Возможности использования нетрадиционных и возобновляемых источников энергии

Современное состояние и перспективы развития мировой энергетики. Экологические основы использования возобновляющихся источников энергии. Способы использования геотермальной энергии. Последствия эксплуатации электростанций, подходы к их оценке и учету.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 01.08.2012
Размер файла 530,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ПЛЮСЫ И МИНУСЫ НИВИЗ

2. ОСВОЕНИЕ НИВИЭ В МИРЕ

3. ОСВОЕНИЕ НИВИЭ В РОССИИ

3.1 Малая гидроэнергетика

3.2 Ветровая энергетика

3.3 Биоэнергетика

3.4 Использование торфа

3.5 Потенциал сбросовой теплоты энергетики, промышленной и коммунально-бытовой сфер

3.6 Лесотехнический комплекс

ЗАКЛЮЧЕНИЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

ВВЕДЕНИЕ

В последние годы как в научно-технической литературе, так и в популярных изданиях появляются многочисленные публикации о нетрадиционных и возобновляемых источниках энергии (НИВИЭ). Оценки возможностей их широкого применения колеблются от восторженных до умеренно пессимистических. «Зеленые» призывают вообще заменить всю традиционную топливную и атомную энергетику на использование НВИЭ. Мнения специалистов гораздо более осторожны [1].

Чтобы понять роль и место этих новых источников энергии в будущем, полезно обратить взгляд в недавнее прошлое. В 60-е годы основой энергетики многих стран, в том числе экономически наиболее развитых, являлась нефть (в значительной мере - достаточно дешевая ближневосточная). В то время исследования в области использования НВИЭ многим казались чем-то экзотическим, эдакой причудой «высоколобых» интеллектуалов. Все переменилось в 1973 г. во время ближневосточного нефтяного кризиса. Вдруг стало ясно, что ориентация на импортную нефть представляет угрозу энергетической безопасности многих государств. Большинству экономически развитых стран пришлось срочно разрабатывать новую энергетическую стратегию, направленную на диверсификацию источников энергии, всемерное энергосбережение, а также среди прочих мер - на основательное изучение возможностей применения НВИЭ.

То, что ситуация на мировом нефтяном рынке вскоре стабилизировалась, не остановило указанные страны в реализации новой энергетической стратегии, и на этом пути были достигнуты впечатляющие результаты. Энергосберегающие меры были предприняты практически во всех сферах жизнедеятельности. Однако главным средством энергосбережения стала структурная перестройка экономики, направленная на уменьшение доли энергоемких производств (которые, как правило, являются к тому же экологически неблагополучными) и увеличение доли наукоемких. Достаточно сказать, что, например, в 1970 г. энергоемкость единицы валового национального продукта в США была несколько выше, чем в бывшем СССР, а в настоящее время в России этот показатель в два с лишним раза выше, чем в Штатах. Россия в большом количестве экспортирует алюминий, являющийся высокоэнергоемким продуктом, а импортирует, например, компьютеры, то есть наукоемкую и малоэнергоемкую продукцию.

Одним из положений новой энергетической стратегии стало всемерное развитие нетрадиционных направлений. Во многих странах оно превратилось в предмет государственной технической политики. Появились солидно финансируемые государственные программы в данной области. В ряде стран были приняты нормативно-законодательные акты в сфере использования НВИЭ, которые составили правовую, экономическую и организационную основу этого направления технического развития. Правовая база состоит в установлении права производителей электроэнергии на нетрадиционных источниках на подключение к сетям энергоснабжающих компаний, которые обязаны принимать эту энергию. Экономическая основа сводится к мерам по стимулированию применения НВИЭ, необходимому на этапе продвижения, становления и адаптации на энергетическом рынке. В различных странах применяются разные способы (и их сочетания) экономической поддержки: налоговые и кредитные льготы, благоприятные тарифы, дотации и т.п. Наконец, организационная основа решения проблемы состоит в определении государственного (федерального) органа (ведомства), ответственного в целом за данное направление. В функции такого органа входят разработка государственных программ развития НВИЭ, в том числе программы научно-исследовательских и опытно-конструкторских работ (НИОКР), создание демонстрационных объектов, проведение маркетинга на внутреннем и внешнем рынках, пропаганда и популяризация и т.п. Особо следует сказать о развитии НИОКР. Вообще говоря, технический прогресс в любой сфере деятельности немыслим без опережающего развития научной базы. Тем более это справедливо для таких новых областей, как использование НВИЭ. Ежегодные расходы на НИОКР в сфере нетрадиционной энергетики составляют в мире не менее 1 млрд долларов.

