Метрология, стандартизация и сертификация

Понятие, сущность и основные проблемы метрологии как науки об измерениях. Классификация измерений и системы физических величин. Построение систем единиц физических величин. Понятие, метрологические характеристики и классификация средств измерений.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 31.08.2012
Размер файла 238,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Выше приведено аналитическое выражение нормального распределения для случайной измеряемой величины х. Переход к нормальному распределению случайных погрешностей осуществляется переносом центра распределений в и откладывания по оси абсцисс погрешности .

Нормальное распределение характеризуется двумя парамет-рами: математическим ожиданием m1 и средним квадратическим отклонением у.

При многократных измерениях несмещенной, состоятельной и эффективной оценкой m1 для группы из n наблюдений является среднее арифметическое :

.

Нужно сказать, что среднее арифметическое дает оценку математического ожидания результата наблюдений и может быть оценкой истинного (действительного) значения измеряемой величины только после исключения систематических погрешностей.

Оценка S среднего квадратического отклонения (СКО) дается формулой:

Эта оценка характеризует рассеяние единичных результатов измерений в ряду равноточных измерений одной и той же величины около их среднего значения.

Другими оценками рассеяния результатов в ряду измерений являются размах (разница между наибольшим и наименьшим значением), модуль средней арифметической погрешности (арифметическая сумма погрешностей, деленная на число измерений) и доверительная граница погрешности (подробно рассматривается ниже).

СКО является наиболее удобной характеристикой погрешности в случае ее дальнейшего преобразования. Например, для нескольких некоррелированных слагаемых СКО суммы определяется по формуле:

.

Оценка S характеризует рассеяние единичных результатов наблюдений относительно среднего значения, то есть в случае, если мы за результат измерений примем отдельный исправленный результат наблюдений. Если же в качестве результата измерений принимается среднее арифметическое, то СКО этого среднего определяется по формуле:

Нормальное распределение погрешностей имеет следующие свойства:

1. симметричность, т.е. погрешности, одинаковые по величине, но противоположные по знаку, встречаются одинаково часто;

2. математическое ожидание случайной погрешности равно нулю;

3. малые погрешности более вероятны, чем большие;

4. чем меньше , тем меньше рассеяние результатов наблюдений и больше вероятность малых погрешностей.

Другим распространенным в метрологии распределением случайной величины является равномерное распределение распределение, при котором случайная величина принимает значения в пределах конечного интервала от х1 до х2 с постоянной плотностью вероятностей.

Дифференциальная функция равномерного распределения имеет вид:

f(x) = с при х1 x х2

f(x) = 0 при х2 x х1

При нормировке площади кривой распределения на единицу, получаем, что с(х2 - х1) = 1 и с = 1/ (х2 - х1).

Равномерное распределение характеризуется математичес-ким ожиданием , дисперсией или СКО .

Кроме рассмотренных примеров распределений случайных величин существуют и другие важные для практического использования распределения дискретных случайных величин, например, биномиальное распределение и распределение Пуассона. В настоящем курсе они не рассматриваются.

4.5.5 Доверительные интервалы

Приведенные выше оценки параметров распределения случайных величин в виде среднего арифметического для оценки математического ожидания и СКО для оценки дисперсии называются точечными оценками, так как они выражаются одним числом. Однако в некоторых случаях знание точечной оценки является недостаточным. Наиболее корректной и наглядной оценкой случайной погрешности измерений является оценка с помощью доверительных интервалов.

Симметричный интервал в границами ± Дх(Р) называется доверительным интервалом случайной погрешности с довери-тельной вероятностью Р, если площадь кривой распределения между абсциссами -Дх и +Дх составляет Р-ю часть всей площади под кривой плотности распределения вероятностей. При нормировке всей площади на единицу Р представляет часть этой площади в долях единицы (или в процентах). Другими словами, в интервале от -х(Р) до +х(Р) с заданной вероятностью Р встречаются Р100% всех возможных значений случайной погрешности.

Доверительный интервал для нормального распределения находится по формуле:

где коэффициент t зависит от доверительной вероятности Р.

Для нормального распределения существуют следующие соотношения между доверительными интервалами и доверительной вероятностью: 1 (Р=0,68), 2 (Р= 0,95), 3 (Р= 0,997), 4 (Р=0,999).

Доверительные вероятности для выражения результатов измерений и погрешностей в различных областях науки и техники принимаются равными. Так, в технических измерениях принята доверительная вероятность 0,95. Лишь для особо точных и ответственных измерений принимают более высокие доверительные вероятности. В метрологии используют, как правило, доверитель-ные вероятности 0,97, в исключительных случаях 0,99. Необходимо отметить, что точность измерений должна соответствовать поставленной измерительной задаче. Излишняя точность ведет к неоправданному расходу средств. Недостаточная точность измерений может привести к принятию по его результатам ошибочных решений с самыми непредсказуемыми последствиями, вплоть до серьезных материальных потерь или катастроф.

При проведении многократных измерений величины х, подчиняющейся нормальному распределению, доверительный интервал может быть построен для любой доверительной вероятности по формуле:

где tq - коэффициент Стьюдента, зависящий от числа наблюдений n и выбранной доверительной вероятности Р. Он определяется с помощью таблицы q-процентных точек распределения Стьюдента, которая имеет два параметра: k = n - 1 и q = 1 - P; - оценка среднего квадратического отклонения среднего арифметического.

Доверительный интервал для погрешности х(Р) позволяет построить доверительный интервал для истинного (действи-тельного) значения измеряемой величины , оценкой которой является среднее арифметическое . Истинное значение измеряе-мой величины находится с доверительной вероятностью Р внутри интервала: . Доверительный интервал позволяет выяснить, насколько может измениться полученная в результате данной серии измерений оценка измеряемой величины при проведении повторной серии измерений в тех же условиях. Необходимо отметить, что доверительные интервалы строят для неслучайных величин, значения которых неизвестны. Такими являются истинное значение измеряемой величины и средние квадратические отклонения. В то же время оценки этих величин, получаемые в результате обработки данных наблюдений, являются случайными величинами.

