Экологические аспекты энергетики и энергосбережения
Экологические проблемы энергетики. Глобальное потепление как твердо установленный научный факт. Технологические процессы, приводящие к эмиссии парниковых газов. Автотранспорт как основной источник загрязнения окружающей среды. Новые источники энергии.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 30.06.2012 |
Размер файла | 52,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Экологические аспекты энергетики и энергосбережения
Экологические проблемы энергетики
Одним из факторов, определяющих уровень развития общества, является уровень использования и количество потребляемой энергии на душу населения. Процессы превращения первичной энергии, имеющей место в обществе, связывают между собой экономические, социальные и экологические показатели. Социальный уровень жизни определяется количеством энергии, потребляемой на 1-го человека, а это значит, что для его повышения необходимо вырабатывать больше энергии. Основным источником энергии в настоящее время является нефть, газ и уголь.
Традиционные способы выработки тепло- и электроэнергии в котельных и на ТЭС из этих первичных источников энергии, использование топлива в топливопотребляющих технологических установках сопряжены с разносторонним локальным и глобальным воздействием на окружающую среду:
выбросом в атмосферу вредных веществ;
сбросом минерализованных и нагретых вод;
потреблением в значительных количествах кислорода и нагретых вод;
изъятием больших площадей земли для захоронения отходов (шлака, золы) и др.
Это воздействие является причиной закисления почвы и воды, способствует возникновению парникового эффекта, обусловливающего повышение планетарной температуры, провоцирует другие необратимые процессы. Кроме того, органическое топливо - это невосполнимые источники энергии, а это значит, что темпы их возобновления во много раз ниже темпов их потребления.
В результате антропогенной деятельности человечества за последние 30-40 лет планетарная температура поднялась на 0,6-0,7°С и является наиболее высокой за последние 600 лет. Поднялся средний уровень моря по сравнению с прошлым столетием на 10-15 см. За это же время отступили все зарегистрированные горные ледники.
Научные оценки в основном совпадают в констатации усиления тенденции к потеплению климата. Средняя температура на планете к 2010 году может повыситься на 1,3°С. Спектр пагубных тенденций может быть очень широким от повышения мирового океана на 0,3-1,0 м до изменения климатических систем перераспределения осадков.
Придавая важность необходимости изучения среды обитания человека, в июне 1992 г. в Рио-де-Жанейро состоялась конференция с участием первых лиц 156 государств, которые подписали так называемую Рамочную конвенцию об изменении климата. Развитием ее является известный Киотский протокол 1997 года. Это первый в истории человечества случай, когда практически все мировое сообщество подключилось к решению такой сложной научной задачи, как охрана климата. Основным содержанием Киотского протокола является обязательство 35 стран мира по сокращению эмиссии парниковых газов, в первую очередь СО2, к концу 2012 г., по сравнению с базовым 1990 г., от 92 до 100 %. Согласно протоколу промышленно развитые страны должны снизить такие выбросы на 5,2 %.
И хотя Киотский договор до сих пор не вошел в силу, поскольку он не ратифицирован большинством стран (их должно быть 55), тем не менее темпы роста эмиссии диоксида углерода в атмосферу резко замедлились еще 10-12 лет тому назад. Анализ перспективных структур мирового энергобаланса позволяет заключить, что пик этой эмиссии будет зафиксирован в те-чение ближайших 20-25 лет на уровне, не слишком отличающемся от современного. В настоящее время выбросы составляют около 7 млрд т углерода в год, а ожидаемый пик по прогнозам составит примерно 9 млрд т в год.
Парниковый эффект
Глобальное потепление является твердо установленным научным фактом. За последние 20-25 лет зафиксированное потепление составило 0,35°С. По прогнозам пик глобального потепления будет зафиксирован на уровне 1,5°С выше современного примерно через 200 лет. Основной причиной глобальных процессов изменение климата на нашей планете являются существующие технологии, оказывающие негативное воздействие не только на климат, но и на здоровье людей, выбрасывая в атмосферу парниковые газы, которые обусловливают парниковый эффект.