Созданная во многих странах нормативно-законодательная база по использованию НВИЭ является мощным инструментом государственной технической политики в этой области. Особенно развито это законодательство в США, где в последние 25 лет принято более дюжины законов в указанной сфере.

Необходимость повышения коммерческой эффективности электроэнергетического комплекса области в связи с реструктуризацией приводит к необходимости решения следующих проблем:

- ликвидация низкоэффективных потребителей и снабжающих их электрических сетей. Для Свердловской области, где имеется около 2000 мест проживания людей, около 500 населенных пунктов оказываются в зоне низкой экономической эффективности - снабжение энергией данных потребителей требует создания автономных энергоисточников;

- имеющаяся тенденция роста стоимости органического топлива с одной стороны и, имеющийся на территории области потенциал нетрадиционных источников энергии с другой стороны позволяют ставить вопрос о восстановлении и сооружении широкой сети установок НИВИЭ (нетрадиционных и возобновляемых источников энергии). Указанному обстоятельству способствует невысокий уровень инвестиций в сооружение установок НИВИЭ малой мощности, что позволяет широко развивать частные и коллективные формы собственности на энергоисточники. Оценка экономической эффективности использования НИВИЭ должна производиться с учётом снижения (до полного сокращения) затрат на содержание низкоэффективных сетей и замещение жидкого топлива [2].

1. ПЛЮСЫ И МИНУСЫ НИВИЭ

Каковы же эти нетрадиционные и возобновляемые источники энергии? К ним обычно относят солнечную, ветровую и геотермальную энергию, энергию морских приливов и волн, биомассы (растения, различные виды органических отходов), низкопотенциальную энергию окружающей среды. К НВИЭ также принято относить малые ГЭС (мощностью до 30 МВт при мощности единичного агрегата не более 10 МВт), которые отличаются от традиционных - более крупных - ГЭС только масштабом.

Рис. 1. Поле зеркал-гелиостатов Крымской солнечной электростанции

Указанные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относятся повсеместная распространенность большинства их видов, экологическая чистота. Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, так как энергия этих источников как бы бесплатная.

Рис. 2. На спине у верблюда - фотоэлектрическая установка

Отрицательные качества - это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, «перехватывающие» поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Правда, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат, но на начальной стадии они чувствительно «бьют по карману» тех, кто хочет использовать НВИЭ.

Рис. 3. Приливная электростанция Ранс во Франции

Больше неприятностей доставляет изменчивость во времени таких источников энергии, как солнечное излучение, ветер, приливы, сток малых рек, тепло окружающей среды. Если, например, изменение энергии приливов строго циклично, то процесс поступления солнечной энергии, хотя в целом и закономерен, содержит, тем не менее, значительный элемент случайности, связанный с погодными условиями. Еще более изменчива и непредсказуема энергия ветра. Зато геотермальные установки при неизменном дебите геотермального флюида в скважинах гарантируют постоянную выработку энергии (электрической или тепловой). Кроме того, стабильное производство энергии могут обеспечить установки, использующие биомассу, если они снабжаются требуемым количеством этого «энергетического сырья».

Говоря о производстве электроэнергии, следует заметить, что она представляет собой весьма специфический вид продукции, который должен быть потреблен в тот же момент, что и произведен. Ее нельзя отправить «на склад», как уголь, нефть или любой другой продукт или товар, поскольку фундаментальная научно-техническая проблема аккумулирования электроэнергии в больших количествах пока не решена, и нет оснований полагать, что она будет решена в обозримом будущем.

Для малых автономных ветровых и солнечных энергоустановок возможно и целесообразно применение электрохимических аккумуляторов, но при производстве электроэнергии за счет этих нерегулируемых источников в промышленных масштабах возникают трудности, связанные с невозможностью постоянного сопряжения производства электроэнергии с ее потреблением (с графиком нагрузки). Достаточно мощная энергосистема, включающая также ветроэлектрические установки (ВЭУ) или ветроэлектростанции (ВЭС) и солнечные электростанции (СЭС), может компенсировать изменения мощности этих станций. Однако при этом, во избежание изменений параметров энергосистемы (прежде всего частоты), доля нерегулируемых электростанций не должна превышать, по предварительной оценке, 10-15% (по мощности).