Недостатком доверительных интервалов при оценке случай-ных погрешностей является то, что при произвольно выбираемых доверительных вероятностях нельзя суммировать несколько погреш-ностей, т.к. доверительный интервал суммы не равен сумме довери-тельных интервалов. Суммируются дисперсии независимых случай-ных величин: D = Di. То есть, для возможности суммирования составляющие случайной погрешности должны быть представлены своими СКО, а не предельными или доверительными погрешностя-ми.

4.6 Систематические погрешности

Обнаружение и исключение систематических погрешностей представляет собой сложную задачу, требующую глубокого анализа всей совокупности результатов наблюдений, используемых средств, методов и условий измерений. При этом необходимо отметить, что устранение систематических погрешностей осуществляется не путем математической обработки результатов наблюдений, а применением соответствующих методов измерений. В частности, проведением измерений различными независимыми методами или выполнением измерений с параллельным применением более точных средств измерений.

Существуют некоторые специальные приемы проведения измерений, которые позволяют исключить части систематических погрешностей:

Исключение самого источника погрешностей.

Замещение измеряемой величины равновеликой ей известной величиной так, чтобы при этом в состоянии и действии всех используемых средств измерений не происходило никаких изменений. Таким путем может быть исключена погрешность компаратора.

Компенсация погрешности по знаку путем проведения измерений в прямом и обратных направлениях одним и тем же прибором. Например, определяя значение измеряемой величины при подходе к определенной точке шкалы слева и справа от нее и вычисляя среднее значение.

Наблюдения через период изменения влияющей величины. Это позволяет исключить погрешности, изменяющиеся по периодическому закону.

Измерения одной величины несколькими независимыми методами с последующим вычислением среднего взвешенного значения измеряемой величины.

Измерения одной величины несколькими приборами с последующим вычислением среднего арифметического из показаний всех приборов.

Систематические погрешности устраняются путем введения поправок, которые находятся разными путями и представляют собой значения абсолютных погрешностей, которые вычитаются из результата измерений. Так, инструментальные составляющие систематической погрешности находят по результатам поверки средств измерений.

Поправки для учета влияющих величин вычисляют с использованием известных функций или коэффициентов влияния по результатам вспомогательных измерений этих величин. Но введение поправок не исключает полностью систематические погрешности, так как остаются, например, погрешности определения поправок. Эти неисключенные части представляют собой неисключенные остатки систематических погрешностей (НСП).

Так как полностью исключить систематические погрешности невозможно, то возникает задача оценивания границ или других параметров этих погрешностей. Как правило, систематическая погрешность результата измерения оценивается по ее состав-ляющим. Эти составляющие бывают либо известны заранее, либо могут быть определены с помощью вспомогательных данных, например, вычислены для каждой из влияющих величин. В качестве их могут выступать и погрешности определения поправок. Неисключенная систематическая погрешность характеризуется границей каждой ее составляющей.

В связи с этим возникает задача суммирования составляю-щих систематической погрешности. При этом составляющие должны рассматриваться как случайные величины и суммироваться методами теории вероятностей, что предполагает знание функции распределения этих составляющих. Однако, закон распределения элементарных составляющих погрешности, как правило, неизвестен. Поэтому при суммировании руководствуются следующим практи-ческим правилом, основанном на здравом смысле и интуиции:

1. если известна оценка границ погрешности, то ее распределение следует считать равномерным;

2. если же известна оценка СКО погрешности, распределение следует считать нормальным.

Применение этого правила позволяет статистически суммировать составляющие систематической погрешности. В соответствии с ним при отсутствии дополнительной информации неисключенные остатки систематической погрешности рассматриваются как случайные величины, имеющие равномерное распределение.

Границы неисключенной систематической погрешности при числе слагаемых большим или равным 4 вычисляются по формуле:

где - граница i-ой составляющей погрешности; k - коэффициент, определяемый доверительной вероятностью. При Р = 0,95 k = 1.1, при Р = 0,99 k = 1,4.

При числе слагаемых меньших или равных 3 значения суммируются арифметически по модулю. Если же суммировать НСП арифметически при любом числе слагаемых, то полученная оценка будет хотя и надежной, но завышенной.

Доверительную вероятность для вычисления границ неисключенной систематической погрешности принимают той же, что при вычислении доверительных границ случайной погрешности.

4.7 Методы обработки результатов прямых измерений

Основные положения методов обработки результатов прямых измерений с многократными наблюдениями определены в ГОСТ 8.207-76.

За результат измерения принимают среднее арифмети-ческое данных n наблюдений, из которых исключены систематичес-кие погрешности. При этом предполагается, что результаты наблю-дений после исключения из них систематических погрешностей принадлежат нормальному распределению. Для вычисления резуль-тата измерения следует из каждого наблюдения исключить система-тическую погрешность и получить в итоге исправленный результат i-го наблюдения. Затем вычисляется среднее арифметическое этих исправленных результатов, которое принимается за результат измерения. Среднее арифметическое является состоятельной, несмещенной и эффективной оценкой измеряемой величины при нормальном распределении данных наблюдений.

Следует отметить, что иногда в литературе вместо термина результат наблюдения иногда применяют термин результат отдельного измерения, из которого исключены систематические погрешности. При этом за результат измерения в данной серии из нескольких измерений понимают среднее арифметическое значение. Это не меняет сути излагаемых ниже процедур обработки результатов.

При статистической обработке групп результатов наблюдений следует выполнять следующие операции:

1. Исключить из каждого наблюдения известную систематическую погрешность и получить исправленный результат отдельного наблюдения x.

2. Вычислить среднее арифметическое исправленных результатов наблюдений, принимаемое за результат измерения:

Т

3. Вычислить оценку среднего квадратического отклонения

группы наблюдений:

Проверить наличие грубых погрешностей - нет ли значений , которые выходят за пределы 3S. При нормальном законе распределений с вероятностью, практически равной 1 (0,997), ни одно из значений этой разности не должно выйти за указанные пределы. Если они имеются, то следует исключить из рассмотрения соответствующие значения и заново повторить вычисления и оценку S.

