Виды возобновляемых источников энергии

Понятие и классификация возобновляемых источников энергии. Принципы преобразования ветровой энергии. Преобразователи солнечной энергии. Достоинства и недостатки геотермальной энергетики. Энергия приливов, океанских течений. Термальная энергия океана.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 01.08.2012
Размер файла 179,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

Энерговооруженность общества - основа его научно-технического прогресса, база развития производительных сил. Её соответствие общественным потребностям - важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Однако человечеству в последнее время постоянно не хватает энергии. Все чаще в газетах и различных журналах встречаются статьи об энергетическом кризисе.

Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Сейчас в мире производится около 60 тыс. миллиардов кВт. час. Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так зачем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм.

Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются, в принципе, тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике.

Предприятия топливно-энергетического комплекса (ТЭК) являются источником более 48% загрязняющих веществ, поступающих в атмосферу в результате хозяйственной деятельности во всех отраслях экономики. А в промышленных выбросах доля предприятий ТЭК составляет около 60%. Негативное воздействие предприятий ТЭК на окружающую среду выражается не только в загрязнении природных сред органическими и неорганическими веществами, но также и в результате изъятия и деградации почв и земель из-за складирования и закачки отходов, подтопления, подработки территорий, изменения сейсмотектонических условий и др. Также всем известно, что запасы нефти, угля, газа не бесконечны. И срок их использования, по оценкам разных специалистов, колеблется в разных местах от тысячи до десятка лет! Не такая уж блестящая перспектива оставить потомков без энергетического обеспечения. Особенно учитывая устойчивую тенденцию удорожания нефти и газа. И чем дальше, тем более быстрыми темпами. А уж о глобальном изменении климата приходится последние несколько лет не только слышать с различных трибун, но и ощущать на себе, наблюдая скачки температуры на градуснике. Все это привело к более глубокому изучению и использованию нетрадиционных возобновляемых источников энергии (НВИЭ). К ним относят энергию ветра, Солнца, геотермальную энергию, биомассу и энергию Мирового океана. Основное преимущество возобновляемых источников энергии их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Но также эти источники энергии имеют и отрицательные свойства. Это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, перехватывающие поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Но, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат. Например, нормальной солнечной батарее не нужен ремонт несколько десятков лет. Эти качества и послужили причиной бурного развития возобновляемой энергетики во всем мире и весьма оптимистических прогнозов их развития в ближайшем десятилетии.

1. ЭНЕРГИЯ ВЕТРА

Различные виды НВИЭ находятся на разных стадиях освоения. Как это ни парадоксально, наибольшее применение получил самый изменчивый и непостоянный вид энергии - ветер. Суммарная мировая установленная мощность крупных ВЭУ и ВЭС, по разным оценкам, составляет от 10 до 20 ГВт. Кажущийся парадокс объясняется тем, что удельные капиталовложения в ВЭУ ниже, чем при использовании большинства других видов НВИЭ. Растет не только суммарная мощность ветряных установок, но и их единичная мощность, превысившая 1 МВт. По-видимому, и в ближайшей перспективе ветроэнергетика сохранит свои передовые позиции. Мировыми лидерами по применению энергии ветра являются США, Германия, Нидерланды, Дания, Индия. По экспертным оценкам валовой потенциал ветровой энергии в России составляет 26* 106 т.у.т./год, а экономический - 12,5 * 106 т.у.т./год. Изданный в 2002г. «Атлас ветров России» позволяет рационально выбрать место установки с технико-экономическими показателями, рекомендуемых ветроэлектрических установок (ВЭУ). Сейчас в России рядом производителей выпускаются в основном малые ветроустановки мощностью 500 Вт - 16 кВт как для водоподъема, так и производства электроэнергии. Разработаны ВЭУ мощностью 100 и 250 кВт, несколько таких установок эксплуатируется в северных регионах страны.

Энергия ветра, так же как и солнечная, относится к возобновляемым энергоресурсам. У людей, живущих в местностях, где постоянно дуют ветры, возникала естественная мысль о полезном использовании энергии. Ведь все так просто - поставь ветряк и получай энергию для жилища, освещения маяка, подъема воды из артезианской скважины или других целей - возможности полезного использования энергии разнообразны.

Каковы особенности ветровой энергии и условия ее полезного использования? Как следует из опубликованной информации, перемещения воздушных масс, вызванные сложными геофизическими процессами, происходящими над земной поверхностью, характеризуются направлением, скоростью, вертикальным профилем, величиной порывистости, суточными и сезонными изменениями. Теоретически предсказать эти характеристики с достаточной степенью достоверности для конкретного района крайне сложно. возобновляемый энергия солнечный геотермальный

Поэтому пользуются наблюдениями сети метеорологических станций, которые дают возможность получить некоторые среднестатистические показатели для данной Местности и должны служить основой для решения вопроса о сооружении ветроэнергетической установки или ветроэнергетической станции.

Считается, что сооружение ветровой установки мощностью до 5-6 кВт экономически оправдано при скорости ветра, превышающей 3,5-4,0 м/с. Для больших установок требуется скорость ветра 5,5-6,0 м/с.

Из зарубежных данных видно, что для сооружения ветровой энергетической установки мощностью в несколько мегаватт предпочтительны районы со среднегодовой скоростью ветра 8 м/с на высоте размещения ветроколеса. Приведем данные о скорости ветра для отдельных районов России. Скорости ветра 8 м/с и более наблюдаются в следующих пунктах России (в скобках указаны значения среднегодовой скорости ветра на высоте 10 м в м/с): Амдерма (8,0), Мархотский перевал в Краснодарском крае (9,3), мыс Желания в Архангельской области (8,0), Пестрая Дресва на Магадане (9,0), Симутир на Курильских островах (10,4), Сюркуль в Хабаровском крае (10,4), гора Эльбрус (8,7). Скорости ветра от 7 до 7,9 м/с характерны для следующих пунктов; Анадырь (7,6), Вайда-Губа в Мурманской области (7,5), Ванкарем (7,9), Гижига в Магаданской области (7,9), Колюгино на Чукотке,(7,4), Кресты на Таймыре (7,3), Петропавловск-Камчатский (7,0), Шумшу на Сахалине (7,9).