Что же касается «бесплатности» большинства видов НВИЭ, то этот фактор нивелируется значительными расходами на приобретение соответствующего оборудования. В результате возникает некоторый парадокс, состоящий в том, что бесплатную энергию способны использовать, главным образом, богатые страны. В то же время наиболее заинтересованы в эксплуатации НВИЭ развивающиеся государства, не имеющие современной энергетической инфраструктуры, то есть развитой сети централизованного энергоснабжения. Для них создание автономного энергообеспечения путем применения нетрадиционных источников могло бы стать решением проблемы, но в силу своей бедности они не имеют средств на закупку в достаточном количестве соответствующего оборудования. Богатые же страны энергетического голода не испытывают и проявляют интерес к альтернативной энергетике в основном по соображениям экологии, энергосбережения и диверсификации источников энергии.

Мы намеренно столь подробно останавливаемся на технических и экономических трудностях при использовании НВИЭ, чтобы показать, насколько сложно организовать их крупномасштабное применение. Эта проблема требует системного подхода, который и проявляется во многих странах, и в значительной мере - через уже упомянутую законодательную базу. возобновляемый источник энергия геотермальный

2. ОСВОЕНИЕ НИВИЭ В МИРЕ

В целом использование НВИЭ в мире приобрело ощутимые масштабы и устойчивую тенденцию к росту. В некоторых странах доля нетрадиционных источников в энергобалансе составляет единицы процентов. По различным прогнозным оценкам, в которых в настоящее время нет недостатка, эта доля к 2010-2015 гг. во многих государствах достигнет или превзойдет 10%. Здесь можно дискутировать только о темпах роста данного показателя, но сам факт роста не подвергается сомнению.

Различные виды НВИЭ находятся на разных стадиях освоения. Как это ни парадоксально, наибольшее применение получил самый изменчивый и непостоянный вид энергии - ветер. Суммарная мировая установленная мощность крупных ВЭУ и ВЭС, по разным оценкам, составляет от 10 до 20 ГВт. Кажущийся парадокс объясняется тем, что удельные капиталовложения в ВЭУ ниже, чем при использовании большинства других видов НВИЭ. Растет не только суммарная мощность ветряных установок, но и их единичная мощность, превысившая 1 МВт.

Во многих странах возникла новая отрасль - ветроэнергетическое машиностроение. По-видимому, и в ближайшей перспективе ветроэнергетика сохранит свои передовые позиции. Мировыми лидерами по применению энергии ветра являются США, Германия, Нидерланды, Дания, Индия.

Второе место по объему применения занимает геотермальная энергетика. Суммарная мировая мощность ГеоТЭС составляет не менее 6 ГВт. Они вполне конкурентоспособны по сравнению с традиционными топливными электростанциями. Однако ГеоТЭС географически привязаны к месторождениям парогидротерм или к термоаномалиям, которые распространены отнюдь не повсеместно, что ограничивает область применения геотермальных установок. Наряду с ГеоТЭС, широкое распространение получили системы геотермального теплоснабжения.

Далее следует солнечная энергия. Она используется в основном для производства низкопотенциального тепла для коммунально-бытового горячего водоснабжения и теплоснабжения. Преобладающим видом оборудования здесь являются так называемые плоские солнечные коллекторы. Их общемировое производство составляет, по нашим оценкам, не менее 2 млн м2 в год, а выработка низкопотенциального тепла за счет солнечной энергии достигает 5 106 Гкал.

Все активнее идет преобразование солнечной энергии в электроэнергию. Здесь используются два метода - термодинамический и фотоэлектрический, причем последний лидирует с большим отрывом. Так, суммарная мировая мощность автономных фотоэлектрических установок достигла 500 МВт. Здесь следует упомянуть проект «Тысяча крыш», реализованный в Германии, где 2250 домов были оборудованы фотоэлектрическими установками. При этом роль резервного источника играет электросеть, из которой возмещается нехватка энергии. В случае же избытка энергии она, в свою очередь, передается в сеть. Любопытно, что при реализации этого проекта до 70% стоимости установок оплачивалось из федерального и земельного бюджетов. В США принята еще более масштабная программа «Миллион солнечных крыш», рассчитанная до 2010 г. Расходы федерального бюджета на ее реализацию составят 6,3 млрд долларов. Однако пока основное количество автономных фотоэлектрических установок поступает за счет международной финансовой поддержки в развивающиеся страны, где они наиболее необходимы.