4. Вычислить оценку СКО результата измерения (среднего арифметического)

5. Проверить гипотезу о нормальности распределения результатов наблюдений.

Существуют различные приближенные методы проверки нормальности распределения результатов наблюдений. Некоторые из них приведены в ГОСТ 8.207-76. При числе наблюдений меньше 15 в соответствии с этим ГОСТ принадлежность их к нормальному распределению не проверяют. Доверительные границы случайной погрешности определяют лишь в том случае, если заранее известно, что результаты наблюдений принадлежат этому распределению. Приближенно о характере распределения можно судить, построив гистограмму результатов наблюдений. Математические методы проверки нормальности распределения рассматриваются в специальной литературе.

6. Вычислить доверительные границы случайной погрешности (случайной составляющей погрешности) результата измерения

где tq - коэффициент Стьюдента, зависящий от числа наблюдений и доверительной вероятности. Например, при n = 14, P = 0,95 tq = 2,16. Значения этого коэффициента приведены в приложении к указанному стандарту.

7. Вычислить границы суммарной неисключенной систематической погрешности (НСП) результата измерений (по формулам раздела 4.6).

8. Проанализировать соотношение и :

Если , то НСП по сравнению со случайными погрешностя-ми пренебрегают, и граница погрешности результата = .. Если 8, то случайной погрешностью можно пренебречь и граница погрешности результата = И. Если оба неравенства не выполняются, то границу погрешности результата находят путем построения композиции распределений случайных погрешностей и НСП по формуле: , где К - коэффициент, зависящий от соотношения случайной погрешности и НСП; S - оценка суммарного СКО результата измерения. Оценку суммарного СКО вычисляют по формуле:

.

Коэффициент К вычисляют по эмпирической формуле:

.

Доверительная вероятность для вычисления и должна быть одной и той же.

Погрешность от применения последней формулы для композиции равномерного (для НСП) и нормального (для случайной погрешности) распределений достигает 12 % при доверительной вероятности 0,99.

9. Записать результат измерений. Написание результата измерений предусмотрено в двух вариантах, так как следует различать измерения, когда получение значения измеряемой величины является конечной целью, и измерения, результаты которых будут использоваться для дальнейших вычислений или анализа.

В первом случае достаточно знать общую погрешность результата измерения и при симметричной доверительной погреш-ности результаты измерений представляют в форме:

где - результат измерения.

Во втором случае должны быть известны характеристики составляющих погрешности измерения - оценка среднего квадратического отклонения результата измерения , границы НСП , число выполненных наблюдений . При отсутствии данных о виде функций распределения составляющих погрешности результата и необходимости дальнейшей обработки результатов или анализа погрешностей, результаты измерений представляют в форме:

Если границы НСП вычислены в соответствии с п.4.6, то дополнительно указывают доверительную вероятность Р.

Оценки , и производные от их величины могут быть выражены как в абсолютной форме, то есть в единицах измеряемой величины, так и относительной, то есть как отношение абсолютного значения данной величины к результату измерения. При этом вычисления по формулам настоящего раздела следует проводить с использованием величин, выраженных только в абсолютной или в относительной форме.

4.8 Однократные измерения

В технике большинство измерений являются однократ-ными, т.е. для получения результата измерения используется одно показание прибора. К такому виду относятся, например, измерения при проведении индивидуального дозиметрического контроля, при которых часто используется один детектор. Результат однократного измерения включает в себя все присущие ему погрешности (инструментальную, методическую, субъективную), в каждой из которых могут быть как систематические, так и случайные составляющие. Если при этом необходимо точно оценить погрешность результата измерений, то следует выявить и оценить все составляющие погрешностей и просуммировать их.

Случайная составляющая погрешности не может быть рассчитана по результатам измерения, хотя она неявно присутствует в нем. В качестве оценки случайной составляющей погрешности может быть использован, например, коэффициент вариации, определяемый предварительно в процессе многократных измерений при изучении воспроизводимости показаний данного прибора. Коэффициент вариации находится как отношение оценки среднего квадратического отклонения к среднему арифметическому показа-ний прибора при многократных измерениях. В некоторых случаях случайная погрешность может определяться доверительными границами.

Оценку систематических погрешностей можно получить по характеристикам используемого прибора (по паспортным данным или из свидетельства о поверке) и метода измерения (путем его анализа). Из документации на прибор можно оценить и учесть дополнительные систематические погрешности.

Основные этапы оценки погрешности при однократных измерениях с точным оцениванием погрешности следующие:

1. Учитывается систематическая погрешность прибора.

2. Оценивается систематическая погрешность метода измерений.

3. Оцениваются по документации на прибор дополнительные систематические погрешности, обусловленные влияющими величинами.

4. Из отсчета прибора исключаются все известные система-тические погрешности (в соответствии с пп. 1, 2, 3) и опреде-ляется исправленный результат измерения, который содержит НСП и случайные составляющие погрешности.

5. Оцениваются границы i составляющих НСП, распределение которых принимается равномерным. Ими могут быть, например, погрешности эталонов при поверке СИ, погрешности поправок и т.п. После этого определяются границы суммарной НСП по приведенным выше формулам.

6. Предварительно перед использованием прибора определяется коэффициент вариации оценка случайной погрешности, которая используется при последующих однократных измерениях с прибором.

7. Сопоставляются оценки НСП и случайной погрешности по критериям предыдущего раздела и при возможности пренебрежения какой-либо из них определяются границы погрешности результата .

Если необходимо учитывать обе составляющие, то в качестве границы погрешности результата измерения принимается суммарная средняя квадратическая погрешность S, , вычисляемая по формуле раздела 4.7 с определением СКО результата измерений и полуэмпирического коэффициента К. Для исключения грубых погрешностей однократное измерение следует повторять 2-3 раза и за результат принимать среднее арифметическое.