Парниковый эффект - это свойство атмосферы пропускать солнечную радиацию, но задерживать земное излучение и тем самым способствовать аккумуляции тепла Землей, средняя температура которой в настоящее время составляет около 15°С. При данной температуре поверхность планеты и атмосфера находятся в тепловом равновесии.
До вмешательства человека в глобальные процессы Земли изменения, происходящие на ее поверхности и в атмосфере, были связаны с содержанием в природе газов, которые и были названы "парниковыми". К таким газам относятся: диоксид углерода, метан, оксид азота и водяной пар. В настоящее время к ним добавились антропогенные хлорфторуглероды (ХФУ). Без газового "одеяла", окутывающего Землю, температура на ее поверхности была бы ниже на 30.40°С, что обусловило бы проблематичность существования живых организмов в таких условиях.
В результате техногенной деятельности человека некоторые парниковые газы увеличивают долю своего участия в общем балансе атмосферы. Это касается прежде всего углекислого газа, содержание которого из десятилетия в десятилетие неуклонно растет. Углекислый газ создает 50 % парникового эффекта, на долю ХФУ приходится 15-20 % и на долю метана - 18 %.
В приложении к климатической Конвенции ООН названы технологические процессы, приводящие к эмиссии парниковых газов:
в энергетике - сжигание топлива, энергетическая, обрабатывающая и строительная промышленности;
при добыче и транспортировке топлива - твердое топливо, нефть и природный газ;
промышленные технологии - горнодобывающая, химическая, металлургическая, производство и использование галогенизированных углеродных соединений;
в сельском хозяйстве - интенсивная ферментация, хранение и использование навоза, производство риса, управляемый пал, сжигание сельскохозяйственных отходов;
отходы - хранение и сжигание отходов, обработка сточных вод.
Основным загрязнителем атмосферы является СО2, образующийся при выработке электроэнергии в основном огневым способом, то есть путем сжигания добываемого органического топлива. Практически весь используемый Европой газ применяется в огневых технологиях. Евросоюз с населением 16 % от общего населения в мире является в настоящее время одним из загрязнителей мировой атмосферы (26 %). На США приходится 20 % мировой эмиссии парниковых газов. Выброс парниковых газов при огневом энергопроизводстве составляет около 1,4 кг на 1 кВт ч.
Прекращение ввода в эксплуатацию АЭС в большинстве стран мира в связи с аварией на Чернобыльской АЭС резко увеличило нарастание эмиссии парниковых газов. А между тем, страны, производящие 19 % электроэнергии на АЭС, предотвращают эмиссию 540 млн т СО2 в год. Поэтому на конференции в Киото подчеркивалось, что только страны, имеющие ядерно-энергетические программы и поддерживающие их, располагают большими возможностями сокращения выброса парниковых газов. И в некоторых странах Европы пересматривают свое отношение к ядерной энергетике.
В Англии обсуждается план удвоения мощностей АЭС, а Франция продолжает лидировать в наращивании АЭС.
Считается возможным увеличение производства электроэнергии с нынешних 2 300 млрд кВт ч в год (18 % мирового энергопроизводства 444 атомными энергоблоками) до 12 000 млрд кВт ч в первой половине XXI века и до 50 000 млрд кВт ч - во второй половине. Среди стран мира самым крупным загрязнителем окружающей среды являются США, эмиссия диоксида серы у которых составляет около 7,7 млн т, т.е. более 20 % от суммарной общемировой эмиссии СО2. В Китае выбросы в атмосферу этого вредного соединения составляют 7,6 млн т, а в России - 6,2 млн т.
По относительным показателям эмиссии СО2 (выбросы в тоннах на 1 МВт установленной электрической мощности ТЭС) крупнейшим загрязнителем воздуха можно считать Россию (87 т/МВт), затем следует Индия и Великобритания (по 65 т/МВт), Китай (61 т/МВт). В Германии и Японии этот показатель составляет всего 7 т/МВт.
Одним из самых загрязненных городов-столиц государств является Пекин с его 12-милионным населением. Основной причиной загрязнения его являются промышленные предприятия, густо разбросанные по городу. Во многом способствует загрязнению Пекина и отопление домов углем.