Значительное развитие получило направление, связанное с использованием низкопотенциального тепла окружающей среды (воды, грунта, воздуха) с помощью теплонасоных установок (ТНУ). В ТНУ при расходе единицы электрической энергии производится 3-4 эквивалентные единицы тепловой энергии, следовательно, их применение в несколько раз выгоднее, чем прямой электрический нагрев. Они успешно конкурируют и с топливными установками.

Не менее интенсивно развивается использование энергии биомассы. Последняя может конвертироваться в технически удобные виды топлива или использоваться для получения энергии путем термохимической (сжигание, пиролиз, газификация) и (или) биологической конверсии. При этом используются древесные и другие растительные, а также органические отходы, в том числе городской мусор, отходы животноводства и птицеводства. При биологической конверсии конечными продуктами являются биогаз и высококачественные экологически чистые удобрения. Это направление имеет значение не только с точки зрения производства энергии. Пожалуй, еще большую ценность оно представляет с позиций экологии, так как решает проблему утилизации вредных отходов.

В последние годы наблюдается возрождение интереса к созданию и использованию малых ГЭС. Они получают во многих странах все большее распространение на новой, более высокой технической основе, связанной, в частности, с полной автоматизацией их работы при дистанционном управлении.

Гораздо меньше развито практическое применение приливной энергии. В мире существует только одна крупная приливная электростанция (ПЭС) мощностью 240 МВт (Ранс, Франция). Еще менее развито использование энергии морских волн. Этот способ использования НВИЭ находится на стадии начального экспериментирования.

Таково в настоящее время положение с использованием НВИЭ в мире. В России же практическое их применение значительно отстает от масштабов, достигнутых в других странах. И это несмотря на такие благоприятные предпосылки, как практически неограниченные ресурсы НВИЭ, достаточно высокий научно-технический и промышленный потенциал в данной области.

3. ОСВОЕНИЕ НИВИЭ В РОССИИ

В 60-70-е годы в СССР проводились НИОКР и предпринимались практические шаги по использованию НВИЭ. Еще в 1967 г. на Камчатке была создана первая в стране Паужетская ГеоТЭС мощностью 5 МВт, доведенная впоследствии до мощности 11 МВт. В 1968 г. появилась экспериментальная Кислогубская ПЭС мощностью 0,4 МВт, на строительстве которой был впервые использован отечественный прогрессивный метод наплавного строительства плотины. В восьмидесятые годы в Крыму были построены первая экспериментальная солнечная электростанция (СЭС-5) мощностью 5 МВт с термодинамическим циклом преобразования энергии, а также экспериментальный комплекс сооружений с солнечным тепло- и хладоснабжением. В 60-70-е годы появились также фотоэлектрические установки автономного электроснабжения. К концу 80-х годов в бывшем СССР в эксплуатации находились солнечные установки горячего водоснабжения с общей площадью около 150 тыс. м2, а производство солнечных коллекторов доходило до 80 тыс. м2 в год.

Распад СССР, переход России на рыночные основы хозяйственной жизни и существенные экономические осложнения, возникшие в 90-е годы, не могли не сказаться и в сфере использования НВИЭ. Однако ситуация здесь хотя и оставляет желать лучшего, но отнюдь не безнадежна. Удалось сохранить, хотя и на минимальном уровне, имевшийся научно-технический потенциал, не потерять, а в некоторых случаях даже увеличить промышленные мощности по производству оборудования. Так, Калужский турбинный завод освоил выпуск блок-модульных ГеоТЭС мощностью 4 и 20 МВт. Три таких блока по 4 МВт смонтированы на Верхне-Мутновской ГеоТЭС на Камчатке. Следующая на очереди - Мутновская ГеоТЭС мощностью 40-50 МВт - будет создана в ближайшие годы. Заметим, что месторождения парогидротерм имеются в России только на Камчатке и Курилах, поэтому геотермальная энергетика не может играть значительную роль в масштабах страны в целом, но для указанных районов, которые периодически оказываются на грани выживания в ожидании очередного танкера с топливом, геотермальная энергетика способна радикально решить проблему энергообеспечения.

