Описание выпрямительных устройств. Разработка интегрирующего операционного усилителя
Назначение и классификация выпрямительных устройств. Применение выпрямления электрического тока. Сварочные аппараты. Вентильные блоки преобразовательных подстанций систем энергоснабжения. Параллельное и последовательное соединение вентилей в схемах ВУ.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 31.08.2012 |
Размер файла | 703,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Курсовая работа
Общая электротехника и электроника
1. Назначение и классификация ВУ
Выпрямитель электрического тока -- преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.
Классификация
Выпрямители классифицируют по следующим признакам:
· по виду переключателя выпрямляемого тока
o механические синхронные с щёточноколлекторным коммутатором тока (применяются в коллекторных генераторах постоянного тока, в механических выпрямителях при производстве алюминия)
o механические синхронные с контактным переключателем (выпрямителем) тока
o с электронной управляемой коммутацией тока (например, тиристорные);
o с электронной пассивной коммутацией тока (например, диодные);
· по мощности
o силовые выпрямители (в силовой электронике, в энергетике)
o выпрямители сигналов (в радиоэлектронике и автоматике)
· по степени использования полупериодов переменного напряжения:
o однополупериодные -- пропускают в нагрузку только одну полуволну. Преимущество -- минимум вентильных элементов. Недостаток -- нагрузка трансформатора существенно зависит от фазы, из-за чего возникают дополнительные гармоники на выводах трансформатора.
o двухполупериодные -- пропускают в нагрузку обе полуволны.
o неполноволновые -- не полностью используют синусоидальные полуволны.
o полноволновые -- полностью используют синусоидальные полуволны.
· по схеме выпрямления -- мостовые, с умножением напряжения, трансформаторные, с гальванической развязкой, безтрансформаторные и т. д.
· по количеству используемых фаз -- однофазные, двухфазные, трёхфазные и многофазные
· по типу электронного вентиля -- полупроводниковые диодные, полупроводниковые тиристорные, ламповые диодные (кенотронные), газотронные, игнитронные, электрохимические и т. д.
· по управляемости -- неуправляемые (диодные), управляемые (тиристорные).
· по количеству каналов - одноканальные, многоканальные.
· по величине выпрямленного напряжения -- низковольтные (до 100В), средневольтные (от 100 до 1000В), высоковольтные (свыше 1000В).
· по назначению -- сварочный, для питания микроэлектронной схемы, для питания ламповых анодных цепей, для гальваники и пр.
· по степени полноты мостов -- полномостовые, полумостовые, четвертьмостовые.
· по наличию устройств стабилизации - стабилизированные, нестабилизированные.
· по управлению выходными параметрами - регулируемые, нерегулируемые.
· по индикации выходных параметров - без индикации, с индикацией (аналоговой, цифровой).
· по способу соединения -- параллельные, последовательные, параллельнопоследовательные.
· по способу объединения -- раздельные, объединённые звёздами, объединённые кольцами.
· по частоте выпрямляемого тока -- низкочастотные, среднечастотные, высокочастотные.
Большинство выпрямителей создаёт не постоянные, а пульсирующие однонаправленные напряжение и ток, для сглаживания пульсаций которых применяют фильтры.
Для преобразования переменного тока в постоянный необходимо располагать вентильными устройствами (элементами с односторонней проводимостью) и электрическими накопители инерционности, роль которых выполняют L и C.
Выпрямители строятся по двум основным принципам:
- с трансформаторным входом;
- с бестрансформаторным входом.
2. Применение выпрямления электрического тока
Выпрямители обычно используются там, где нужно преобразовать переменный ток в постоянный ток.
2.1 Блоки питания аппаратуры
- Применение выпрямителей в блоках питания радио- и электроаппаратуры обусловлено тем, что обычно в системах электроснабжения зданий или транспортных средств (самолётов, поездов) применяется переменный ток, и выходной ток любого электромагнитного трансформатора, применённого для гальванической развязки цепей или для понижения напряжения, всегда переменный, тогда как в большинстве случаев электронные схемы и электродвигатели целевой аппаратуры рассчитаны на питание током постоянного напряжения.
- Блоки питания промышленной и бытовой радио- и электроаппаратуры (в т.ч. так называемые адаптеры (англ. AC-DC adaptor)).