За последние 5 лет по "экологическим" причинам в Китае было закрыто 73 тыс. предприятий. К 2001 году более 90 % из 238 тыс. производств, которым были предъявлены претензии со стороны государства, выполнили необходимые мероприятия и теперь соответствуют государственным экологическим стандартам. В результате за годы бурного экономического роста загрязнение окружающей среды удалось сократить на 10 % по сравнению с 1995 годом. В течение ближайших 5 лет Китай намерен снижать количество вредных выбросов на 10 % ежегодно. Достигаться это будет путем внедрения новых технологий и экологически чистых процессов производства. Наиболее, высокие уровни выброса СО2 имеют электростанции, работающие на угле. Выбросы СО2 зависят от уровня содержания углерода в топливе (наивысшего - для угля, низшего - для природного газа).
Киотским протоколом (1997 г.) закреплены количественные обязательства как развитых стран, так и стран с переходной экономикой по ограничению и снижению поступления парниковых газов (прежде всего СО2) в атмосферу. Но этот протокол начнет действовать только после его ратификации в тех странах, которые дают 55 % всех выбросов СО2. Отсюда следует, что если Россия и США этого не сделают, то протокол так и не станет действенным документом, хотя он подписан 84 государствами, а по состоянию на середину 2001 г. его ратифицировали 29 развивающихся стран и Франция - единственная из стран "восьмерки".
Подтверждением несостоятельности Протокола Киото стала 6-я конференция стран, подписавших Рамочную конвенцию ООН по проблеме изменения климата (13-24 ноября 2000 года). Семь тысяч участников представляли 182 правительства, 323 межправительственные и неправительственные организации и 443 органа средств массовой информации.
Предполагается, что к 2020 г. мировое потребление электроэнергии вырастет на 60 % по сравнению с 1967 г. При этом в развивающихся странах прирост потребления энергии составит 121 %. Вероятно, более быстрым, чем ожидалось ранее, окажется рост эмиссии СО2: на 40 % - с 1990 по 2010 гг. и на 72 % - с 1990 до 2020 гг.
Основным источником загрязнения окружающей среды является автотранспорт. Он использует 96 % всех производимых нефтепродуктов и выбрасывает затем в атмосферу тысячи тонн оксида углеводорода, оксида азота и других вредных веществ. Кроме того, эти вещества вместе с выбрасываемыми в атмосферу вредными веществами промышленных предприятий и при горении древесины содержат частицы размером менее 25,5 микрон, которые проникают в легкие и другие ткани, вызывая воспаление и формирование тромбов, которые оказывают крайне неблагоприятное воздействие на работу сердца, провоцируя развитие сердечных приступов: инфаркта и повышения давления. Автомобиль - самый крупный генератор шума и вибрации.
Автомобиль, являющийся символом современной цивилизации, принес не только благо для людей, но и неблагоприятное воздействие на окружающую среду. Но оно может быть уменьшено, если начнут выпускать автомобили с малым удельным расходом топлива, таким, например, как представил концерн "Volkswagen" - новый прототип самого экономичного автомобиля в мире, потребляющего лишь один литр дизельного топлива на 100 км пути.
Ныне в мире эксплуатируется около 600 млн автомобилей, которые ежегодно потребляют свыше 1 млрд т моторных топлив, в том числе более 600 млн т автомобильных бензинов. К 2010 году прогнозируется увеличение числа автомобилей до 800 млн - 1 млрд. Экологическая нагрузка на окружающую среду и человека от такого количества автомобилей окажется очень ощутимой. И поэтому во многих странах ведется большая работа не только над снижением расхода топлива на 100 км пробега, но и по использованию для автомобилей вместо бензина в качестве топлива альтернативных источников энергии, в том числе газа и энергии солнца.