В свое время в бывшем СССР широкое распространение получили малые ГЭС, которые затем были законсервированы или списаны. Сейчас есть предпосылки возврата к малым ГЭС на новой основе, за счет производства современных гидроагрегатов мощностью от 10 до 5860 кВт.

В области ветроэнергетики созданы образцы отечественных ВЭУ мощностью 250 и 1000 кВт, находящиеся в опытной эксплуатации. Налаживается сотрудничество с зарубежными организациями и фирмами, имеющими большой опыт в этой области.

В России выпускаются солнечные тепловые коллекторы, фотоэлектрические преобразователи и модули на их основе, а также довольно обширная номенклатура теплонасосного оборудования и установок по использованию энергии биомассы. Однако в целом объем производства оборудования для использования НВИЭ невелик, и его рост сдерживается отсутствием платежеспособного спроса. Даже заведомо выгодные проекты в области НВИЭ сталкиваются со значительными трудностями на стадии инвестирования.

Что касается перспектив приливной энергетики в России, то следует отметить, что в силу природных условий проектируемые ПЭС должны обладать весьма большой мощностью (Мезенская ПЭС на Белом море - 19200 МВт, Тугурская ПЭС на Охотском море - 7800 МВт). Эти колоссальные величины, большое число (по нескольку сотен) гидроагрегатов на каждой станции, весьма длительные сроки строительства, огромные капиталовложения (как непосредственно в ПЭС, так и в мероприятия, необходимые для адаптации их в рамках энергосистемы) делают создание этих ПЭС предметом более отдаленного будущего.

Положительным фактором является начавшееся в России создание законодательной базы использования НВИЭ. Так, Законом "Об энергосбережении" (1996 г.) установлена правовая основа применения электрогенерирующих установок на НВИЭ, состоящая в праве независимых производителей этой электроэнергии на подсоединение к сетям энергоснабжающих организаций. Государственной Думой и Советом Федерации принят Закон "О государственной политике в сфере использования нетрадиционных и возобновляемых источников энергии". Этот правовой акт устанавливает минимально допустимые в современных условиях экономические и организационные основы развития. Ведется разработка федеральной программы по использованию НВИЭ.

Теперь рассмотрим ситуацию с освоением НИВИЭ в Свердловской области.

3.1 Малая гидроэнергетика

На территории области протекает более 18 тысяч рек и речек [2]. Имеется более 100 водоёмов с объёмом воды выше 1 млн. м3; большая часть из них имеет регулируемый водосброс. Гидрологический потенциал характеризуется следующими особенностями:

- наличием рек с большими дебитами и малыми перепадами воды по длине русла;

- наличием рек с малыми дебитами и значительными перепадами высот;

- наличием большого количества искусственных водоемов (прудов) с регулируемым водосбросом небольшой высоты (2 - 10 м);

- наличием рек большими дебитами и малыми перепадами высот по длине русла;

- значительной годовой неравномерностью дебита рек.

Указанные факторы осложняют и требуют детального обоснования использования энергии рек. В области действует лишь одна ГЭС - Верхотурская установленной мощностью 7 МВт.

Рис. 4. Микро ГЭС 10кВт (МНТО «ИНТСЭТ»)

Однако научные разработки последних лет по совершенствованию энергетической техники для мини и микро ГЭС позволяют ставить вопрос о восстановлении заброшенных мини ГЭС области (В-Сысертская, Алапаевская, Афанасьевская, Ирбитская - 180 кВт, Речкаловская - 400 кВт и др.) и сооружении ряда новых мини и микро ГЭС. Возможные пункты строительства новых ГЭС на существующих гидротехнических сооружениях приведены в табл. 1.

