сопротивление обмотки рамки; Iш = I - Iр -- ток в шунте.

Так как измеряемый ток I = nIр, то с учетом (9.4) получим

Откуда

Например, для измерения тока I = 5 А прибором Iр = 5 мА при сопротивлении Rр = 10 Ом требуется RIII 0,01 Ом.

Щунты встраивают в прибор (в один и тот же корпус с измерительным механизмом) или выполняют отдельными от прибора. Изготовляют шунты из манганина, обладающего малым температурным коэффициентом электрического сопротивления.

Наружные шунты имеют две пары зажимов: одна пара для присоединения электрической цепи, в которой требуется измерить ток, вторая -- для присоединения прибора. Присоединение производят калиброванными проводами, так как их сопротивление входит в сопротивление прибора Rp. При расчете сопротивления наружных шунтов под сопротивлением Rp в надо понимать сопротивление прибора, а под п -- число, показывающее, во сколько раз надо расширить предел измерения амперметра.

На показан миллиамперметр магнитоэлектрической системы со встроенными шунтами с диапазоном измерения 15, 30, 75, 150 мА.

При изготовлении вольтметра магнитоэлектрической системы последовательно с обмоткой рамки включают добавочный резистор с большим сопротивлением Rд, чтобы ток Iр в обмотке рамки при подключении вольтметра к участку цепи, на котором измеряют напряжение, не превышал 10 мА. При этом Iр = U/(Rp + Rд) = kU, а с учетом , если I = Iр,

= cIp = ckU = c'U.

Таким образом, стрелка прибора отклоняется на угол, пропорциональный напряжению, и шкалу прибора можно отградуировать в вольтах.

Когда необходимо расширить в п раз предел измерения вольтметра, применяют наружные добавочные резисторы. Значения сопротивления добавочного резистора вычисляют по формуле

Rд=(n-1)Rв,

где RB -- сопротивление внутренней измерительной цепи вольтметра.

Верхний предел измерения многодиапазонного вольтметра можно расширить, изменяя сопротивление Rд с помощью переключателя.

Для компенсации изменения сопротивления обмотки рамки под действием температуры во всех приборах используют специальные резисторы, выполненные из материалов с отрицательным температурным коэффициентом сопротивления.

Влияние внешних магнитных полей на магнитоэлектрические приборы весьма незначительно, так как измерительная рамка экранирована магнитной системой прибора. Такие приборы благодаря своим качествам -- равномерности шкалы, высокой чувствительности (до 10-11 А и 10-7 В), точности отсчета, простоте расширения диапазона измерений, малому собственному потреблению энергии -- нашли широкое применение для измерения не только постоянных токов и напряжений, но и переменных токов (со встроенными преобразователями).

3. Электромагнитные приборы

Электромагнитные приборы действуют по принципу перемещения подвижного сердечника из ферримагнитного материала под влиянием магнитного поля неподвижной катушки. Сердечник укреплен на одной оси со стрелкой указателя. Распространены две конструкции: приборы с плоской катушкой и приборы с круглой катушкой .

В первой конструкции лепесток 2 из ферримагнитного материала (мягкой стали или специального сплава), эксцентрично насаженный на ось со стрелкой, втягивается магнитным полем неподвижной катушки 1, которое образуется током в катушке.

Во второй конструкции имеется два ферримагнитный элемента 3, 4, размещенных внутри неподвижной круглой катушки 5. Элемент 3 прикреплен к внутренней поверхности катушки и является неподвижным, а элемент 4жестко связан с осью 2 прибора. При наличии тока в катушке оба элемента одноименно намагничиваются и стремятся оттолкнуться, как два магнита одинаковой полярности. В результате такого взаимодействия подвижный элемент поворачивается вместе с осью, В приборах обеих конструкций противодействующий момент создается спиральной пружиной, Успокоители (6, 10) в таких магнитных системах бывают воздушные и магнитоиндукционные.

Вращающий момент в электромагнитных приборах может быть определен исходя из изменения энергии магнитного поля катушки прибора при изменении в ней тока I и ее индуктивности L при перемещении сердечника. Как известно, энергия магнитного поля

В режиме установившегося отклонения при создании противодействующего момента пружинами Мпр, = Мвр,т. е. с учетом (9.2),

Откуда

Из выражения видно, что знак угла отклонения стрелки прибора не зависит от направления тока в катушке. Следовательно, приборы пригодны для измерения в цепях постоянного и переменного токов. В цепи переменного тока они измеряют действующее значение тока или напряжения.