В то же время в районах восточнее реки Енисея до побережья Охотского моря преобладают ветры слабой интенсивности - от 1,5 до 3,5 м/с; только на самом побережье она повышается.

Из этого перечня можно увидеть определенную закономерность - высокие скорости ветра характерны для морских побережий и горных перёвалов. Эта закономерность подтверждается также зарубежными исследователями. Например, западногерманские специалисты, изучавшие возможность создания системы мощных ветровых электростанций в Германии, сообщает о том, что скорости ветра на Балтийском побережье Германии находятся в интервале 6-7,5 м/с, во внутренних же районах эти значения меньше. Одновременно они приводят данные о периоде затишья. Оказалось, что периоды затишья (штиля) наблюдаются, как правило, летом, на морском побережье Германии продолжительностью 7-10 ч, во внутренних районах страны - 16-30 ч максимально до 130 ч. Эти же специалисты указывают еще на одну деталь при определении скорости ветра.

Систематические метеонаблюдения и определения скорости ветра ведут, как правило, на высоте 10 м, а ветроколесо расположено на высоте 100 м. Экономически приемлемой считается работа ветровой установки в течение примерно 2500 ч/год Сразу же возникает вопрос: что делать потребителю в то время когда, ветра нет или его скорость недостаточна для обеспечения работы установки? В этом случае имеется несколько возможностей. Одна из них - использование резервного источника энергии, в частности подключение другой энергосистемы. Другой вариант предусматривает работу ветровой установки в комбинации с аккумулятором энергии механическим, тепловым или электрическим. Зарубежные специалисты отмечают, что только аккумулирование энергии одной или нескольких ветровых установок экономически невыгодно. Целесообразно применять аккумуляторы ветровой установки в комбинации с энергосистемой, причем рекомендуется иметь их электроемкость 1-2 кВт/ч на 1 кВт установленной мощности ветровой установки. Наконец, третий вариант - это комбинация ветровой и солнечной электростанции, которые в принципе могут резервировать друг друга.

Принципы преобразования ветровой энергии

С помощью ветроэнергетической установки в механическую энергию может быть преобразована только часть энергии ветрового потока. Отношение кинетической энергии ветрового потока Ев, преобразованной с помощью ветровой турбины в механическую энергию, к кинетической энергии невозмущенного ветрового потока Е называется коэффициентом мощности, или коэффициентом использования энергии ветра

В большинстве конструкций ветроэнергетических установок для преобразования кинетической энергии ветра в механическую энергию используется принцип подъемной силы крыла.

Если лопасть, имеющая профиль крыла, омывается ламинарным потоком воздуха, то за счет разной скорости воздуха в нижней и верхней части лопасти возникает разное давление и на лопасть действует подъемная сила F и сила лобового сопротивления Р. При разработке профиля стремятся к тому, чтобы сила F была максимальной, а сила Р - минимальной. Сила Fi обеспечивает перемещение лопасти в плоскости ее вращения, сила F2 воспринимается опорой. Угол р между хордой лопасти и направлением движения лопасти называется. углом установки, угол у между хордой и направлением относительной скорости ветра w' - углом атаки. Угол р зависит только от ориентации лопасти, угол у - от скорости ветра и скорости перемещения лопасти. Скорость v перемещения элемента лопасти зависит от расстояния г этого элемента, от оси вращения и от частоты вращения

Таким образом, при фиксированном угле установки угол атаки на разных участках лопасти оказывается разным. Чтобы выдержать угол атаки в пределах оптимального, прибегают к закрутке лопасти по его длине.

В большинстве современных ветровых турбин с помощью чгпециаль-0,5 ных устройств (центробежных, гидравлических и других) обеспечивается возможность поворота всей лопасти или ее части, изменения за счет этого угла атаки и регулирования мощности на валу по заданному закону.

Ветровые турбины различных типов имеют существенно отличающиеся зависимости коэффициента использования энергии ветра от коэффициента быстроходности

Достоинства и недостатки ветроэнергетики

Каковы недостатки ветровых энергетических установок?

Прежде всего их работа неблагоприятно влияет на работу телевизионной сети. Вот какой любопытный пример можно привести в этой связи. Несколько лет тому назад от жителей Оркнейских островов (Великобритания) стали поступать необычные жадобы. Оказалось, что при работе ветровой станции, построенной на одном их холмов, возникают такие сильные помехи в работе телевизионной сети, что на экранах телевизоров пропадает изображение. Выход нашли в строительстве рядом с ветровой установкой мощного телевизионного ретранслятора, который позволил усиливать телевизионные сигналы. По имеющимся данным, ветровая энергетическая установка мощностью 0,1 МВт может вызвать искажение телевизионных сигналов на расстоянии до 0,5 км.

Другая неожиданная особенность ветровых установок проявилась в том, что они оказались источником достаточно интенсивного инфразвукового шума, неблагоприятно действующего на человеческий организм, вызывающего постоянное угнетенное состояние, сильное беспричинное беспокойство и жизненный дискомфорт. Как показал опыт эксплуатации большого числа ветровых установок в США, этот шум не выдерживают ни животные, ни птицы, покидая район размещения станции, т.е. территории самой ветровой станции и примыкающие к ней становятся непригодными для жизни людей, животных и птиц.