- Блоки питания бортовой радиоэлектронной аппаратуры транспортных средств.
2.2 Выпрямители электросиловых установок
Выпрямители питания главных двигателей постоянного тока автономных транспортных средств и буровых станков.
Как правило, на автономных транспортных средствах (автомобилях, тракторах, тепловозах, теплоходах, атомоходах, самолётах) для получения электроэнергии применяют генераторы переменного тока, так как они имеют бомльшую мощность при меньших габаритах и весе, чем генераторы постоянного тока. Но для приводов движителей транспорта обычно применяются двигатели постоянного тока, так как они позволяют простым переключением полюсов питающего тока управлять направлением движения. Это позволяет отказаться от сложных, тяжёлых и ненадёжных коробок переключения передач. Также применяется и для привода бурильных станков буровых вышек.
Преобразователи бортового электроснабжения постоянного тока автономных транспортных средств: автотракторной, железнодорожной, водной, авиационной и другой техники.
Генерация электроэнергии на транспортном средстве обычно производится генератором переменного тока, но для питания бортовой аппаратуры необходим постоянный ток. Например, в легковых автомобилях применяются электомеханические или полупроводниковые выпрямители.
2.3 Сварочные аппараты
В сварочных аппаратах постоянного тока применяются чаще всего мостовые схемы на мощных кремниевых выпрямительных диодах -- вентилях, с целью получения постоянного сварочного напряжения и тока. Он отличается от переменного тем, что при использовании его сильнее нагревается область дуги около положительного (+) её полюса, что позволяет либо осуществлять щадящую сварку свариваемых деталей преимущественно плавящимся сварочным электродом, либо экономить электроды, осуществляя резку металла электродуговой сваркой.
Применение выпрямителей для преобразования переменного тока в постоянный вызвало понятие среднего значения тока по модулю (т. е. без учета знака ординаты) за период. При двухполупериодном выпрямлении среднее значение по модулю определяется как среднеарифметическое значение всех ординат обеих полуволн за целый период без учета их знаков (т. е. полагая все ординаты за период положительными, что и имеет место при двухполупериодном идеальном выпрямлении.
Приемниками электроэнергии с нелинейными характеристиками являются в первую очередь всевозможные преобразовательные установки переменного тока в постоянный, использующие различные вентили.
Сюда относятся выпрямительные установки для:
- железнодорожной тяги
- городского электротранспорта
- электролиза (производство алюминия, хлора, едкого натра и др.)
- питания приводов прокатных станов
- возбуждения генераторов электростанций
В качестве вентилей до последнего времени использовались в основном ртутные выпрямители (неуправляемые и управляемые). В настоящее время широкое применение находят преимущественно кремниевые полупроводниковые выпрямители. Внедряются тиристорные выпрямители.
Обычно выпрямительные установки выполняются большой мощности и присоединяются через специальные трансформаторы к питающей сети на напряжении 6 -- 10 кВ. Выпрямительные установки небольшой мощности выполняются по трехфазной схеме с нулевым выводом.
2.4 Вентильные блоки преобразовательных подстанций систем энергоснабжения
- Для питания главных двигателей постоянного тока прокатных станов, кранов и другой техники
- Энергоснабжение заводов осуществляется электросетью переменного тока, но для приводов прокатных станов и других агрегатов выгоднее использовать двигатели постоянного тока по той же причине, что и для двигателей транспортных средств.
- Для гальванических ванн (электролизёров) для получения цветных металлов и стали, нанесения металлических покрытий и гальванопластики.
- Установки электростатической очистки промышленных газов (электростатический фильтр)
- Установки очистки и обессоливания воды
- Для электроснабжения контактных сетей электротранспорта постоянного тока (трамвай, троллейбус, электровоз, метро)
- Для несинхронной связи энергосистем переменного тока[3]
- Для дальней передачи электроэнергии постоянным током[4].
2.5 Выпрямители высокочастотных колебаний
Ректенна -- устройство, представляющее собой антенную решётку, воспринимающее микроволновое излучение (СВЧ-излучение) и преобразующее его в энергию постоянного тока.
В составе ректернн:
- в перспективных системах сбора энергии окружающих шумовых электромагнитных сигналов.
- в перспективных системах беспроводной передачи электроэнергии.