Шкала прибора, как это видно из, неравномерная. Меняя форму сердечника и его расположение в катушке, можно получить почти равномерную шкалу начиная с 20% верхнего предела диапазона измерений. При меньших значениях измеряемой величины электромагнитные приборы недостаточно чувствительны и эта часть шкалы считается нерабочей.

Конструктивная особенность электромагнитного прибора позволяет изготовить амперметры этой системы на токи 200...300 А для прямого включения в цепь. Действительно, неподвижная катушка может быть выполнена из провода любого сечения. Амперметр на 150...300 А выполняют с катушкой в виде одного витка из медной шины. Вольтметры электромагнитной системы изготовляют на напряжение до 660 В, катушку выполняют из большого числа витков медной проволоки небольшого сечения, а для компенсации температурной погрешности включают добавочные резисторы из манганина.

Ввиду относительно слабого собственного магнитного поля на показания электромагнитных приборов весьма значительное влияние оказывают внешние магнитные поля. Для снижения их влияния измерительный механизм защищают стальным экраном. В приборе имеется корректор (8, 9).

Встречаются конструкции, в которых устанавливают две неподвижные катушки с самостоятельными сердечниками, насаженными на одну ось, так называемые астатические приборы (рис. 9ДО). Здесь обе обмотки включены последовательно, но так, что их потоки Фх и Ф2 направлены встречно, а моменты, создаваемые этими потоками и действующие на подвижную часть прибора, согласны.

При такой конструкции внешний магнитный поток Фвш в одной катушке усиливает, а в другой уменьшает вращающий момент прибора на равные значения.

Этим исключается влияние внешнего магнитного поля.

Астатические приборы изготовляют для классов точности 0,5 и 1,0 и только переносного исполнения (лабораторные, испытательные комплекты). Простота конструкции, невысокая стоимость, пригодность для постоянного и переменного токов, большая перегрузочная способность, возможность непосредственного включения амперметров на большие токи привели к широкому распространению этих приборов в промышленных установках.

Недостатками электромагнитных приборов можно считать неравномерность шкалы, низкую чувствительность, сравнительно большое собственное потребление (амперметры -- до 5 ВА, вольтметры -- до 10 В-А), чувствительность к влиянию внешних магнитных полей.

4. Электродинамические и ферроденомические приборы

Электродинамические приборы имеют две катушки. Неподвижную катушку I выполняют из двух частей, между которыми проходит ось. На оси укреплена подвижная катушка 2. Противодействующий момент создается двумя пружинами (на рисунке не показаны).

Через них осуществляют и присоединение подвижной катушки к цепи.

Приборы электродинамической системы применяют для измерения в цепях переменного и постоянного токов, так как направление вращающего момента не изменяется при изменении направления обоих токов.

В зависимости от способа взаимного включения катушек электродинамический прибор может быть использован как амперметр, вольтметр, ваттметр или фазометр.

При использовании электродинамического прибора в качестве амперметра на токи выше 0,5 А катушки нельзя включать последовательно из-за трудности подвода больших токов к подвижной катушке, так как подсоединение подвижной катушки к цепи осуществляют через спиральные пружины, создающие противодействующий момент.

В этом случае обе обмотки катушек соединяют параллельно. Условно обмотка неподвижной катушки показана толстой линией, обмотка подвижной катушки -- тонкой линией.

Благодаря различным конструктивным приемам (форме катушек, их расположению) оказывается возможным получить линейную шкалу для электродинамического амперметра начиная с 20% от верхнего предела измерения.

Совпадения по фазе переменных токов в обмотках подвижной и неподвижной катушек (= 0) достигают включением последовательно с катушками элементов с активным и индуктивным сопротивлениями.

При использовании электродинамического прибора в качестве вольтметра обе обмотки прибора включают последовательно друг с другом и с добавочным резистором Rд.

При использовании электродинамического прибора в качестве ваттметра обмотку неподвижной катушки включают в цепь последовательно (тогда I1 = I), а обмотку подвижной катушки, соединенную последовательно с добавочным резистором Rд, -- параллельно зажимам приемника.