Однако главный недостаток этого вида энергии наряду с изменчивостью скорости ветра - это низкая интенсивность, что требует значительной территории для размещения ветровой установки. Из проведенных специалистами расчетов следует, что оптимальным для ветрового колеса является диаметр 100 м. При таких геометрических размерах и плотности энергии на единицу площади ветрового колеса 500 Вт/м2 (скорость ветра 9,2 м/с) из ветрового потока можно получить электрическую мощность, близкую к 1 МВт. На площади 1 км2 можно разместить 2-3 установки указанной мощности с учетом того, что они должны находиться одна от, другой на расстоянии, равном трем их высотам, чтобы не мешать друг другу, и не снижать эффективности своей работы.

Примем для оценки, что на площади 1 км2 размещено 3 установки, т.е. с 1 км2 можно снять 3 МВт электрической мощности. Это означает, что для размещения ветровой станции электрической мощностью 1000 МВт нужна площадь, равная ' 330 км2. Если сравнивать ветровые и тепловые электростанции по энерговыработке в течение года, то полученное значение следует увеличить не менее чем в 2-3 раза. Для сравнения укажем, что площадь Курской АЭС мощностью 4000 МВт вместе с вспомогательными сооружениями, водоемом-охладителем и жилым поселком составляет 30 км2, т.е. на 1000 МВт электрической мощности приходится 7,5 км2. Другими словами, размер территории ветровой станции в расчете на 1000 МВт на 2 порядка превышает площадь, занимаемую современной АЭС.

Приведенная оценка расхода земельных ресурсов для размещения мощной ветровой электростанции, во первых свидетельствует о необходимости тщательного выбора площадки для нее, имея в виду использование бросовых земель, не пригодных для сельскохозяйственного оборота; во-вторых, ставит вопрос о целесообразности сооружения менее мощных ветровых станций для снабжения энергией небольшого района или населенного пункта. Создание таких электростанций (вместе с аккумулятором энергии) может оказаться полезным для электрообеспечения отдаленных поселков и деревень, а также различных сельскохозяйственных работ.

Несмотря на это, отдельные ученые считают, что следует развивать крупномасштабную ветроэнергетику. Перед войной у нас в стране только в колхозах и совхозах работало более 8000 ветровых установок. В 1930г. на базе отдела ветродвигателей ЦАГИ был создан Центральный ветроэнергетический институт, в 1938 г. было организовано конструкторское бюро по ветровым энергетическим установкам. В предвоенные годы и после войны было разработано и выпущено довольно большое число (примерно 10 тыс.шт.) разнообразных ветровых установок. Интенсивная работа по использованию энергии ветра ведется в ряде зарубежных стран.

Итак, можно указать следующие достоинства и недостатки энергии ветра: отсутствие влияния на тепловой баланс атмосферы Земли, потребления кислорода, выбросов углекислого газа и других загрязнителей, возможность преобразования в различные виды энергии (механическую, тепловую, элекрическую), но при этом низкая плотность энергии, приходящейся на единицy площади ветрового колеса; непредсказуемые изменения скорости ветра в .течение суток и сезона, требующие резервирования ветровой станции или аккумулирования произведенной энергии; отрицательное влияние на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Отечественный и зарубежный опыт свидетельствует о технической осуществимости и целесообразности сооружения и эксплуатации ветровых энергетических установок небольшой мощности для удаленных поселков и отгонных пастбищ, а также в аграрном секторе.

Ветроэлектрические станции

Ветроэлектрическая станция - установка, преобразующая кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания. На период безветрия ветроэлектрическая станция имеет резервный тепловой двигатель. Различают крылатые ветродвигатели с коэффициентом использования энергии ветра до 0,48, карусельные и роторные, с коэффициентом использования не более 0,15, барабанные и парусные. Ветродвигатели применяют в ветроэнергетических установках, которые состоят из ветроагрегата, устройства, аккумулирующего энергию или резервирующего мощность, и систем автоматического управления и регулирования режимов работы установки. Различают ветроэнергетические установки специального назначения (насосные или водоподъемные, электрически зарядные, мельничные, водоопреснительные и т.п.) и комплексного применения (ветросиловые и ветроэлектрические станции). Мощность ветроэнергетических установок - от 10 до 1000 Вт.