Таблица 1

Перечень гидротехнических сооружений с ожидаемым уровнем мощности свыше 1000 кВт

Река-пункт

Мощность, кВт

Энергопроизводительность., кВт.ч/год

р.Сосьва - г.Серов

6703

53586368

р.Тура - г.Верхотурье

4657

37367023

р.Тура - г.В.Тура

3506

27683915

р.Исеть - г.Каменск-Уральский

2911

25496856

р.Бисерть - пгт.Бисерть

2140

17958931

р.Синячиха - д.Н.Синячиха

1948

16281917

р.Каква - г.Серов

1850

14762280

р.Нейва - г.Алапаевск

1618

14173680

р.Серга - г.Михайловск

1401

11394272

р.Синячиха - пгт.В.Синячиха

1291

10357755

р.Тура - г.Н.Тура

1171

9170824

р.Ляля - г.Новая Ляля

1058

8362771

р.Тагил - г.Н.Тагил

1047

8426557

Итого

31301

255023149

В целом по области существующие гидротехнические сооружения позволяют использовать потенциал мини ГЭС на уровне ~ 200-250 МВт при величине капитальных вложений 10-15 т.руб/кВт. установленной мощности. Использование потенциала микро ГЭС для рек, берущих начало вблизи 60-го градуса восточного меридиана (отроги Уральского хребта) может быть оценено на уровне от 10 до 50 МВт.

При КИУМ ГЭС на уровне = 0,30ч0,35, характерном для изменения водостока рек области годовое производство электроэнергии возможно в объёмах 300 -500 млн.кВт.ч, что эквивалентно экономии 100-160 тыс. т.у.т./год. На территории области имеются предприятия, осуществляющие выпуск оборудования для ГЭС малой мощность (Уралгидромаш, Уралэлектротяжмаш и др.).

3.2 Ветровая энергетика

Область характеризуется достаточно неравномерным распределением ветровых потоков по территории. В табл. 2 приведены данные по среднегодовым и среднемесячным скоростям ветра для ряда точек на территории.

Таблица 2. Среднегодовые и среднемесячные скорости ветра

Место наблюдения

Средняя скорость ветра, м/с

Максимальная месячная скорость, м/с

Екатеринбург

3,8

4.5

Верхотурье

3

3.4

Гари

3

3.5

Ивдель

2.5

3

Н.Тагил

3.6

3.8

г.Благодать

5.8

6

К зонам высоких ветров могут быть отнесены вершины отрогов Уральского хребта (г. Благодать, г. Качканар, г. Магнитная и др.), где среднегодовые скорости ветра находятся на уровне (5.5 - 10) м/с, и прилегающие к Свердловской области с севера области Северо-Сосьвинской возвышенности, где среднегодовая скорость ветра оценивается на уровне 6-12 м/с.

При указанных скоростных напорах ветра удельная мощность территорий составляет: от 1 МВт/кв.км (скорость ~ 3-4 м/с) до 4 МВт/кв.км (скорость ~ 8 м/с) КИУМ ВЭУ для гористой части территории области ожидается на уровне 0.4-0.5, что соответствует производству электроэнергии от 4 млн. кВтч/км2год до 16 млн.кВтч/км2год. Для ВЭС, расположенной в заселенной равнинной части области при площади 1 км2 (10 установок 100 кВт), годовая экономия топлива составит от 1400 т.у.т./год на одну ВЭС. Для ВЭС, расположенных на вершинах гор, ~ 4000.0 т.у.т./год.

При площади области ~ 194 тыс.кв.км и использовании под сооружение ВЭС только 10% горной части территории (~ 0,5%) возможная мощность ВЭС оценивается на уровне 200 МВт, с производством электроэнергии 0,6 -0,8 млрд.кВтч/год при уровне капитальных вложений 20-30 тыс.руб./кВт. Указанное производство энергии эквивалентно экономии органического топлива в объёмах 0,2 -0,3 млн.т.у.т./год.

Целесообразно рассматривать возможность широкого использования ветронасосов в быту и в сельском хозяйстве. Работы по созданию и внедрению ветроэнергетического оборудования ведутся в рядом предприятий Свердловской области при активном участи научных работников и студентов УГТУ.

Рис. 5. Ветроэнергетическая установка мощностью 4 кВт (НПК "Ветроток"- ОАО "Завод промавтоматики")

3.3 Биоэнергетика

Существующие технологии получения биогаза из отходов животноводства для Свердловской области позволяют сделать следующую оценку (табл. 3).

Таблица 3. Оценка технологий получения биогаза

Вид животных

Поголовье

Объём биогаза, м3/сут

Замещаемое топливо, т у.т./сут

Птица

11 млн.

214

200

Свиньи

194 тыс.

62

60

Крупный рогатый скот

309 тыс.