На практике часто встречаются измерения, для которых нет необходимости точно оценивать погрешность. В таких измерениях в качестве результата принимают значение отсчета х, а для оценивания погрешности измерения используются предел допускаемой основной погрешности прибора пр и дополнительные погрешности прибора i от влияющих величин. Субъективные погрешности при этом считаются малыми и ими пренебрегают.

Оценка погрешности результата измерения определяется как сумма абсолютных величин основной погрешности и суммарной систематической по формуле:

= пр + i.

Более точная оценка погрешности может быть получена статистическим сложением составляющих по формуле раздела 4.7 в предположении их равномерного распределения.

4.9 Определение результатов косвенных измерений и оценивание их погрешностей

Методы обработки результатов косвенных измерений изложены в Методических указаниях РД 50-555-85 «Измерения косвенные. Определение результатов измерений и оценивание их погрешностей».

Основные этапы обработки результатов косвенных измерений следующие.

1. Искомое значение величины Y находят на основании результатов измерений аргументов x1, …, xi, …, xm, связанных с искомой величиной нелинейной зависимостью . . Вид функ-ции f должен быть известен из теоретических предпосылок или установлен экспериментально. Погрешность неизвестной величины Y зависит от погрешностей измерения аргументов. Ниже рассматри-вается случай, когда аргументы независимы друг от друга.

2. Оценка СКО случайной погрешности S(Y) вычисляют по формуле:

где xi - результат измерения аi-го аргумента; S(xi) - оценка СКО результата измерения xi-го аргумента (определяется по формулам раздела 4.6.7).

3. Доверительные границы случайной погрешности , при условии, что распределение погрешностей результатов измерений аргументов не противоречит нормальному распределению, определяют по формуле:

4. Границу неисключенной систематической погрешности резуль-тата измерения вычисляют по формуле

где k - поправочный коэффициент для принятой доверительной вероятности и числа m составляющих НСП, для Р=0,95 коэффициент k = 1,1.

5. Погрешность результата измерения вычисляют в зависимости от соотношения границ НСП и случайной погрешности. При доверительную границу результата косвенного изме-рения вычисляют по формуле , где К - коэффициент, зависящий от отношения и доверительной вероятности (значения К приведены в указанных РД).

6. Результат измерений вычисляется по приведенной выше формуле. Если предполагается исследование и сопоставление результатов измерений или анализ погрешностей, то результат измерения и его погрешность представляют в виде

.

Если границы погрешности результата измерения симмет-ричны, то результат измерения и его погрешность представляют в виде .

7. При неизвестных распределениях погрешностей измерений аргументов и при наличии корреляции между ними результат косвенного измерения и его погрешность определяются методом приведения, основанном на приведении ряда отдельных значений косвенно измеряемой величины к ряду прямых измерений. Подробно этот метод описан в упомянутых выше РД.

4.10 Записи погрешностей и правила округления

Для единообразия выражения результатов измерений и погрешностей формы их представления стандартизируются. Основные правила при этом следующие.

Так как погрешности определяют лишь зону недостоверности результата измерений, знать их очень точно не требуется. Поэтому в окончательной записи погрешность выражается одной или двумя значащими цифрами. Значащими цифрами числа являются цифры, остающиеся после отбрасывания стоящих впереди нулей. Так, в числах 0,12 и 0,012 находится по две значащие цифры. Принято, что наименьшие разряды числовых значений результата измерений и погрешности должны быть одинаковы: 20,560,25 или 2,10,1. Одной из самых распространенных ошибок при оценивании результатов и погрешностей измерений является вычисление их с чрезмерно большим числом значащих цифр. Как правило, в этом нет необходимости и только при промежуточных вычислениях можно удерживать по 3-4 значащие цифры.

Лишь при наиболее точных вычислениях оставляют две цифры. Результат измерения должен быть записан так, чтобы он оканчивался десятичным знаком того же разряда, что и значение погрешности. Большее число разрядов не нужно, так как это не уменьшит неопределенности результата, характеризуемого этой погрешностью. Уменьшение же числа разрядов путем округления увеличивает неопределенность результата измерений и уменьшает его точность. Например, погрешность округления погрешности до двух значащих цифр составляет 5 %, а до одной значащей цифры - не более 50 %.

Установлены следующие правила округления результатов и погрешностей измерений:

1. Результат измерения округляется так, чтобы он оканчивался цифрой того же разряда, что и значение его погрешности. Если десятичная дробь в числовом значении результата измерений оканчивается нулями, то их отбрасывают только до того разряда, который соответствует разряду числового значения погрешности. Например, результат 3, 2800 при погрешности 0,001 округляют до 3,280.

2. Если цифра старшего из отбрасываемых разрядов меньше 5, то остающиеся цифры числа не изменяют, лишние цифры в целых числах заменяют нулями, а в десятичных дробях отбрасывают. Например, число 267 245 при сохранении четырех значащих цифр должно быть округлено до 267 200; число 165,245 до165,2.

3. Если цифра старшего отбрасываемого разряда больше или равна 5, но за ней следуют отличные от нуля цифры, то последнюю оставляемую цифру увеличивают на единицу: 1459714600; 123,58124;

4. Если отбрасываемая цифра равна 5, а следующие за ней цифры неизвестны или равны нулю, то последнюю сохраняемую цифру не изменяют, если она четная, и увеличивают, если она нечетная: 10,510; 11,512.