Вместе с разрабатываемыми в мире мерами по замене жидкого топлива из нефтепродуктов, используемого ныне в автомобилях, на альтернативные виды топлива из растительного сырья, снижению удельных норм расхода топлива на 100 км пробега, во многих странах проводится большая работа по переводу автомобилей на газ в качестве моторного топлива. И если вдаваться в историю вопроса, то первый в мире двигатель внутреннего сгорания работал на газе. С изобретением бензина он вытеснил газ на полторы сотни лет. Но человечество за это время пришло к мысли о пагубности для себя технологии сжигания моторного топлива из нефтепродуктов и превращения его в газ, в результате чего происходит колоссальное загрязнение окружающей среды, и начало возвращаться к использованию газа в качестве моторного топлива. В настоящее время в мире на метане работает порядка 1 млн автомобилей, число которых стремительно растет и в скором времени обещает достигнуть 6,5 млн. В городах США, Канады и Западной Европы планируют в самые сжатые сроки полностью перевести муниципальный транспорт на газ.36 регионов России заключили договоры с "Газпромом", в которых предусмотрен специальный пункт о переводе автотранспорта на газомоторное топливо. Активно работают в этом направлении и страны Азии: Южная Корея, Китай, Пакистан, Индия.
В Беларуси разработана комплексная программа использования газа в качестве альтернативного моторного топлива для автотранспортной техники на 2002-2005 гг.
Мировой опыт показывает, что наиболее приемлемым и реально ощутимым шагом к уменьшению вредных выбросов в атмосферу от автомобилей может стать глобальный переход автомобильной техники на природный газ. Он экологичен, дешев, безопасен в эксплуатации.
К настоящему времени во многих странах производителями автомобилей проводятся испытания различных типов электромобилей с запасом хода 60-100 км и максимальной скоростью до 80 км/ч. Ведущие в мире автомобилестроительные компании США, Японии и других стран проводят испытания или работают над созданием электромобилей со скоростью до 120-140 км/ч и пробегом не менее 225 км. Тяговым электродвигателем такого солнцемобиля является батарея аккумуляторов, заряжаемых на гелиостанциях (гелиозаправочных станциях).
В последние годы все большее распространение в мире получают электровелосипеды и электромопеды под общим названием "легкие транспортные средства", использующие также солнечную энергию в виде аккумуляторных батарей или солнечных панелей.
Из всех загрязняющих веществ в Республике Беларусь 70 % приходится на так называемые трансграничные переносы и 30 % - на собственные, из которых львиную долю составляют передвижные источники загрязнения, в основном автомобили, число которых в настоящее время составляет 2,6 млн единиц. К 2005 году их в нашей стране будет более 3 млн единиц. Особенно большое количество выбросов в атмосферу от автомобилей происходит в момент неустойчивой работы двигателей (во время торможения и начала движения).
Основным нейтрализатором этих вредных выбросов в атмосферу являются леса, занимающие 35 % территории Республики Беларусь, и болота, которые в 7 раз эффективнее, чем лес, поглощают углекислый газ. В городах основным очистителем воздуха являются тополиные насаждения: один тополь очищает воздух так, как делают это 4 сосны или 7 елей, или 3 липы. Для поддержания нормальной экологической обстановки в городах необходимо иметь на каждого жителя 16 м2 зеленых насаждений общего пользования - парков, скверов, бульваров, лесопарков. В некоторых городах, например в Витебске, этот показатель составляет 12 м2.
Экологические аспекты энергетики и энергосбережения
Энергия солнца, ветра, вод, термоядерного синтеза как новые источники энергии. Преобразование солнечной энергии в электрическую посредством использования фотоэлементов. Использование ветродвигателей различной мощности. Спирт, получаемый из биоресурсов.
Новыми источниками энергии, которые позволили бы заменить существующие, являются энергия солнца, ветра, вод, термоядерного синтеза и других источников.
Солнце как источник тепловой энергии - это практически неисчерпаемый источник энергии. Ее можно использовать прямо (посредством улавливания техническими устройствами) или опосредствованно через продукты фотосинтеза, круговорот воды, движение воздушных масс и другие процессы, которые обусловливаются солнечными явлениями.
Использование солнечного тепла - наиболее простой и дешевый путь решения отдельных энергетических проблем. Подсчитано, что в США для обогрева помещений и горячего водоснабжения расходуется около 25% производимой в стране энергии. В северных странах, в том числе и в Латвии, эта доля заметно выше. Между тем значительная доля тепла, необходимого для этих целей, может быть получена посредством улавливания энергии солнечных лучей. Эти возможности тем значительнее, чем больше прямой солнечной радиации поступает на поверхность земли.