750

750

Приведенные данные свидетельствуют о возможности экономии органического топлива ~ 370 тыс.т.у.т./год. Несмотря на кажущуюся незначительность этой экономии целесообразно сооружение биогазовых станций на площадках крупных хозяйств (табл. 4).

Таблица 4. Перечень возможных биогазовых станций

Название хозяйства

Вид животных

Поголовье

Замещаемое топливо, т у.т./сут

Свердловская птицефабрика

птица

2,5 млн.

50

Рефтинская птицефабрика

птица

1,7 млн.

30

Ср-Уральская птицефабрика

птица

0,9 млн.

17

Лайский

свиньи

16 тыс.

5

Колхоз "Россия"

крупныйрогатый скот

4,7 тыс.

11

Совхоз "Урал"

крупныйрогатый скот

4,6 тыс.

11

Использование биогаза возможно, как для производства тепловой, так и электрической энергии. В последнем случае используются ДВС с генератором электроэнергии.

3.4 Использование торфа

Запасы торфа на территории области оцениваются на уровне 7678 млн.тон 40%-влажности, что соответствует ~ 2000 млн.т.у.т. Наибольшие запасы торфа сосредоточены в районах, указанных в табл. 5.

Таблица 5. Месторождения торфа

Наименование месторождения

Количество месторождений

Объём тыс. м3

Эффективность, млн т у. т.

Таборинский

34

12100

713

Гаринский

22

7418

500

Серовский

69

5215

335

Туринский

97

3213

190

Тавдинский

26

3359

182

Ивдель

10

1183

82

В Свердловской области добыча и использование торфа практически свернуты. Если в 1987 году его добывалось около 3,600 млн.т/год, то в 1999 добыча снизилась до 0,135 млн.т. Использование торфа сопряжено с необходимостью совершенствования технологии его добычи, осушки, приготовления брикетов и полубрикетов, совершенствования технологий использования (включая газогенераторную технику). Реально торфяные предприятия области способны при соответствующих условиях обеспечить замену на торф дров и привозного угля для частных потребителей и мелких котельных, а в перспективе и для ряда ведомственных ТЭЦ и ЭС АО "Свердловэнерго". Возможные объёмы производства торфа в течение 5 лет могут составить не менее 1,5 млн.т.у.т./год.

3.5 Потенциал сбросовой теплоты энергетики, промышленной и коммунально-бытовой сфер

Ежегодные объемы потребления топлива прямого использования, тепловой и электрической энергии в энергетике, промышленный и коммунально-бытовой сферах области достигают 30-35 млн. т.у.т. Существующие технологии их использования, приводят к образованию больших количеств низкопотенциальных тепловых сбросов предприятий в окружающую среду через системы оборотного водоснабжения, вентиляции, с теплотой шлаков и золы, сбросных вод электростанций и пр. Энергетический потенциал сбросной теплоты достигает 10-15 млн. т.у.т./год, т.е. составляет почти половину всего поступающего на территорию топлива.

Имеющийся в мире опыт использования сбросной теплоты при помощи тепловых насосов показывает, что не менее 30% этой энергии может быть возвращено в хозяйственный оборот при капитальных вложениях не более 30 тыс.руб./кВт (тепл.). Для Свердловской области это соответствует ежегодной экономии 3-5 млн.т.у.т.

3.6 Лесотехнический комплекс

Объем производства древесины в Свердловской области составил в 1990 году около 10 млн.мі/год. На всех стадиях заготовки и переработки древесины в виде щепы, стружки, опила и т.п. образуется и практически не используется до 5 млн.мі/год, что эквивалентно около 3 млн.т.у.т./год.

Использование данного энергетического потенциала возможно лишь при разработке технологий подготовки и использования отходов древесины, например, путём переработки их в термических газогенераторах или биореакторах. Возможно прямое сжигание отходов в топках мини и микро ТЭЦ и в котлах с кипящим слоем для ЭС большой мощности.

В настоящее время объёмы лесозаготовки и лесопереработки снизились до ~ 2.50 млн.м3/год, из них примерно 1.5 млн.м3/год используется для целей энергопотребления.

ЗАКЛЮЧЕНИЕ

Общий потенциал нетрадиционных и возобновляемых источников энергии и нетрадиционных топлив представлен в табл. 6.