3. Структурные схемы ВУ
Рисунок 1
Достоинством данной схемы выпрямления является регулируемая транзистором гармоническая развязка первичного источника питания (ПИП) и нагрузки, что обязательно при заземленном режиме нагрузки.
Кроме того, трансформатором довольно просто реализуется преобразование входного напряжения к уровню, подходящему для последующего использования. Центральным недостатком этой схемы (трансформаторный вход) является наличие габаритного, большой массы силового трансформатора на обычно низкой частоте, питающего напряжения (на промышленной частоте 50 Гц). Опыт показывает, что увеличение рабочей частоты в инверторе позволяет существенно уменьшить массу и габариты источника, против выпрямителей решающих ту же задачу, но построенных по схем с трансформатором на входе.
В технике электропитания в настоящее время имеется явно выраженная тенденция построения ВУ с безтрансформаторным входом.
Достоинством схемы являются уменьшенные масса и габариты источников.
Недостатки - сложность схемы, наличие многих элементов (увеличение стоимости, уменьшение надежности);
- высокие требования к вентилям во входном ВЗ1.
- повышенные требования к быстродействию элементов инвертора (транзисторы, лампы).
4. Внутренние и внешние характеристики ВУ
Параметры, характеризующие режим работы элементов схемы ВУ и нагрузки, а также эксплуатационные характеристики ВУ удобно рассмотреть, обращаясь к схеме выпрямителя с трансформаторным входом.
Рисунок 2
Как видно из структурной схемы любое выпрямительное устройство может быть охарактеризовано внешними электрическими параметрами.
По входу:
[В]; ; f[гЦ]
- амплитуды. (1)
- мощность (2)
(3)
По выходу:
[А]
[Вт] (4)
- коэффициент пульсации (5)
В дополнение к характеристикам по входу и выходу каждое ВУ характеризуется КПД:
(6)
По внешним характеристикам ВУ (как и другие устройства) условно можно разделить на:
- маломощные (ММ) с
- средней мощности (СМ)
- большой мощности (БМ)
Возможны классификации: по току, выходным напряжениям (высоковольтные, низковольтные) и т.д..
U>1000 [B] - высоковольтный источник.
К внешним характеристикам при анализе возможностей ВУ и их показателей качества относят:
- массу и габариты;
- стоимость устройства;
- допустимый диапазон рабочих температур;
- влажность.
Внутренние характеристики ВУ представляют собой электрические и эксплуатационные параметры режимов работы различных элементов схемы.
К ним относят:
В трансформаторе:
(7)
(8)
(9)
- коэффициент использования транзистора (10)
В вентильном звене:
Представляют интерес следующие электрически характеристики. В В3 для каждого вентиля схемы интересуются:
- максимальным значением тока (амплитуда);
- действующим значением тока ;
- среднее значение тока: ;
- обратный ток ;
- прямое напряжение ;
- максимальное обратное напряжение
По каждому показателю выбираются при проектировании подходящие стандартные вентильные устройства.
Применительно к сглаживающим фильтрам из внутренних электрических характеристик представляют общий интерес:
- пропускаемый через фильтр в нагрузку ток ;
- его всплески ;
- максимальное напряжение источника на элементах
5. Вентили для ВУ. Параллельное и последовательное соединение вентилей в схемах ВУ
Электрический вентиль - устройство с односторонней проводимостью.
Для выпрямления тока используются электрические вентили следующих типов:
- электроламповые;
- полупроводниковые;
- с электронно-ионной проводимостью.
Любой электрический вентиль при действии на него напряжения в прямом направлении имеет малое сопротивление току, при подаче напряжения в противоположном обратном направлении, сопротивление вентиля резко увеличивается.
Типичная ВАХ для полупроводникового вентиля имеет вид:
Рисунок 3
При использовании вентилей в ВУ для каждого типа не должны превышаться допустимые значения прямого тока Iпр и обратного напряжения Uобр.
В тех случаях, когда имеющиеся в распоряжении вентили не обеспечивают необходимого тока в нагрузку, применяя параллельное включение нескольких вентилей по следующей схеме (рис 4).
Рисунок 4
Добавляют Rдоб в 2-5 раза больше Rпр. На добавочных сопротивлениях в мощных выпрямителях могут возникать недопустимые рассеивания энергии. В таких случаях возможно для выравнивания тока в вентилях применение индуктивных реакторов (рис 5).