Реактивное сопротивление этой цепи очень мало и поэтому R2 + RД Z2. Можно считать, что практически ток I2 совпадает по фазе с напряжением U на зажимах приемника.

Направление отклонения подвижной системы прибора зависит от взаимного направления токов в обеих обмотках. Поэтому для правильного включения обмоток их зажимы маркируют. У так называемых «генераторных» зажимов обмоток (зажимов, к которым следует присоединять провода со стороны источника питания) ставят знак * (звездочка). На электрических схемах эти зажимы обмоток обозначают точками.

При угле сдвига фаз > 90° (что возможно в некоторых случаях измерений) cos отрицателен и, следовательно, отклонение стрелки прибора также должно быть отрицательным.

Чтобы иметь возможность измерить такие отрицательные мощности, в ваттметрах устанавливают переключатель для изменения направления тока в обмотке подвижной катушки.

Положение переключателя отмечено знаками плюс и минус. Измеренное значение нужно записывать с со ответствующим знаком по положению переключателя» Электродинамические приборы имеют специальный экран, защищающий их от воздействия внешних магнитных полей.

Основные недостатки - малая чувствительность, неустойчивость к перегрузкам, сильное влияние внешних магнитных полей, неравномерная шкала, сложность конструкции.

5. Индукционные приборы

Принцип действия индукционных приборов основан на взаимодействии бегущего магнитного поля с вихревыми токами, индуцируемыми этим же полем в проводящем подвижном диске.

Бегущее поле создается двумя магнитными потоками, сдвинутыми на некоторый угол по фазе и в пространстве. Можно создать индукционные приборы любого назначения -- амперметры, вольтметры, ваттметры и др. На практике наибольшее распространение получили индукционные счетчики электрической энергии,

Приведенная конструкция (трехпоточная) счетчика состоит из двух электромагнитов 1 и 2 и подвижного алюминиевого диска 5. Диск укреплен на оси, которая связана с помощью червячной передачи со счетным механизмом. Диск вращается в зазоре электромагнитов. Магнитный поток Ф1 электромагнита 1 U-образной формы создается током I приемника электрической энергии, так как его обмотка включена последовательно в цепь нагрузки. Поток Ф1 дважды пересекает диск и незначительно отстает по фазе от образующего его тока I. Поэтому можно считать, что значение потока Ф1 в первом приближении пропорционально току I: Ф1 = kI. Электромагнит 2 имеет Т-образный вид. На его среднем стержне расположена гистерезис и вихревые токи. Подвижная катушка вращается около неподвижного стального сердечника 4, помещенного в сносную расточку магнитопровода. Стороны обмотки (рамки) 3 подвижной части находятся в зазоре между магнитопроводом и неподвижным стальным сердечником, где магнитное поле достигает значительно больших значений, чем магнитное поле, создаваемое в воздухе неподвижной катушкой электродинамического прибора.

Так как реактивное сопротивление этой обмотки большое, можно считать, что ее полное сопротивление ZU ХU, и ток IU в обмотке сдвинут по фазе относительно напряжения U почти на /2. Поток ФU, как видно из рисунка, делится на две части: рабочий поток Фр и потоки ФL, которые замыкаются помимо диска по боковым ветвям магнитопровода 2. Таким образом, ФU = ФP + 2ФL.

Рабочий поток Фр проходит по среднему стержню магнитопровода и пересекает диск, замыкаясь через про-тивополюсную скобу 4, средняя часть которой находится под центральным стержнем магнитопровода 2. При такой конструкции под диском находятся три полюса (два от U-образного магнита и один от Т-образного магнита). Потоки ФL определяют сдвиг по фазе между потоками ФP и Фr Вихревые токи, индуцируемые в диске магнитными потоками, пропорциональны магнитным потокам и частоте. Магнитный поток ФP индуцирует в диске вихревой ток.

Взаимодействие между индуцируемым током в диске и созданным им потоком, например, между IвI и Фr, не создает электромагнитной силы, так как = /2 и cos = 0. Электромагнитные силы создаются только в результате взаимодействия магнитного потока ФP с током IвI и потока ФI с током Iв.р.