Ветроэнергетические установки (ВЭУ) достигли сегодня уровня коммерческой зрелости и в местах с благоприятными скоростями ветра могут конкурировать с традиционными источниками электроснабжения. Из всевозможных устройств, преобразующих энергию ветра в механическую работу, в подавляющем большинстве случаев используются лопастные машины с горизонтальным валом, устанавливаемым по направлению ветра. Намного реже применяются устройства с вертикальным валом. Установка ВЭУ оказывается целесообразной только в местах, где среднегодовые скорости ветра достаточно велики. КПД достигает для лучших ветровых колес примерно 0,45. Это означает, например, что ветровое колесо с длиной лопасти 10 м при скорости ветра 10 м/с может иметь мощность на валу в лучшем случае 85 кВт. Наибольшее распространение из установок, подсоединяемых к сети, сегодня получили ветроэнергетические установки (ВЭУ) с единичной мощностью от 100 до 500 кВт. Расчетная скорость ветра для больших ВЭУ обычно принимается на уровне 11-15 м/с. Вообще, как правило, чем больше мощность агрегата, тем на большую скорость ветра он рассчитывается. Однако в связи с непостоянством скорости ветра большую часть времени ВЭУ вырабатывает меньшую мощность. Считается, что если среднегодовая скорость ветра в данном месте не менее 5-7 м/с, а эквивалентное число часов в году, при котором вырабатывается номинальная мощность не менее 2000, то такое место благоприятно для установки крупной ВЭУ и даже ветровой фермы. Автономные установки киловаттного класса, предназначенные для энергоснабжения сравнительно мелких потребителей, могут применяться и в районах с меньшими среднегодовыми скоростями ветра. Сегодня в некоторых промышленно развитых странах установленная мощность ВЭУ достигает заметных значений. Так, в США установлено более 1,5 млн. кВт ВЭУ, в Дании ВЭУ производят около 3 % потребляемой страной энергии; велика установленная мощность ВЭУ в Швеции, Нидерландах, Великобритании и Германии. По мере совершенствования оборудования ВЭУ и увеличения объема их выпуска стоимость ВЭУ, а значит и стоимость производимой ими энергии снижаются. Если в 1981 г. стоимость электроэнергии производимой ВЭУ, составляла примерно 30 центов за кВт.ч, то сегодня она составляет 6-8 центов. В развивающихся странах интерес к ВЭУ связан в основном с автономными установками малой мощности, которые могут использоваться в деревнях, удаленных от систем централизованного электроснабжения. Такие установки уже сегодня конкурентоспособны с дизелями, работающими на привозимом топливе. Однако в некоторых случаях непостоянство скорости ветра заставляет либо устанавливать параллельно с ВЭУ аккумуляторную батарею, либо резервировать ее установкой на органическом топливе. Естественно, это повышает стоимость установки и ее эксплуатации, поэтому распространение таких установок пока невелико. Предлагаемые парусные ветрогенераторы предназначены для бесперебойного снабжения электроэнергией промышленных параметров 380/220/50 владельцев индивидуальных строений, агроферм и предприятий малого бизнеса и т.д. Кроме электроэнергии - снабжают бытовым газом кухонные плиты (гидролиз + науглераживание).Предусмотрена возможность самостоятельной сборки ветроэлектростанций из поставляемых комплектов деталей в разных вариантах. Отличаются от традиционных лопастных ветроустановок дешевизной, абсолютной экологичностью, способностью использовать энергию слабых ветров (2...5м/сек) и все это на фоне полного отсутствия больших вращающихся разнесенных масс, которые обеспечивают довольно высокую степень безопасности для окружающих. К примеру: классическую лопастную вертушку-маломерку нельзя поставить на пасеке из-за вероятности смертоубийства пчел и другой живности. Отсутствуют звуковые возмущения, вибрации и другие отрицательные стороны традиционных ветряных систем.

С целью привлечь внимание потенциальных потребителей из числа вынужденных клиентов РАО ЕЭС, еще на стадии конструкторской проработки ветрогенератора, возникла мысль обеспечить крестьян не только электроэнергией но и бытовым газом ... Предпосылкой к тому, послужил очень низкий КПД щелочных аккумуляторов. Действительно - паспортные данные на "щелочники", к примеру, гласят о 40% процентах потерь электроэнергии. Куда ж пропадают эти самые проценты? Часть энергии преобразуется в тепло, а еще ЧАСТЬ энергии, - идет на не нужный (?) в хозяйстве гидролиз. Оказалось что если еще "ухудшить" КПД имеющихся в распоряжении аккумуляторов - изменив например, состав электролита в нужную сторону, можно получить из готовых серийных батарей превосходный гидролизер промышленного изготовления и науглераживать газ для снижения пожаровзрывоопасности и увеличения теплотворности. В агрономии постоянно приходиться запаривать корм животным или обогревать теплицы, и в этой части газ проявляет свои лучшие свойста по теплотворности, чем электрообогрев ТЭНами. При этом буферный каскад работает с сумарным КПД 95%. ВЭУ-380-220/50(СХ) даже в полный штиль и отсутствия госсети обеспечит хозяйство электроэергией и газом. В зависимости от комплектации парусные ВЭУ поставляются в однофазном исполнении и трехфазном. Типовые модели: 1кВт ,4кВт,10кВт. Максимальная мощность - до 100кВт

Стоимость: на 20.01.20064кВт ветроагрегат - 80 000 руб. 4кВт ветроагрегат для Родовых поместий - 72 000 руб.

Комплект: поворотная опора (механизм крепления на штангу), мотор-редуктор, ветро-колесо, две запасных лопасти.

Напряжение на выходе: 380В.

Дополнительная комплектация: аккумуляторные батареи, зарядное устройство, инвертор, электроника для совмещения с центральной сетью, штанга, крепеж штанги.

1.1ТИПЫ ВЕТРОДВИГАТЕЛЕЙ

Большинство типов ветродвигателей известны так давно, что история умалчивает имена их изобретателей. Основные разновидности ветроагрегатов изображены на рис. 1. Они делятся на две группы:

1.ветродвигатели с вертикальной осью вращения (карусельные: лопастные

(1) и ортогональные (6)).

2.ветродвигатели с горизонтальной осью вращения (крыльчатые) (2-5);

Типы крыльчатых ветродвигателей отличаются только количеством лопастей.

Рис1. Типы ветродвигателей

Крыльчатые

Рис.2. Традиционный крыльчатый ветродвигатель

Традиционная компоновка ветряков - с горизонтальной осью вращения (рис.2) - неплохое решение для агрегатов малых размеров и мощностей. Когда же размахи лопастей выросли, такая компоновка оказалась неэффективной, так как на разной высоте ветер дует в разные стороны. В этом случае не только не удается оптимально ориентировать агрегат по ветру, но и возникает опасность разрушения лопастей.

Для крыльчатых ветродвигателей, наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастей крыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор. Карусельные ветродвигатели обладают тем преимуществом, что могут работать при любом направлении ветра, не изменяя своего положения.

Коэффициент использования энергии ветра у крыльчатых ветродвигателей намного выше, чем у карусельных. В то же время, у карусельных ветродвигателей намного больше момент вращения. Он максимален для карусельных лопастных агрегатов при нулевой относительной скорости ветра.

Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без повышающего редуктора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.

Карусельные

Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем “откуда дует ветер”, что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде.

Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.

Ортогональные.

Ортогональные ветроагрегаты, как полагают специалисты, перспективны для большой энергетики. Сегодня перед ветропоклонниками ортогональных конструкций стоят определенные трудности. Среди них, в частности, проблема запуска.

В ортогональных установках используется тот же профиль крыла, что и в дозвуковом самолете . Самолет, прежде чем “опереться” на подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию - раскрутить и довести до определенных аэродинамических параметров, а уже потом она сама перейдет из режима двигателя в режим генератора.

Отбор мощности начинается при скорости ветра около 5 м/с, а номинальная мощность достигается при скорости 14-16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца, по которому движутся крылья, составит около 80 метров.

У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми - взять числом, а не размером. Снабдив каждый электрогенератор отдельным преобразователем, можно просуммировать выходную мощность, вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки.

Неожиданные проявления и применения.

Реально работающие ветроагрегаты обнаружили ряд отрицательных явлений. Например, распространение ветрогенераторов может затруднить прием телепередач и создавать мощные звуковые колебания. Появление экспериментального ветродвигателя на Оркнейских островах (Англия) в 1986 году вызвало многочисленные жалобы от телезрителей ближайших населенных пунктов. В итоге около ветростанции был построен телевизионный ретранслятор. Лопасти крыльчатой ветряной турбины были выполнены из стеклопластика, который не отражает и не поглощает радиоволны. Помехи создавал стальной каркас лопастей и имеющиеся на них металлические полоски, предназначенные для отвода ударов молний. Они отражали и рассеивали ультракоротковолновый сигнал. Отраженный сигнал смешивался с прямым, идущим от передатчика, и создавал на экранах помехи. Построенная в 1980 году в городке Бун (США) ветроэлектростанция, дающая 2 тысячи киловатт, действовала безотказно, но вызывала нарекания жителей городка. Во время работы ветряка в окнах дребезжали стекла, и звенела посуда на полках. Было установлено, что шестидесятиметровый винт при определенной скорости вращения издавал инфразвук. Он не ощущается человеческим ухом, но вызывает низкочастотные колебания предметов и небезопасен для человека. После доработки лопастей от инфразвуковых колебаний удалось избавиться. Ветродвигатели могут не только вырабатывать энергию. Способность привлекать внимание вращением без расходования энергии используется для рекламы. Наиболее простой - однолопастный карусельный ветродвигатель представляет собой прямоугольную пластинку с отогнутыми краями (рис.3). Закрепленный на стене он начинает вращаться даже при незначительном ветре. На большой площади крыльев карусельный трех-четырех лопастный ветродвигатель может вращать рекламные плакаты и небольшой генератор. Запасенная в аккумуляторе электроэнергия может освещать крылья с рекламой в ночное время, а в безветренную погоду и вращать их.

Рис.3. Однолопастной карусельный двигатель

2. ЭНЕРГИЯ СОЛНЦА

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

СКОЛЬКО СОЛНЕЧНОЙ ЭНЕРГИИ ПОПАДАЕТ НА ЗЕМЛЮ?

Солнце излучает огромное количество энергии - приблизительно 1,1x1020 кВт·ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако из-за отражения, рассеивания и поглощения ее атмосферными газами и аэрозолями только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли.

Солнечное излучение в атмосфере Земли делится на так называемое прямое излучение и на рассеянное на частицах воздуха, пыли, воды, и т.п., содержащихся в атмосфере. Их сумма образует суммарное солнечное излучение.

Количество энергии, падающей на единицу площади в единицу времени, зависит от ряда факторов:

-широты

-местного климата

- сезона года

-угла наклона поверхности по отношению к Солнцу.

ВРЕМЯ И МЕСТО

Количество солнечной энергии, падающей на поверхность Земли, изменяется вследствие движения Солнца. Эти изменения зависят от времени суток и времени года. Обычно в полдень на Землю попадает больше солнечной радиации, чем рано утром или поздно вечером. В полдень Солнце находится высоко над горизонтом, и длина пути прохождения лучей Солнца через атмосферу Земли сокращается. Следовательно, меньше солнечной радиации рассеивается и поглощается, а значит больше достигает поверхности.

Количество солнечной энергии, достигающей поверхности Земли, отличается от среднегодового значения: в зимнее время - менее чем на 0,8 кВт·ч/м2 в день на Севере Европы и более чем на 4 кВт·ч /м2 в день в летнее время в этом же регионе. Различие уменьшается по мере приближения к экватору.

Количество солнечной энергии зависит и от географического месторасположения участка: чем ближе к экватору, тем оно больше. Например, среднегодовое суммарное солнечное излучение, падающее на горизонтальную поверхность, составляет: в Центральной Европе, Средней Азии и Канаде - приблизительно 1000 кВт·ч/м2; в Средиземноморье - приблизительно 1700 кВт·ч /м2; в большинстве пустынных регионов Африки, Ближнего Востока и Австралии - приблизительно 2200 кВт·ч/м2.

Таким образом, количество солнечной радиации существенно различается в зависимости от времени года и географического положения (см. таблицу). Этот фактор необходимо учитывать при использовании солнечной энергии.

Количество солнечной радиации в Европе и странах Карибского бассейна, кВт·ч/м2 в день.