Наиболее распространено улавливание солнечной энергии посредством различного вида коллекторов. В простейшем виде это темного цвета поверхности для улавливания тепла и приспособления для его накопления и удержания. Оба блока могут представлять единое целое. Коллекторы помещаются в прозрачную камеру, которая действует по принципу парника. Имеются также устройства для уменьшения рассеивания энергии (хорошая изоляция) и ее отведения, например, потоками воздуха или воды.
Еще более просты нагревательные системы пассивного типа. Циркуляция теплоносителей здесь осуществляется в результате конвекционных токов: нагретый воздух или вода поднимаются вверх, а их место занимают более охлажденные теплоносители. Примером такой системы может служить помещение с обширными окнами, обращенными к солнцу, и хорошими изоляционными свойствами материалов, способными длительно удерживать тепло. Для уменьшения перегрева днем и теплоотдачи ночью используются шторы, жалюзи, козырьки и другие защитные приспособления. В данном случае проблема наиболее рационального использования солнечной энергии решается через правильное проектирование зданий. Некоторое удорожание строительства перекрывается эффектом использования дешевой и идеально чистой энергии. Целенаправленное использование солнечной энергии пока не велико, но интенсивно увеличивается производство различного рода солнечных коллекторов. В США сейчас действуют тысячи подобных систем, хотя обеспечивают они пока только 0,5% горячего водоснабжения.
Очень простые устройства используют иногда в парниках или других сооружениях. Для большего накопления тепла в солнечное время суток в таких помещениях размещают материал с большой поверхностью и хорошей теплоемкостью. Это могут быть камни, крупный песок, вода, щебенка, металл и т.п. Днем они накапливают тепло, а ночью постепенно отдают его. Такие устройства широко используются в тепличных хозяйствах.
Преобразование солнечной энергии в электрическую возможно посредством использования фотоэлементов, в которых солнечная энергия индуцируется в электрический ток безо всяких дополнительных устройств. Хотя КПД таких устройств невелик, но они выгодны медленной изнашиваемостью вследствие отсутствия каких-либо подвижных частей. Основные трудности применения фотоэлементов связаны с их дороговизной и занятием больших территорий для размещения. Проблема в какой-то мере решаема за счет замены металлических фотопреобразователей энергии эластичными синтетическими, использования крыш и стен домов для размещения батарей, выноса преобразователей в космическое пространство и т.п.
В тех случаях, когда требуется получение небольшого количества энергии, использование фотоэлементов уже в настоящее время экономически целесообразно. В качестве примеров такого использования можно назвать калькуляторы, телефоны, телевизоры, кондиционеры, маяки, буи, небольшие оросительные системы и т.п.
В странах с большим количеством солнечной радиации имеются проекты полной электрификации отдельных отраслей хозяйства, например сельского, за счет солнечной энергии. Получаемая таким путем энергия, особенно с учетом ее высокой экологичности, по стоимости оказывается более выгодной, чем энергия, получаемая традиционными методами.
Солнечные станции подкупают также возможностью быстрого ввода в строй и наращивания их мощности в процессе эксплуатации простым присоединением дополнительных батарей-солнцеприемников. В Калифорнии построена гелиостанция, мощность которой достаточна для обеспечения электроэнергией 2400 домов.
Второй путь преобразования солнечной энергии в электрическую связан с превращением воды в пар, который приводит в движение турбогенераторы. В этих случаях для энергонакопления наиболее часто используются энергобашни с большим количеством линз, концентрирующих солнечные лучи, а также специальные солнечные пруды. Сущность последних заключается в том, что они состоят из двух слоев воды: нижнего с высокой концентрацией солей и верхнего, представленного прозрачной пресной водой. Роль материала, накапливающего энергию, выполняет солевой раствор. Нагретая вода используется для обогрева или превращения в пар жидкостей, кипящих при невысоких температурах.
Солнечная энергия в ряде случаев перспективна также для получения из воды водорода, который называют "топливом будущего". Разложение воды и высвобождение водорода осуществляется в процессе пропускания между электродами электрического тока, полученного на гелеустановках. Недостатки таких установок пока связаны с невысоким КПД (энергия, содержащаяся в водороде, лишь на 20% превышает ту, которая затрачена на электролиз воды) и высокой воспламеняемостью водорода, а также его диффузией через емкости для хранения.