Глава 5. Концепция неопределенности измерений
В 1993 г. под эгидой семи международных организаций, в том числе МКМВ, МЭК, ИСО, МОЗМ, было издано «Руководство по выражению неопределенности измерений» (далее Руковод-ство). Целями Руководства были:
- обеспечение полной информацию о том, как составлять отчеты о неопределенности измерений;
- представление основы для международного сопоставления результатов измерений;
- предоставление универсального метода для выражения и оценивания неопределенности измерений, применимого ко всем видам измерений и всем типам данных, используемых при измерениях.
В 2003 г. введены в действие Рекомендации по межгосу-дарственной стандартизации РМГ 43-2001 «Применение «Руковод-ства по выражению неопределенности измерений». Они распро-страняются на методы оценивания точности результатов измерений, содержат практические рекомендации по применению Руководства и показывают соответствие между формами представления резуль-татов измерений с использованием погрешности и неопределен-ности измерений.
Руководство рекомендует выражать характеристики точности измерений в показателях неопределенности измерений, а не в показателях погрешности измерений, принятой в отечественной метрологической практике. Вместо понятия истинное значение измеряемой величины вводится понятие оцененное значение.
Вместо деления погрешностей по природе их появления на систематические и случайные вводится деление по способу оценивания неопределенностей - методами математической статистики или иными методами.
Причин появления концепции неопределенности измерений довольно много, но основные из них следующие.
1. Появление новых (нетрадиционных) областей измерения (психология, социология, медицина и др.), где постулаты традиционной метрологии (физическая величина, единица измерений, мера, эталон, погрешность измерения) не работают;
2. Влияние новых научных направлений кибернетического толка (кибернетики, теории информации, математической статистики и др.), в которых понятие «неопределенность» играет существен-ную роль. Это, как правило, связано с широким толкованием понятия неопределенности как «сомнения» в том, что, например, результат измерения представляет значение измеряемой величи-ны. Примеры такого толкования термина неопределенности: неопределенность выбора устраняется информацией, степень неопределенности множества зависит от числа элементов в множестве и др.
3. Отход от понятия истинного значения измеряемой величины как пепознаваемого, в силу чего понятие погрешности теряет смысл и погрешность невозможно вычислять, т.к. она содержит никогда не известное истинное значение.
4. Раздельная оценка систематических и случайных погрешностей и использование для них разных характеристик (доверительных границ и СКО) дает завышенные оценки погрешности. Кроме того, применение двух характеристик погрешности при определении результата неудобно, особенно при его дальнейшем использовании.
5. Необходимость простой в применении и общепризнанной универсальной методики для характеристики результата измерения.
5.1 Основные положения концепции неопределенности измерений
В Руководстве вместо понятия «погрешность измерения» вводится понятие «неопределенность измерения». При этом неопределенность измерения трактуется в двух смыслах:
В широком смысле как «сомнение» относительно достоверности результата измерения. Например, сомнение в том, насколько точно после внесения всех поправок результат измерения представляет значение измеряемой величины.
В узком смысле неопределенность измерения понимается как параметр, связанный с результатом измерения, который характеризует разброс значений, которые могли бы быть обоснованно приписаны измеряемой величине.

В данной концепции неопределенность измерения понимает-ся именно в узком смысле.

Неопределенность измерения - параметр, связанный с результатом измерения, который характеризует дисперсию (разброс) значений, которые могли бы быть обоснованно приписаны измеряемой величине. Необходимо ясно представлять, что неопределенность измерения - это не доверительный интервал в традиционном понимании (при заданной доверительной вероятности). Вероятность здесь характеризует меру доверия, а не частоту события.

Неопределенность измерения обычно имеет много составляющих. Некоторые из них могут быть оценены из статистического распределения результатов рядов измерений и могут характеризоваться экспериментальными стандартными отклонениями (аналог СКО). Другие составляющие оценивают из предполагаемых распределений вероятностей, основанных на опыте или другой информации. Они также могут характеризоваться стандартными отклонениями.

Неопределенность результата измерения отражает отсутствие точного знания значения измеряемой величины. Оно даже после внесения поправки на известные систематические погрешности все еще является только оценкой измеряемой величины вследствие неопределенности, возникающей из-за случайных эффектов и неточной поправки результата на систематические погрешности.

Водятся две оценки неопределенности:

- оценка по типу А - метод оценивания неопределенности путем статистического анализа рядов наблюдений;

- оценка по типу В - метод оценивания иным способом, чем статистический анализ рядов наблюдений.

Целью классификации на тип А и тип В является показ двух различных способов оценки составляющих неопределенности.

Стандартную неопределенность типа А получают из функции плотности вероятности, полученной из наблюдаемого распределения по частости.

Стандартную неопределенность типа В получают из предполагаемой функции плотности вероятностей, основанной на уверенности в том, что событие произойдет. Эта вероятность часто называется субъективной вероятностью.

В большинстве случаев измеряемая величина Y не является прямо измеряемой, а зависит от m других измеряемых величин X1, X2, …, Xm , называемых входными, через функциональную зависимость:

Cами входные величины Х, от которых зависит выходная величина Y, рассматриваются как измеряемые величины. В свою очередь они могут зависеть от других величин, включая поправки и поправочные коэффициенты на систематические эффекты. Это ведет к сложной функциональной зависимости f, которая, как правило, не может быть записана точно. Кроме того, f можно определить экспериментально или она может существовать как алгоритм, который должен быть реализован численно.

Оценку входной измеряемой величины Y, обозначенную как y, получают из приведенного выше уравнения, используя входные оценки х1, х2, …, хm для значений величин Х1, Х2, …, Хm. Выходная оценка y, которая является результатом измерения, выражается уравнением:

Стандартная неопределенность по типу А uA оцени-вается по результатам многократных измерений, причем, исходными данными для ее вычисления являются их результаты , где i = 1,…, m, ni число измерений i-ой входной величины. Стандартную неопределенность единичного измерения i-й входной величины uA,i вычисляют по формуле:

,

где среднее арифметическое i-й входной величины.

Стандартную неопределенность uA(xi) измерений i-й входной величины, при которой результат определяют как среднее арифметическое, вычисляют по формуле:

.

Стандартная неопределенность по типу В используется для оценки величины x, которая не была получена в результате повторных наблюдений. Связанная с ней оцененная стандартная неопределенность uВ(xi) определяется на базе научного суждения, основанного на всей доступной информации о возможной изменчивости х. Фонд такой информации может включать:

- данные предварительных измерений;

- данные, полученные в результате опыта, или общие данные о поведении и свойствах соответствующих материалов и приборов;

- спецификации изготовителя;

- данные о поверке, калибровке, сведения изготовителя о приборе, сертификаты и т.п.;

- неопределенности, приписываемые справочным данным из справочников.