ОБЛАКА

Количество солнечной радиации, достигающее поверхности Земли, зависит от различных атмосферных явлений и от положения Солнца как в течение дня, так и в течение года. Облака - основное атмосферное явление, определяющее количество солнечной радиации, достигающей поверхности Земли. В любой точке Земли солнечная радиация, достигающая поверхности Земли, уменьшается с увеличением облачности. Следовательно, страны с преобладающей облачной погодой получают меньше солнечной радиации, чем пустыни, где погода в основном безоблачная. На формирование облаков оказывает влияние наличие таких особенностей местного рельефа, как горы, моря и океаны, а также большие озера. Поэтому количество солнечной радиации, полученной в этих областях и прилегающих к ним регионах, может отличаться. Например, горы могут получить меньше солнечного излучения, чем прилегающие предгорья и равнины. Ветры, дующие в сторону гор, вынуждают часть воздуха подниматься и, охлаждая влагу, находящуюся в воздухе, формируют облака. Количество солнечной радиации в прибрежных районах также может отличаться от показателей, зафиксированных в областях, расположенных внутри континента.

Количество солнечной энергии, поступающей в течение дня, в значительной степени зависит от местных атмосферных явлений. В полдень при ясном небе суммарное солнечное излучение, попадающее на горизонтальную поверхность, может достигнуть (например, в Центральной Европе) значения в 1000 Вт/м2 (при очень благоприятных погодных условиях этот показатель может быть выше), в то время, как при очень облачной погоде - ниже 100 Вт/м2 даже в полдень.

ЗАГРЯЗНЕНИЕ

Антропогенные и природные явления также могут ограничивать количество солнечной радиации, достигающей поверхности Земли. Городской смог, дым от лесных пожаров и переносимый по воздуху пепел, образовавшийся в результате вулканической деятельности, снижают возможность использования солнечной энергии, увеличивая рассеивание и поглощение солнечной радиации. То есть, эти факторы в большей степени влияют на прямое солнечное излучение, чем на суммарное. При сильном загрязнении воздуха, например, при смоге, прямое излучение уменьшается на 40%, а суммарное - лишь на 15-25%. Сильное вулканическое извержение может понизить, причем на большой территории поверхности Земли, прямое солнечное излучение на 20%, а суммарное - на 10% на период от 6 месяцев до 2 лет. При уменьшении количества вулканического пепла в атмосфере эффект ослабевает, но процесс полного восстановления может занять несколько лет.

ПОТЕНЦИАЛ

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 1013) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 1013) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.

Количество солнечной энергии, попадающей на поверхность Земли, во много раз превышает ее расход даже в таких странах как США, где энергопотребление огромно. Если бы только 1% территории страны был использован для установки солнечного оборудования (фотоэлектрические батареи или солнечные системы для горячего водоснабжения), работающего с КПД 10%, то США были бы полностью обеспечены энергией. То же самое можно сказать и в отношении всех других развитых стран. Однако, в определенном смысле, это нереально - во-первых, из-за высокой стоимости фотоэлектрических систем, во-вторых, невозможно охватить такие большие территории солнечным оборудованием, не нанося вред экосистеме. Но сам принцип является верным. Можно охватить ту же самую территорию, рассредоточив установки на крышах зданий, на домах, по обочинам, на заранее определенных участках земли и т.д. К тому же, во многих странах уже более 1% земли отведено под добычу, преобразование, производство и транспортировку энергии. И, поскольку большая часть этой энергии является не возобновляемой в масштабе существования человечества, этот вид производства энергии намного более вреден для окружающей среды, чем солнечные системы. Проблема утилизации экологически чистой и притом «дармовой солнечной энергии волнует человечество с незапамятных времен, но только недавно успехи в этом направлении позволили начать формировать реальный, развивающийся рынок солнечной энергетики. К настоящему времени основными способами прямой утилизации солнечной энергии являются преобразование ее в электрическую и тепловую. Устройства, преобразующие солнечную энергию в электрическую, называются фотоэлектрическими или фотовольтаическими, а приборы, преобразующие солнечную энергию в тепловую, - термическими. В последнее время все большее распространение получают так называемые гибридные или как их еще называют комбинированные системы, сочетающие в себе функции фотовольтаических и термических устройств. Отличительной особенностью гибридных систем является возможность их функционирования в автономном режиме, без подключения к централизованным энергосистемам. В литературе все три типа приборов называются гелиосистемами. Сейчас, суммарная мировая мощность автономных фотоэлектрических установок достигла 500 МВт.

2.1 ПРЕОБРАЗОВАТЕЛИ СОЛНЕЧНОЙ ЭНЕРГИИ

Существует два основных направления в развитии солнечной энергетики: решение глобального вопроса снабжения энергией и создание солнечных преобразователей, рассчитанных на выполнение конкретных локальных задач. Эти преобразователи, в свою очередь, также делятся на две группы; высокотемпературные и низкотемпературные.

В преобразователях первого типа солнечные лучи концентрируются на небольшом участке, температура которого поднимется до 3000°С. Такие установки уже существуют. Они используются, например, для плавки металлов (см. рис. 4.)

Рис.4.Высокотемпературный гелиостат

Самая многочисленная часть солнечных преобразователей работает при гораздо меньших температурах - порядка 100-200°С. С их помощью подогревают воду, обессоливают ее, поднимают из колодцев. В солнечных кухнях готовят пищу. Сконцентрированным солнечным теплом сушат овощи, фрукты и даже замораживают продукты. Энергию солнца можно аккумулировать днем для обогрева домов и теплиц в ночное время.

Солнечные установки практически не требуют эксплуатационных расходов, не нуждаются в ремонте и требуют затрат лишь на их сооружение и поддержание в чистоте. Работать они могут бесконечно.

2.2 КОНЦЕНТРАТОРЫ СОЛНЕЧНОГО СВЕТА

В этих установках используются параболические зеркала (лотки), которые концентрируют солнечный свет на приемных трубках, содержащих жидкость-теплоноситель. Эта жидкость нагревается почти до 400 оC и прокачивается через ряд теплообменников; при этом вырабатывается перегретый пар, приводящий в движение обычный турбогенератор для производства электричества. Для снижения тепловых потерь приемную трубку может окружать прозрачная стеклянная трубка, помещенная вдоль фокусной линии цилиндра. Как правило, такие установки включают в себя одноосные или двуосные системы слежения за Солнцем. В редких случаях они являются стационарными.