Противодействующий момент Мпр создается постоянным магнитом 3, в поле которого вращается диск, и является тормозным моментом, пропорциональным частоте вращения диска. Постоянный магнитный поток Ф индуцирует во вращающемся диске ЭДС Ев = -Фda/dt, под действием которой в нем возникает вихревой ток Iв = Ев/Rд, где Rд -- сопротивление диска. Когда моменты равны, т. е. Мт = Мвр, частота вращения диска постоянна (установившийся режим).

Число оборотов диска за промежуток времени.

Таким образом, число оборотов диска пропорционально расходу электроэнергии. Величину стр2 называют постоянной счетчика. Она показывает, какому количеству киловатт-часов электроэнергии соответствует один оборот диска. Червячная передача счетного механизма учитывает постоянную счетчика, и счетный механизм непосредственно отсчитывает энергию в киловатт-часах.

Поскольку индуцируемые токи во вращающемся элементе зависят от частоты сети , ее изменение сказывается на правильности показаний счетчика.

Для трехфазных систем выпускают счетчики, состоящие из трех и двух однофазных систем (для четырех - и трехпроводной сети). В этом случае вращающий элемент является общим, и счетный механизм показывает потребление электроэнергии трехфазным электроприемником.

Индукционные счетчики весьма надежны в эксплуатации.

Размещено на Allbest.ru


Подобные документы

  • Исследование истории развития электрических измерительных приборов. Анализ принципа действия магнитоэлектрических, индукционных, стрелочных и электродинамических измерительных приборов. Характеристика устройства для создания противодействующего момента.

    курсовая работа [1,1 M], добавлен 24.06.2012

  • Рассмотрение исторического процесса развития электроизмерительной техники. Описание принципа действия электромагнитных, магнитоэлектрических, электродинамических (ваттметр), ферродинамических (логометры), термоэлектрических и детекторных приборов.

    курсовая работа [2,1 M], добавлен 10.07.2010

  • Характеристика устройства и принципа действия электроизмерительных приборов электромеханического класса. Строение комбинированных приборов магнитоэлектрической системы. Шунты измерительные. Приборы для измерения сопротивлений. Магнитный поток и индукция.

    реферат [1,3 M], добавлен 28.10.2010

  • Основные характеристики электроизмерительных приборов. Надежное и бесперебойное электроснабжение сельскохозяйственных потребителей в производстве. Графики электрических нагрузок. Предохранители, тепловое реле, их устройство, принцип действия, применение.

    контрольная работа [693,2 K], добавлен 19.07.2011

  • Изучение истории развития электроприборостроения и российской метрологии. Общие детали устройства измерения электрических величин. Условные обозначения принципа действия прибора, требования и погрешности. Персональный компьютер в измерительной технике.

    отчет по практике [6,2 M], добавлен 13.07.2014

  • Ознакомление с процессом выбора количества, типа и мощности силовых трансформаторов. Расчет токов короткого замыкания. Определение структурной схемы и основных характеристик подстанции. Изучение электрических аппаратов и электроизмерительных приборов.

    курсовая работа [3,9 M], добавлен 30.01.2022

  • Измерение электрических величин: мощности, тока, напряжения. Область применения электроизмерительных приборов. Отличие прямых и косвенных измерений. Требования к измерительному прибору. Схема включения амперметра, вольтметра. Расчет сопротивления цепи.

    лабораторная работа [48,0 K], добавлен 24.11.2013

  • Назначение электроизмерительных приборов: вольтамперметра, миллиамперметра, амперметров магнитоэлектрической системы, вольтметра. Понятие и регламентация классов точности. Расчет шунта, построение электрических цепей для измерения силы тока и напряжения.

    лабораторная работа [214,3 K], добавлен 13.01.2013

  • Рассмотрение основных методов измерения электрической мощности и энергии в цепи однофазного синусоидального тока, в цепях повышенной и высокой частот. Описание конструкции ваттметров, однофазных счетчиков. Изучение особенностей современных приборов.

    реферат [1,5 M], добавлен 08.01.2015

  • Составление и обоснование электрической схемы измерения вольт-амперных характеристик полупроводниковых приборов. Определение перечня необходимых измерительных приборов и оборудования, сборка экспериментальной установки. Построение графиков зависимостей.

    курсовая работа [1,3 M], добавлен 19.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.