Рисунок 5
В тех случаях, когда обратное напряжение на вентилях превышает максимально допустимое, прибегают к последовательному соединению нескольких вентилей.
В тех случаях, когда ВУ высоковольтное можно добавить емкости. Параллельное и последовательное соединение вентилей широко применяется в ВУ хотя существенно усложняет схему, увеличивается масса и объем, стоимость. А в случаях последнего соединения - увеличивается внутреннее сопротивление Rпр.
(11)
(12)
6. Работа многофазного выпрямителя на активную нагрузку
Работы ВУ на различные нагрузки (активные, реактивные, индуктивного характера, емкостного характера). Отличается определенной спецификой.
Наиболее простым является работа на чисто активную нагрузку
Рассмотрим особенности этого режима на примере однотактного выпрямителя для трехфазной сети переменного тока выполненной по схеме Миткевича.
Рисунок 6
В дальнейшем рассмотрении будут использованы предположения:
- об идеальности транзистора т.е. Rгр = Xгр = 0
- об идеальности вентилей Rпр = 0; Rобр =
- схема совершенно симметрична Uа = Uб = Uc
- Внутреннее сопротивление фазы равно 0
Задача состоит в анализе электрических процессов выпрямления и в вычислении связи между электрическими характеристиками режима работы трансформатора и вентильного звена (с первой стороны) и электрическими характеристиками режима работы нагрузки (с другой стороны):
1. - вторичная обмотка
2. , (13)
3. (14)
4. КПД: (15)
Анализ удобно провести, пользуясь временными диаграммами токов и напряжений, действующих в цепях и элементах схемы ВУ.
Рисунок 7
выпрямительный устройство вентиль схема
Можно убедится, что напряжение в каждой фазе может обеспечить ток через вентиль в этой фазе при выполнении 2-х условий:
- это напряжение для вентиля является прямым;
- оно больше чем положительное напряжение в смежных фазах.
Вентиль в рабочей фазе, будучи идеальным представляет собой КЗ и падение напряжения на нем равно 0. Напряжение, на закрытых вентилях образуемое из ЭДС соответствующих фаз и ЭДС работающей фазы, определяется линейным межфазным напряжением.
Подобно формулам для напряжений могут быть выведены формулы для токов. Необходимо принять во внимание, что ток в вентиле:
(16)
(17)
; (18)
(19)
Если интересоваться действительным значением тока, то необходимо вычислять среднее значение интеграла от квадрата ток и извлекать квадратный корень.
(20)
Для расчета тока первичной обмотки трансформатора необходимо учесть тот факт что постоянная составляющая тока, протекающего по фазам вторичной системы обмоток, не трансформируется.
Трансформируется через коэффициент трансформации только переменная составляющая.
По рассчитанным значениям тока и напряжения в 1-й и во второй обмотках могут быть определены полные мощности в 1-й и во 2-й обмотках и габаритная мощность.
(21)
(22)
(23)
Относительно пульсаций выходного напряжения в данной схеме необходимо отметить следующее:
- как видно из физики работы схемы временных диаграмм за период выпрямляемого напряжения ток в нагрузке появляется 3 раза;
- пульсация напряжения в связи с этим имеет вид полуволн;
- колебания (интенсивность пульсаций) можно оценить рассматривая их гармонические составляющие, т.е. разлагая их в ряд Фурье:
(24)
Пользуясь этим соотношением, запишем коэффициент по К-гармоникам:
(25)
В данном случае m=3коэффициент пульсации по первой наиболее интенсивной гармонике составит:
Проведенный анализ непосредственно распространяется только на случай чисто активной нагрузки.
Как видно из проведенного анализ особенностью работы выпрямителя на чисто активную нагрузку является:
- напряжение на выходе выпрямителя как функция времени определяется огибающей ЭДС действующих фаз;
- каждая фаза в рассмотренной схеме работает 1 раз за период а импульсы тока через нагрузку вентилей совпадают по форме с действующей фазой ЭДС. Длительность импульса тока равно 2р/м где м - число импульсов тока за период выпрямляемого напряжения;
- работа выпрямителей на чисто активную нагрузку на практике распространена сравнительно мало, т.к. непосредственно выпрямленное напряжение содержит значительную пульсацию. Для сглаживания этой пульсации применяют различные рода фильтры НЧ, которые в любой технике называют сглаживающими.