Например, если в свидетельстве о калибровке утверждается, что неопределенность массы эталона равняется 240 мкг на уровне трех стандартных отклонений, то стандартная неопределенность эталона массы равна 240 мкг : 3 = 80 мкг.

Для неопределенности типа В применяется аппарат субъективной теории вероятностей: вероятность характеризует меру доверия, а не частоту событий, как это используется в концеп-ции погрешности, основанной на частотной теории вероятностей. Для определения неопределенности по типу В широко используется априорная информация о неточности используемых данных.

Неопределенность по типу В может быть задана, например, и как некоторое кратное стандартного отклонения, так и как интервал, имеющий 90, 95 или 99 процентный уровень доверия. Если не указано иного, то можно предположить, что использовалось нормальное распределение для вычисления неопределенности. Поэтому стандартную неопределенность можно определить, разделив приведенное значение на соответствующий для нормального распределения коэффициент (см. ниже).

Часто приходится оценивать стандартную неопределенность и(х), связанную с влияющим фактором Х, значения которого нахо-дятся в заданных пределах от х - до х + . По имеющейся информации о величине Х необходимо принять некоторое априор-ное распределение вероятности возможных значений Х внутри заданных пределов. После этого стандартная неопределенность находится делением на коэффициент k, зависящий от принятой функции распределения: и(х) = /k. Наиболее типичными случаями при этом являются:

1. известны только пределы, в которых, в которых может находиться значение Х, т.е. 2;

2. известно значение хизв и пределы, обычно симметричные, допускаемых значений ;

3. известен интервал от (хизв - р) до (хизв + р), охватывающий заданную долю р вероятности.

В первом случае в предположении равномерного распределе-ния значение коэффициента k может быть принято для симметрич-ных границ равным .

Во втором случае из-за известного значения хизв можно предположить, что вероятность нахождения Х вблизи хизв больше, чем вблизи границ хизв . Т.е. можно принять треугольное распре-деление вероятности в качестве некоторого среднего между равно-мерным (прямоугольным) и нормальным. Значение коэффициента k при этом равно .

В третьем случае распределение вероятности принимается нормальным и значение коэффициента k зависит от заданной вероятности. Например, для р = 0,99 он равен 2,58.

Могут встречаться и другие модификации прямоугольного и нормального распределений, например, в виде равнобедренной трапеции с шириной верхней части, равной 2, где находится в диапазоне от 1 (прямоугольное распределение) до 0 (треугольное распределение). Тогда значение и(х) определяется исходя из формулы и2(х) = 2 (1 + 2)/6.

Правильное использование фонда доступной информации для оценивания стандартной неопределенности по типу В требует интуиции, основанной на опыте и общих знаниях, и является мастерством, которое приходит с практикой.

Оценивание неопределенности по типу В позволяет выйти за рамки традиционного статистического подхода, отнесенного к оцениванию по типу А, и находить значения составляющих неопределенности, для которых получение необходимой статистической информации затруднено или невозможно. К описанию же неопределенностей применяют статистический подход, независимо от способа их оценивания (имея в виду, что все поправки на систематические погрешности уже введены). Это видно на способе определения суммарной стандартной неопределенности.

Суммарная стандартная неопределенность uc(y) - это стандартная неопределенность результата измерения, когда результат получают из значений ряда других величин. Оцененное стандартное отклонение, связанное с выходной оценкой или с результатом измерения y, называют суммарной стандартной неопределенностью и обозначают uc(y).

Суммарная стандартная неопределенность для некоррелиро-ванных входных оценок определяется из формулы:

В этой формуле неопределенность u может определяться как по типу А, так и по типу В.

Суммарная стандартная неопределенность представляет собой оцененное стандартное отклонение и характеризует разброс значений, которые могут быть с достаточным основанием приписаны измеряемой величине Y.

Несмотря на то, что суммарная неопределенность может использоваться для выражения неопределенности результата измерения, в некоторых случаях, например, в торговле или при измерениях, касающихся здоровья или безопасности, часто необходимо дать меру неопределенности, которая указывает интервал для результата измерения, в пределах которого находится большая часть распределения значений измеряемой величины. Для этого используется понятие расширенной неопределенности.

Расширенная неопределенность используется для выражения неопределенности результата измерения в торговле, промышленности, регулирующих актах, при охране здоровья и безопасности в качестве дополнительной меры неопределенности. Расширенную неопределенность U получают путем умножения суммарной стандартной неопределенности uc(y) на коэффициент охвата k:

Тогда результат измерения выражается как Y = y U. Это означает, что наилучшей оценкой значения, приписываемого величине Y, является у, и что интервал от у - U до у + U содержит, как можно ожидать, большую часть распределения значений, которые можно с достаточной уверенностью приписать Y.

Понятия доверительный интервал и доверительный уровень (вероятность) применяются в статистике к интервалу при условии, что все составляющие неопределенности были бы получены из оценивания по типу А, т.е. при статистической обработке результатов наблюдений. В настоящей концепции слово доверие не используется для модификации слова «интервал» при ссылке на интервал, определяемый U. Термин доверительный уровень также не используется в связи с интервалом и более предпочтительным является термин уровень доверия. U рассматривается как задание интервала вокруг результата измерения, который содержит большую часть р распределения вероятностей, характеризуемого результатом и его суммарной стандартной неопределенностью. Таким образом, р является вероятностью охвата или уровнем доверия для этого интервала.

При возможности следует оценивать и указывать уровень доверия р, связанный с интервалом U, хотя умножение uc(y) на постоянную величину не дает никакой новой информации, а представляет уже имевшуюся информацию в новом виде. Но следует признать, что уровень доверия р будет неопределенным как из-за ограниченного знания распределения вероятностей у и ис(у), так и из-за неопределенности самой ис(у).