Построенные в 80-х годах в южно-калифорнийской пустыне фирмой "Luz International", девять таких систем образуют крупнейшее на сегодняшний день предприятие по производству солнечного теплового электричества. Эти электростанции поставляют электричество в коммунальную электросеть Южной Калифорнии. Еще в 1984 г. "Luz International" установила в Деггетте (Южная Калифорния) солнечную электрогенерирующую систему "Solar Electric Generating System I" (или SEGS I) мощностью 13,8 МВт. В приемных трубках масло нагревалось до температуры 343 оC и вырабатывался пар для производства электричества. Конструкция "SEGS I" предусматривала 6 часов аккумулирования тепла. В ней применялись печи на природном газе, которые использовались в случае отсутствия солнечной радиации. Эта же компания построила аналогичные электростанции "SEGS II - VII" мощностью по 30 МВт. В 1990 г. в Харпер Лейк были построены "SEGS VIII и IX", каждая мощностью 80 МВт. Из-за многочисленных законодательных и политических трудностей компания "Luz International" и ее филиалы 25 ноября 1991 года известили о своем банкротстве. Теперь станциями "SEGS I - IX" управляют другие фирмы по старому контракту с "Southern California Edison". От планов постройки "SEGS X, XI, XII" пришлось отказаться, что означает потерю дополнительных 240 МВт запланированной мощности.

Оценки технологии показывают ее более высокую стоимость, чем у солнечных электростанций башенного и тарельчатого типа (см. ниже), в основном, из-за более низкой концентрации солнечного излучения, а значит, более низких температур и, соответственно, эффективности. Однако, при условии накопления опыта эксплуатации, улучшения технологии и снижения эксплуатационных расходов параболические концентраторы могут быть наименее дорогостоящей и самой надежной технологией ближайшего будущего.

2.3 СОЛНЕЧНАЯ УСТАНОВКА ТАРЕЛЬЧАТОГО ТИПА

Этот вид гелиоустановки представляет собой батарею параболических тарелочных зеркал (схожих формой со спутниковой тарелкой), которые фокусируют солнечную энергию на приемники, расположенные в фокусной точке каждой тарелки. Жидкость в приемнике нагревается до 1000 оС и непосредственно применяется для производства электричества в небольшом двигателе и генераторе, соединенном с приемником.
В настоящее время в разработке находятся двигатели Стирлинга и Брайтона. Несколько опытных систем мощностью от 7 до 25 кВт работают в Соединенных Штатах. Высокая оптическая эффективность и малые начальные затраты делают системы зеркал/двигателей наиболее эффективными из всех гелиотехнологий. Системе из двигателя Стирлинга и параболического зеркала принадлежит мировой рекорд по эффективности превращения солнечной энергии в электричество. В 1984 году на Ранчо Мираж в штате Калифорния удалось добиться практического КПД 29%.

Вдобавок к этому, благодаря модульному проектированию, такие системы представляют собой оптимальный вариант для удовлетворения потребности в электроэнергии как для автономных потребителей (в киловаттном диапазоне), так и для гибридных (в мегаваттном), соединенных с электросетями коммунальных предприятий.

Эта технология успешно реализована в целом ряде проектов. Один из них - проект STEP (Solar Total Energy Project) в американском штате Джорджия. Это крупная система параболических зеркал, работавшая в 1982-1989 гг. в Шенандоа. Она состояла из 114 зеркал, каждое 7 метров в диаметре. Система производила пар высокого давления для выработки электричества, пар среднего давления для трикотажного производства, а также пар низкого давления для системы кондиционирования воздуха на той же трикотажной фабрике. В октябре 1989 г. энергокомпания закрыла станцию из-за повреждений на главной турбине и нехватки средств для ремонта станции.

Совместное предприятие "Sandia National Lab" и "Cummins Power Generation" в настоящее время пытается поставить на коммерческие рельсы систему мощностью 7,5 кВт. "Cummins" надеется продавать 10 000 единиц в год к 2004 г. Совместным использованием параболических зеркал и двигателей Стирлинга заинтересовались и другие компании. Так, фирмы "Stirling Technology", "Stirling Thermal Motors" и "Detroit Diesel" совместно с корпорацией "Science Applications International Corporation" создали совместное предприятие с капиталом 36 млн долларов с целью разработки 25-киловаттной системы на базе двигателя Стирлинга.

2.4 СОЛНЕЧНЫЕ ЭЛЕКТРОСТАНЦИИ БАШЕННОГО ТИПА С ЦЕНТРАЛЬНЫМ ПРИЕМНИКОМ

В этих системах используется вращающееся поле отражателей-гелиостатов. Они фокусируют солнечный свет на центральный приемник, сооруженный на верху башни, который поглощает тепловую энергию и приводит в действие турбогенератор. Управляемая компьютером двуосная система слежения устанавливает гелиостаты так, чтобы отраженные солнечные лучи были неподвижны и всегда падали на приемник. Циркулирующая в приемнике жидкость переносит тепло к тепловому аккумулятору в виде пара. Пар вращает турбину для выработки электроэнергии, либо непосредственно используется в промышленных процессах. Температуры на приемнике достигают от 538 до 1482 оC.
Первая башенная электростанция под названием "Solar One" близ Барстоу (Южная Калифорния) с успехом продемонстрировала применение этой технологии для производства электроэнергии. Предприятие работало в середине 1980-х. На нем использовалась водно-паровая система мощностью 10 МВтэ. В 1992 г. консорциум энергетических компаний США принял решение модернизировать "Solar One" для демонстрации приемника на расплавленных солях и теплоаккумулирующей системы. Благодаря аккумулированию тепла башенные электростанции стали уникальной гелиотехнологией, позволяющей диспетчеризацию электроэнергии при коэффициенте нагрузки до 65%. В такой системе расплавленная соль закачивается из "холодного" бака при температуре 288 оC и проходит через приемник, где нагревается до 565 оC, а затем возвращается в "горячий" бак. Теперь горячую соль по мере надобности можно использовать для выработки электричества. В современных моделях таких установок тепло хранится на протяжении 3 - 13 часов.