Простейшими сглаживающими фильтрами (СФ) являются индуктивные фильтры или емкостные.
Таким образом, на практике широко распространены режимы работы выпрямления, на нагрузку с индуктивной или емкостной реакцией.
Эти режимы имеют определенное отличие от режима работы на чисто активную нагрузку. Эти отличия определяют и различия требований к элементам схемы, а также особенности расчетных формул, связывающих напряжение и ток с нагрузки с напряжениями и токами в вентилях и трансформаторах.
7. Особенности работы выпрямителя на нагрузку емкостного характера
В качестве основы берем ту же схему Миткевича:
Рисунок 8
Считаем что трансформатор идеальный, т.е. Rтр = 0 Xтр = 0 вентили идеальны. Схема совершенно симметрична:
Рисунок 9
Емкость (мгновенно в идеальном случае) заряжается до напряжения в фазе и напряжение на емкости будет, изменяется в соответствие с ЭДС по достижении его максимального значения. При уменьшении напряжения в фазе емкость разряжается на нагрузку по экспоненциальному закону и если напряжение на ней выше, чем в фазе, вентиль закрывается разностью этих воздействий.
Принято оценивать длительность импульса тока угловой мерой . - угол отсечки.
Если мы увеличиваем нагрузку, то длительность импульса тока уменьшается и наоборот.
Как видно из проведенного рассуждения.
Работа выпрямителя на нагрузку емкостного характера. Особенности:
- напряжение на выходе выпрямителя представляет собой сравнительно сложную функцию, составленную из периодически чередующихся отрезков косинусов и экспоненты:
Рисунок 10
- длительность импульса тока а фазе и в вентиле (чаще всего)
- отведенное время для работы фазы.
При прочих требованиях к току в нагрузке, ток через вентиль в импульсном режиме, соответствующем емкостному характеру нагрузки, имеет большую амплитуду, чем в случае чисто активного сопротивления нагрузки.
Таким образом, требования к пропускной способности вентиля по току при работе на емкостную нагрузку, существенно увеличивается против случая с активной нагрузкой, что является платой за достигаемое сглаживание пульсаций.
II. Разработать интегрирующий операционный усилитель
Задание
Разработать интегрирующий операционный усилитель. Постоянная времени интегратора . Напряжение питания ОУ , ток, протекающий через резистор , и ток, протекающий через конденсатор , не должны превышать .
Решение
Интегратор аналоговых сигналов, схема которого представлена на рисунке 1, является самым простым устройством с реактивным элементом в петле ООС.
Рисунок 1 - Схема интегрирующего ОУ
Если на вход интегратора подать сигнал , то во время переходного процесса усилитель находится в линейном режиме. Из-за полной ООС потенциал точки суммирования токов равен нулю , поэтому через резистор R течет ток переходного процесса:
.
Так как во входную цепь высококачественного ОУ ток сигнала не втекает (вернее им можно пренебречь ввиду большого входного сопротивления ОУ), то через конденсатор C протекает ток заряда
,
поэтому напряжение на конденсаторе C соответствует интегралу напряжения входного сигнала :
.
Поскольку левая (по схеме) обкладка конденсатора присоединена к «искусственной земле», существующей во время интегрирования, то выходное напряжение интегратора примерно равно напряжению на конденсаторе:
.
Произведение получило название постоянной времени интегратора . Тогда можно записать:
.
В качестве ОУ выбираем микросхему . Данная микросхема является ОУ общего назначения с диапазоном питающих напряжений , максимальным входным напряжением и максимальным выходным напряжением .
Зададимся значением резистора . Тогда номинал конденсатора С:
.
Максимальная мощность, рассеиваемая резистором
.
В качестве резистора выбираем С2-29-0,125-43кОм.
В качестве конденсатора выбираем К10-17б-470нФ на 50В.
Максимальные токи
.
Токи через элементы R и С не превышают значения 10мА.
Коэффициент нагрузки резистора
.
Коэффициент нагрузки конденсатора
.
Коэффициенты нагрузки и не превышают значения 0,8.
Постоянная времени интегратора
.
Относительная погрешность
.