Значение коэффициента охвата k выбирается на основе уровня доверия, требуемого интервалом от у - U до у - U, и обычно имеет значение от 2 до 3. Но он может и выходить за пределы этого диапазона. На практике связь коэффициента k с заданным уровнем доверия нелегко осуществить из-за отсутствия полного знания распределения вероятностей, характеризуемого результатом измере-ний и суммарной стандартной неопределенностью. Однако, если это распределение вероятностей близко к нормальному, то можно предположить, что принятие k = 2 дает интервал, имеющий уровень доверия около 95 %, а при k = 3 около 99 %. В предположении равномерного распределения коэффициент охвата имеет, соответственно, значения 1,65 и 1,71.

При представлении результата измерения и его неопределенности следует исходить из принципа, что лучше дать слишком много информации, чем слишком мало. Например, следует:

- описать методы, используемые для вычисления результата измерения и его неопределенности из экспериментальных наблюдений и входных данных;

- перечислить все составляющие неопределенности и показать, как они оценивались;

- дать анализ данных таким образом, чтобы можно было легко повторить вычисление представляемого результата;

- дать все поправки и константы, используемые в анализе, и их источники.

Можно рекомендовать следующую процедуру оценивания и выражения неопределенности.

1. Выразить математическую зависимость между измеряемой величиной Y и входными величинами Xi, от которых она зависит. Функция f должна содержать каждую величину, включая все поправки и поправочные множители, которая может дать значительную составляющую в неопределенность результата измерения.

2. Определить хi оцененное значение входной величины Xi либо на основе статистического анализа рядов наблюдений, либо другими способами.

3. Оценить стандартную неопределенность и(хi) каждой входной оценки хi либо по типу А, либо по типу В.

4. Рассчитать результат измерения, т.е. оценку у измеряемой величины Y из функциональной зависимости f, используя полученные оценки входных величин хi.

5. Определить суммарную стандартную неопределенность ис(у) результата измерения у из стандартных неопределенностей, связанных с входными оценками.

6. При необходимости дать расширенную неопределенность, следует умножить суммарную стандартную неопределенность ис(у) на коэффициент охвата k, который обычно находится в диапазоне от 2 до 3. Например, значения коэффициента охвата, который создает интервал, имеющий уровень доверия р при допущении нормального распределения, имеют следующие значения:

уровень доверия р, %

коэффициент охвата k

68,27

1

90

1,645

95

1,960

95,45

2

99

2,576

99,73

3

5.2 Сопоставление концепций погрешности и неопределенности измерений

Концепции погрешности и неопределенности измерений преследуют единую цель - количественно охарактеризовать резуль-тат измерения с точки зрения его точности. В обеих концепциях прослеживается единая схема оценки характеристик погрешности и неопределенности измерения: начиная с анализа измерительной задачи и уравнения измерения, выявления всех источников погрешности (неопределенности) результата измерения, введения поправок на все известные систематические эффекты (погрешности) и, наконец, оценивания характеристик составляющих погреш-ности (стандартных неопределенностей) и вычисление характерис-тики погрешности (неопределенности) результата измерения.

Ниже приводятся используемые в этих концепциях оценки характеристик погрешности (неопределенности) измерения.

1. Для характеристики случайной погрешности используется среднее квадратическое отклонение (СКО): и его оценка s для единичного измерения и для среднего арифметического в серии измерений.

Если необходимо указание случайной погрешности с доверительной вероятностью, большей, чем 68 %, то вычисляются доверительные границы случайной погрешности по формуле:

где tq - коэффициент Стьюдента, который зависит от доверительной вероятности и числа наблюдений. неопределенность по типу А)

В концепции неопределенности используется неопределен-ность по типу А, определяемая как экспериментальное стан-дартное отклонение единичного измерения и экспериментальное стандартное отклонение среднего значения, определяемые, соответственно, поформулам, аналогичным для определения для и .

2. Границы неисключенной систематической погрешности (НСП) результата измерения вычисляют путем построения композиции границ неисключенных систематических погрешностей i, обусловленных различными источниками (они трактуются как квазислучайные величины). В предположении их равномерного распределения вычисляется по формуле:

где k - коэффициент, определяемый принятой доверительной веро-ятностью. При доверительной вероятности 0,95 он равен 1,1, при доверительной вероятности 0,99 он равен 1,4. Доверительная вероятность принимается той же, что и при вычислении доверительных границ случайной погрешности результата измерения.

В концепции неопределенности измерений вычисляется стандартная неопределенность по типу В, примеры вычисления которой были рассмотрены выше.

3. Для выражения суммарной погрешности, учитывающим случайные погрешности и НСП, находится суммарная средняя квадратическая погрешность результата измерения S по формуле раздела 4.6.7.

В концепции неопределенности для этой цели используется суммарная стандартная неопределенность ис(у) определяется по приведенным выше формулам.

4. Доверительные границы погрешности результата измерения (граница доверительного интервала) находится путем построения композиции распределений случайных погрешностей и НСП по формулам раздела 4.6.7.

В концепции неопределенности измерений используется расширенная неопределенность, которая вычисляется путем умножения суммарной неопределенности на коэффициент охвата, находящийся в диапазоне от 2 до 3.

Таким образом, можно констатировать соответствие между неопределенностями и погрешностями на уровне количественных оценок. Так, для расширенной неопределенности и границы погрешности результата измерения их количественные оценки различаются лишь на погрешность оценивания погрешности. Следует при этом отметить, что процедура определения коэффициента охвата, соответствующего коэффициенту t в концепции погрешности формализована строже и более удобна для практике.