В биомассе концентрируется ежегодно меньше 1% потока солнечной энергии. Однако эта энергия существенно превышает ту, которую получает человек из различных источников в настоящее время и будет получать в будущем.
Самый простой путь использования энергии фотосинтеза - прямое сжигание биомассы. В отдельных странах, не вступивших на путь промышленного развития, такой метод является основным. Более оправданной, однако, является переработка биомассы в другие виды топлива, например в биогаз или этиловый спирт. Первый является результатом анаэробного (без доступа кислорода), а второй аэробного (в кислородной среде) брожения.
Имеются данные, что молочная ферма на 2 тысячи голов способна за счет использования отходов обеспечить биогазом не только само хозяйство, но и приносить ощутимый доход от реализации получаемой энергии. Большие энергетические ресурсы сконцентрированы также в канализационном иле, мусоре и других органических отходах.
Спирт, получаемый из биоресурсов, все более широко используют в двигателях внутреннего сгорания. Так, Бразилия с 70-х годов значительную часть автотранспорта перевела на спиртовое горючее или на смесь спирта с бензином - бензоспирт. Опыт использования спирта как энергоносителя имеется в США и других странах.
Для получения спирта используется разное органическое сырье. В Бразилии это в основном сахарный тростник, в США - кукуруза. В других странах - различные зерновые культуры, картофель, древесная масса. Ограничивающими факторами для использования спирта в качестве энергоносителя являются недостаток земель для получения органической массы и загрязнение среды при производстве спирта (сжигание ископаемого топлива), а также значительная дороговизна (он примерно в 2 раза дороже бензина).
Для России, где большое количество древесины, особенно лиственных видов (береза, осина), практически не используется (не вырубается или оставляется на лесосеках), весьма перспективным является получение спирта из этой биомассы по технологиям, в основе которых лежит гидролиз. Большие резервы для получения спиртового горючего имеются также на базе отходов лесопильных и деревообрабатывающих предприятий.
В последнее время в литературе появились термины "энергетические культуры", "энергетический лес". Под ними понимаются фитоценозы, выращиваемые для переработки их биомассы в газ или жидкое горючее. Под "энергетические леса" обычно отводятся земли, на которых по интенсивным технологиям за короткие сроки (5-10 лет) выращивается и снимается урожай быстрорастущих видов деревьев (тополя, эвкалипты и др.).
В целом же биотопливо можно рассматривать как существенный фактор решения энергетических проблем если не в настоящее время, то в будущем. Основное преимущество этого ресурса - его постоянная и быстрая возобновимость, а при грамотном использовании и неистощимость.
Ветер, как и движущаяся вода, являются наиболее древними источниками энергии. В течение нескольких столетий эти источники использовались как механические на мельницах, пилорамах, в системах подачи воды к местам потребления и т.п. Они же использовались и для получения электрической энергии, хотя доля ветра в этом отношении оставалась крайне незначительной.
Интерес к использованию ветра для получения электроэнергии оживился в последние годы. К настоящему времени испытаны ветродвигатели различной мощности, вплоть до гигантских. Сделаны выводы, что в районах с интенсивным движением воздуха ветроустановки вполне могут обеспечивать энергией местные потребности. Оправдано использование ветротурбин для обслуживания отдельных объектов (жилых домов, неэнергоемких производств и т.п.). Вместе с тем стало очевидно, что гигантские ветроустановки пока не оправдывают себя вследствие дороговизны сооружений, сильных вибраций, шумов, быстрого выхода из строя. Более экономичны комплексы из небольших ветротурбин, объединяемых в одну систему.
Гидроресурсы продолжают оставаться важным потенциальным источником энергии при условии использования более экологичных, чем современные, методов ее получения. Например, крайне недостаточно используются энергетические ресурсы средних и малых рек (длина от 10 до 200 км). В прошлом именно малые и средние реки являлись важнейшим источником получения энергии. Небольшие плотины на реках не столько нарушают, сколько оптимизируют гидрологический режим рек и прилежащих территорий. Их можно рассматривать как пример экологически обусловленного природопользования, мягкого вмешательства в природные процессы. Водохранилища, создававшиеся на малых реках, обычно не выходили за пределы русел. Такие водохранилища гасят колебания воды в реках и стабилизируют уровни грунтовых вод под прилежащими пойменными землями. Это благоприятно сказывается на продуктивности и устойчивости как водных, так и пойменных экосистем.