"Solar Two" - башенная электростанция мощностью 10 МВт в Калифорнии - это прототип крупных промышленных электростанций. Она впервые дала электричество в апреле 1996 г., что явилось началом 3-летнего периода испытаний, оценки и опытной выработки электроэнергии для демонстрации технологии расплавленных солей. Солнечное тепло сохраняется в расплавленной соли при температуре 550 оC, благодаря чему станция может вырабатывать электричество днем и ночью, в любую погоду. Успешное завершение проекта "Solar Two" должно способствовать строительству таких башен на промышленной основе в пределах мощности от 30 до 200 МВт.

Водонагреватель. Водонагреватель предназначен для снабжения горячей водой, в основном, индивидуальных хозяйств. Устройство состоит из короба со змеевиком, бака холодной воды, бака-аккумулятора и труб. Короб стационарно устанавливается под углом 30-50° с ориентацией на южную сторону. Холодная, более тяжелая, вода постоянно поступает в нижнюю часть короба, там она нагревается и, вытесненная холодной водой, поступает в бак-аккумулятор. Она может быть использована для отопления, для душа либо для других бытовых нужд.

Дневная производительность на широте 50° примерно равна 2 кВт/ч с квадратного метра. Температура воды в баке-аккумуляторе достигает 60-70°. КПД установки - 40%.

Тепловые концентраторы. Каждый, кто хоть раз бывал в теплицах, знает, как резко отличаются условия внутри нее от окружающих: Температура в ней выше. Солнечные лучи почти беспрепятственно проходят сквозь прозрачное покрытие и нагревают почву, растения, стены, конструкцию крыши. В обратном направлении тепло рассеивается мало из-за повышенной концентрации углекислого газа. По сходному принципу работают и тепловые концентраторы.

Это - деревянные, металлические, или пластиковые короба, с одной стороны закрытые одинарным или двойным стеклом. Внутрь короба для максимального поглощения солнечных лучей вставляют волнистый металлический лист, окрашенный в черный цвет. В коробе нагревается воздух или вода, которые периодически или постоянно отбираются оттуда с помощью вентилятора или насоса.

3. ЖИЛОЙ ДОМ С СОЛНЕЧНЫМ ОТОПЛЕНИЕМ

Среднее за год значение суммарной солнечной радиации на широте 55°, поступающей в сутки на 20 мІ горизонтальной поверхности, составляет 50-60 кВт/ч. Это соответствует затратам энергии на отопление дома площадью 60 мІ .

Для условий эксплуатации сезонно обитаемого жилища средней полосы наиболее подходящей является воздушная система теплоснабжения. Воздух нагревается в солнечном коллекторе и по воздуховодам подается в помещение. Удобства применения воздушного теплоносителя по сравнению с жидкостным очевидны:

- нет опасности, что система замерзнет;

-нет необходимости в трубах и кранах;

- простота и дешевизна.

Недостаток - невысокая теплоемкость воздуха.

Конструктивно коллектор представляет собой ряд застекленных вертикальных коробов, внутренняя поверхность которых зачернена матовой краской, не дающей запаха при нагреве. Ширина короба около 60 см. В части расположения солнечного коллектора на доме предпочтение отдается вертикальному варианту. Он много проще в строительстве и дальнейшем обслуживании. По сравнению с наклонным коллектором (например, занимающим часть крыши), не требуется уплотнения от воды, отпадает проблема снеговой нагрузки, с вертикальных стекол легко смыть пыль.


Подобные документы

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Использование возобновляемых источников энергии. Энергия солнца, ветра, биомассы и падающей воды. Генерирование электричество из геотермальных источников. Сущность геотермальной энергии. Геотермальные электрические станции с комбинированным циклом.

    реферат [1,7 M], добавлен 15.05.2010

  • Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат [3,4 M], добавлен 04.06.2015

  • Природа, достоинства и недостатки геотермальной энергии. Изучение способов ее получения. Повышение эффективности преобразования энергии геотермальных вод в электроэнергию. Использование естественного выхода пара из подземных резервуаров и источников.

    реферат [344,9 K], добавлен 14.01.2015

  • Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат [3,0 M], добавлен 18.10.2013

  • Оценка состояния энергетической системы Казахстана, вырабатывающей электроэнергию с использованием угля, газа и энергии рек, и потенциала ветровой и солнечной энергии на территории республики. Изучение технологии комбинированной возобновляемой энергетики.

    дипломная работа [1,3 M], добавлен 24.06.2015

  • Основные достоинства и недостатки геотермальной энергии. Мировой потенциал геотермальной энергии и перспективы его использования. Система геотермального теплоснабжения, строительство геотермальных электростанций. Востребованность геотермальной энергетики.

    контрольная работа [4,0 M], добавлен 31.10.2011

  • Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация [911,5 K], добавлен 20.12.2009

  • Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа [135,3 K], добавлен 07.03.2016

  • Преимущества использования вечных, возобновляемых источников энергии – текущей воды и ветра, океанских приливов, тепла земных недр, Солнца. Получение электроэнергии из мусора. Будущее водородной энергетики, минусы использования ее в качестве топлива.

    реферат [28,3 K], добавлен 10.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.