Вывод: Расчет интегрирующего операционного усилителя произведен согласно исходных данных и примечаний, В качестве ОУ выбираем микросхему ; коэффициенты загрузки конденсатора и резистора не превышают 0,8.
Список использованной литературы
Иванов-Цыганов А.И. Электротехнические устройства радиосистем: Учебник. - Изд. 3-е, перераб. и доп.-Мн: Высшая школа, 2000 г.
Алексеев О.В., Китаев В.Е., Шихин А.Я. Электрические устройства/Под ред. А.Я.Шихина: Учебник. - М.: Энергоиздат, 200- 336 с.
Березин О.К., Костиков В.Г., Шахнов В.А. источники электропитания радиоэлектронной аппаратуры. - М.: Три Л, 2000. - 400 с.
Шустов М.А. Практическая схемотехника. Источники питания и стабилизаторы. Кн. 2. - М.: Альтекс а, 2002. -191 с.
В.П. Миловзоров. Элементы информационных систем. М.: Высш. шк. 1984
Импортные и отечественные аналоговые микросхемы - справочник http://masterelectronic.ru/spravochnik_radiodetali
Шило В.Л. Линейные интегральные схемы в радиоэлектронной аппаратуре. - 2 изд., перераб. и доп. - М.: Сов. радио, 1979. - 368 с.,
Размещено на Allbest.ru
Подобные документы
Основные величины электрического тока и принципы его измерения: закон Ома, Джоуля-Ленца, электромагнитной индукции. Электрические цепи и формы их построения: последовательное и параллельное соединение в цепи, катушка индуктивности и конденсатор.
реферат [170,9 K], добавлен 23.03.2012Понятие электрической цепи и электрического тока. Что такое электропроводность и сопротивление, определение единицы электрического заряда. Основные элементы цепи, параллельное и последовательное соединения. Приборы для измерения силы тока и напряжения.
презентация [4,6 M], добавлен 22.03.2011Техническое описание системы питания потребителей от тяговых подстанций систем электроснабжения постоянного тока 3,3 кВ и переменного тока 25 кВ их преимущества и недостатки. Схемы электроснабжения устройств автоблокировки и электрических железных дорог.
контрольная работа [1,0 M], добавлен 13.10.2010Классификация и техническое устройство разнообразных сглаживающих устройств, их функциональные особенности и значение. Исследование эффективности и разработка рекомендаций по выбору схемы и параметров сглаживающего устройства тяговой подстанции.
дипломная работа [3,1 M], добавлен 04.06.2015Задачи на применение первого закона Кирхгофа. Параллельное соединение элементов. Второй закон Кирхгофа, его применение. Последовательное соединение конденсаторов, их эквивалентная емкость. Обратная емкость конденсаторов, соединенных последовательно.
реферат [85,5 K], добавлен 15.01.2012Назначение и принцип работы тахогенератора. Применение устройств, изготовленных по технологии LongLife. Тахогенераторы постоянного тока в схемах автоматики. Конструкция и принцип действия асинхронного тахогенератора. Амплитудная и фазовая погрешность.
контрольная работа [592,9 K], добавлен 25.09.2011Принципы проектирования электрического фильтра и усилителя напряжения. Анализ спектра сложного периодического сигнала. Оценка прохождения входного сигнала через радиотехнические устройства. Разработка схем электрического фильтра и усилителя напряжения.
курсовая работа [323,7 K], добавлен 28.03.2015Сущность и основные этапы реализации монтажа комплектных устройств. Понятие и функциональные особенности электрического предохранителя и разрядника. Принцип действия реакторов и конденсаторов, их устройство и назначение. Типы и функции изоляторов.
доклад [1,0 M], добавлен 27.10.2015Проектирование электропитающих установок проводной связи. Расчет элементов электропитающей установки. Определение состава коммутирующих и выпрямительных устройств. Способы и системы дистанционного питания. Нормы напряжений для установок аппаратуры связи.
курсовая работа [1,2 M], добавлен 25.09.2014Понятие электрического тока как упорядоченного движения заряженных частиц. Виды электрических батарей и способы преобразования энергии. Устройство гальванического элемента, особенности работы аккумуляторов. Классификация источников тока и их применение.
презентация [2,2 M], добавлен 18.01.2012