Таблица 6

Потенциал нетрадиционных и возобновляемых источников энергии

Вид источника энергии

Объёмы замещения топлива

Современный уровень капвложений

Мини ГЭС

0.1-0.2 млн. т у.т.

10-15 тыс.руб./кВт (эл.)

Ветровая энергетика

0.2-0.3 млн. т у.т.

20-30 тыс.руб./кВт (эл.)

Биоэнергетика

0.3-0.4 млн. т у.т.

10-30 тыс.руб./кВт (тепл.)

Отходы лесопереработки

0.3-0.8 млн. т у.т.

5-10 тыс.руб./кВт (эл.)

Солнечная теплоэнергетика

0.05-0.01 млн. т у.т.

2-5 тыс.руб./кВт (тепл.)

Солнечная электроэнергетика

0.005-0.001 млн. т у.т.

60-150 тыс.руб./кВт (эл.)

Низкопотенциальная теплота (тепловые насосы)

3-5 млн. т у.т.

20-30 тыс.руб./кВт (тепл.)

Торф

1-1.5 млн. т у.т.

2-5 тыс.руб./кВт (тепл.)

Потенциал НИВИЭ области позволяет снизить потребление органического топлива до 5-8 млн.т.у.т.в год. Анализ показывает, что полное использование потенциала НИВИЭ позволит обеспечить устойчивое энергообеспечение свыше 40% децентрализованных и удалённых потребителей. При поддержке правительства области на территории развернуто производство и подготовка к внедрению установок ветроэнергетики (4, 16, 30 кВт), солнечных коллекторов, газогенераторной техники, оборудования малой гидроэнергетики. Развертывание работ по НИВИЭ затруднено отсутствием правовой базы, стимулирующей их создание и внедрение.

В целом очевидно, что в России тормозом развития нетрадиционной энергетики, как, впрочем, и многих других направлений, является хронически неудовлетворительное состояние экономики [1]. Особенную тревогу вызывает сокращение объемов НИОКР в сфере НВИЭ из-за резкого снижения их финансирования. Если и раньше, в бывшем СССР, эти расходы были на порядок меньше, чем во многих развитых странах, то теперь они сократились, по крайней мере, еще на порядок. Недостаточный объем НИОКР не способен обеспечить не только развитие, но и поддержание имеющегося научно-технического уровня в данной сфере.

В России на сегодня есть все предпосылки развития НВИЭ. С выходом из кризисного экономического состояния, которое не может быть вечным, станет возможным развитие многочисленных областей промышленной, научно-технической и иной деятельности, в том числе и альтернативной энергетики. В мире рост применения этих источников энергии необратим. Россия в этом отношении исключением не является.

В заключение обратимся к известной истине, которая гласит, что все новое - это хорошо забытое старое. Вспомним, что каких-нибудь 200-300 лет назад человечество использовало исключительно возобновляемые источники энергии: растительное топливо, энергию ветра (ветряные мельницы, парус), водных потоков (водяные колеса) да мускульную силу животных. Вспомним также, насколько благополучной была в то время экологическая обстановка. Теперь мы в определенном смысле возвращаемся к истокам, но на новом витке, вооруженные принципиально новой и во много раз более мощной и эффективной техникой. Попробовал бы теперь благородный Дон Кихот сражаться с современной ветроустановкой мощностью 1000 кВт.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. http://www.g-mar.ru

2. http://www.rosteplo.ru

Размещено на Allbest.ru


Подобные документы

  • Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа [419,7 K], добавлен 06.05.2016

  • Основные достоинства и недостатки геотермальной энергии. Мировой потенциал геотермальной энергии и перспективы его использования. Система геотермального теплоснабжения, строительство геотермальных электростанций. Востребованность геотермальной энергетики.

    контрольная работа [4,0 M], добавлен 31.10.2011

  • Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

    реферат [536,4 K], добавлен 07.05.2009

  • Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа [317,6 K], добавлен 19.03.2013

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.

    презентация [1,1 M], добавлен 25.05.2016

  • Создание институциональной базы в арабских странах. Инвестиционные возможности для развития возобновляемой энергетики. Стратегическое планирование развития возобновляемых источников энергии стран Ближнего Востока. Стратегии развития ядерной энергии.

    курсовая работа [4,7 M], добавлен 08.01.2017

  • Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат [3,4 M], добавлен 04.06.2015

  • Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа [3,9 M], добавлен 30.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.