Однако, интерпретация отмеченных количественных оценок различна в этих двух концепциях. Так, доверительные границы погрешности, отложенные от результата измерения, накрывают истинное значение измеряемой величины с заданной доверительной вероятностью. В то время как аналогичный интервал - расширенная неопределенность трактуется как интервал, содержащий заданную долю распределения значений, которые могли бы быть обоснованно приписаны измеряемой величине. В общем случае нет однозначного соответствия между случайными погрешностями и неопределенностями, вычисленными по типу А, а также между НСП и неопределенностями, вычисленными по тип В. Деление на случайные и систематические погрешности обусловлено природой их появления и свойствами, которые проявляются в процессе измерений. Деление же неопределенностей на тип А и В обусловлено методами их расчета.

Следует отметить, что несомненным достоинством концепции неопределенности измерений является единый принцип использования стандартной неопределенности для всех составляющих погрешности, что привлекательно для практического использования.

И, наконец, в «Руководстве по выражению неопределенности измерений» оговаривается тот случай, когда все источники неопределенности учтены и количественно оценены, а измерительная задача корректно поставлена. В таком случае неопределенность является мерой возможной погрешности. Такая ситуация как раз и является наиболее распространенной в метрологической практике. Например, при передаче размеров единиц физических величин.

5.3 Использование концепции неопределенности

В связи с появлением Руководства и ряда отечественных документов по использованию неопределенности измерений, возникает вопрос, следует ли полностью отказаться от концепции погрешности измерений и перейти на принципы, изложенные в Руководстве. Среди метрологов нет единого мнения в этом вопросе. Так, в упомянутом выше РМГ 43-2001 говориться, что концепцией неопределенности целесообразно пользоваться при проведении совместных работ с зарубежными странами, при подготовке публикаций в зарубежной печати в при выполнения международных метрологических работ.

Кроме того, ряд авторов предлагает для тех видов и групп средств измерений, которые обеспечены поверочными схемами, восходящими к государственным эталонам, сохранить концепцию погрешности измерений. Это объясняется тем, что величины, воспроизводимые эталонами, имеют наивысшую на данный момент времени точность и воспринимаются как истинные значения величин.

Для тех же видов и средств измерений, которые не обеспечены государственными эталонами и поверочными схемами, можно использовать концепцию неопределенности измерений и разрабатывать документацию в соответствии с Руководством.

Глава 6. Правовые основы обеспечения единства измерений

6.1 Необходимость правового регулирования метрологической деятельности

Метрология относится к такой сфере деятельности, основные положения которой должны быть закреплены именно законом, принимаемым в соответствии с законодательством страны. Это связано с тем, что все юридические нормы, направленные на охрану прав и законных интересов потребителей, должны регулироваться законодательными актами, принимаемыми высшим законодательным органом страны. Законодательство в области метрологии должно содействовать экономическому и социальному развитию страны путем защиты от отрицательных последствий недостоверных результатов измерений.

Деятельность по обеспечению единства измерений (ОЕИ) осуществляется в соответствии с:

- Конституцией РФ (ст. 71р);

- Законом РФ «Об обеспечении единства измерений»;

- Постановлением Правительства РФ от 12.02.94 №100

- «Об организации работ по стандартизации, обеспечению единства измерений, сертификации продукции и услуг»;

- ГОСТ Р 8.000-2000 «Государственная система обеспечения единства измерений. Основные положения».

6.2 Основные положения Закона РФ «Об обеспечении единства измерений»


Подобные документы

  • Системы физических величин и их единиц, роль их размера и значения, специфика классификации. Понятие о единстве измерений. Характеристика эталонов единиц физических величин. Передача размеров единиц величин: особенности системы и используемых методов.

    реферат [96,2 K], добавлен 02.12.2010

  • Понятие и сущность физических величин, их качественное и количественное выражение. Характеристика основных типов шкал измерений: наименований, порядка, разностей (интервалов) и отношений, их признаки. Особенности логарифмических и биофизических шкал.

    реферат [206,2 K], добавлен 13.11.2013

  • Суть физической величины, классификация и характеристики ее измерений. Статические и динамические измерения физических величин. Обработка результатов прямых, косвенных и совместных измерений, нормирование формы их представления и оценка неопределенности.

    курсовая работа [166,9 K], добавлен 12.03.2013

  • Классификация средств измерений. Понятие о структуре мер-эталонов. Единая общепринятая система единиц. Изучение физических основ электрических измерений. Классификация электроизмерительной аппаратуры. Цифровые и аналоговые измерительные приборы.

    реферат [22,1 K], добавлен 28.12.2011

  • Понятие о физической величине как одно из общих в физике и метрологии. Единицы измерения физических величин. Нижний и верхний пределы измерений. Возможности и методы измерения физических величин. Реактивный, тензорезистивный и терморезистивный методы.

    контрольная работа [301,1 K], добавлен 18.11.2013

  • Сущность понятия "измерение". Единицы физических величин и их системы. Воспроизведение единиц физических величин. Эталон единицы длины, массы, времени и частоты, силы тока, температуры и силы света. Стандарт ома на основе квантового эффекта Холла.

    реферат [329,6 K], добавлен 06.07.2014

  • Физическая величина как свойство физического объекта, их понятия, системы и средства измерения. Понятие нефизических величин. Классификация по видам, методам, результатам измерения, условиям, определяющим точность результата. Понятие рядов измерений.

    презентация [1,6 M], добавлен 26.09.2012

  • Обработка ряда физических измерений: систематическая погрешность, доверительный интервал, наличие грубой погрешности (промаха). Косвенные измерения величин с математической зависимостью, температурных коэффициентов магнитоэлектрической системы.

    контрольная работа [125,1 K], добавлен 17.06.2012

  • История становления метрологии России. Роль Менделеева в данном процессе. Структура российской системы измерений. Их виды и методы. Понятие физической величины. Основные единицы СИ. Требования к качеству измерений. Наиболее распространенные погрешности.

    презентация [145,4 K], добавлен 21.10.2015

  • Обработка результатов измерений физических величин. Среднеквадратическое отклонение, ошибка определения объема. Коэффициент проникновения ультразвука внутрь ткани. Энергия для поддержания разности давления. Средняя квадратичная скорость молекулы.

    контрольная работа [119,5 K], добавлен 26.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.