Имеются расчеты, что на мелких и средних реках можно получать не меньше энергии, чем ее получают на современных крупных ГЭС. В настоящее время имеются турбины, позволяющие получать энергию, используя естественное течение рек, без строительства, плотин. Такие турбины легко монтируются на реках и при необходимости перемещаются в другие места. Хотя стоимость получаемой на таких установках энергии заметно выше, чем на крупных ГЭС, ТЭС или АЭС, но высокая экологичность делает целесообразным ее получение.
Большими энергетическими ресурсами обладают водные массы морей и океанов. К ним относится энергия приливов и отливов, морских течений, а также градиентов температур на различных глубинах. В настоящее время эта энергия используется в крайне незначительном количестве из-за высокой стоимости получения. Это, однако, не означает, что и в дальнейшем ее доля в энергобалансе не будет повышаться.
В мире пока действуют две-три приливно-отливные электростанции. Однако, кроме высокой стоимости энергии, электростанции такого типа нельзя отнести к высокоэкологичным. При их строительстве плотинами перекрываются заливы, что резко изменяет экологические факторы и условия обитания организмов.
В океанических водах для получения энергии можно использовать разности температур на различных глубинах. В теплых течениях, например в Гольфстриме, они достигают 20°С. В основе принципа лежит применение жидкостей, кипящих и конденсирующихся при небольших разностях температур. Теплая вода поверхностных слоев используется для превращения жидкости в пар, который вращает турбину, холодные глубинные массы - для конденсации пара в жидкость. Трудности связаны с громоздкостью сооружений и их дороговизной. Установки такого типа находятся пока на стадии испытаний.
Несравнимо более реальны возможности использования геотермальных ресурсов. В данном случае источником тепла являются разогретые воды, содержащиеся в недрах земли. В отдельных районах такие воды изливаются на поверхность в виде гейзеров. Геотермальная энергия может использоваться как в виде тепловой, так и для получения электричества.
Ведутся также опыты по использованию тепла, содержащегося в твердых структурах земной коры. Такое тепло из недр извлекается посредством закачки воды, которую затем используют так же, как и другие термальные воды.
Уже в настоящее время отдельные города или предприятия обеспечиваются энергией геотермальных вод. Это, в частности, относится к столице Исландии - Рейкьявику. В начале 80-х годов в мире производилось на геотермальных электростанциях около 5000 МВт электроэнергии (примерно 5 АЭС). Из стран бывшего СССР значительные ресурсы геотермальных вод имеются лишь в России на Камчатке, но используются они пока в небольшом объеме. В бывшем СССР за счет этого вида ресурсов производилось только около 20 МВт электроэнергии.
Современная атомная энергетика базируется на расщеплении ядер атомов на два более легких с выделением энергии пропорционально потере массы. Источником энергии и продуктами распада при этом являются радиоактивные элементы. С ними связаны основные экологические проблемы ядерной энергетики.
Еще большее количество энергии выделяется в процессе ядерного синтеза, при котором два ядра сливаются в одно более тяжелое, но также с потерей массы и выделением энергии. Исходными элементами для синтеза является водород, конечным - гелий. Оба элемента не оказывают отрицательного влияния на среду и практически неисчерпаемы.
Результатом ядерного синтеза является энергия солнца. Человеком этот процесс смоделирован при взрывах водородных бомб. Задача состоит в том, чтобы ядерный синтез сделать управляемым, а его энергию использовать целенаправленно. Основная трудность заключается в том, что ядерный синтез возможен при очень высоких давлениях и температурах около 100 млн.°С. Отсутствуют материалы, из которых можно изготовить реакторы для осуществления сверхвысокотемпературных (термоядерных) реакций. Любой материал при этом плавится и испаряется.
Ученые пошли по пути поиска возможностей осуществления реакций в среде, не способной к испарению. Для этого в настоящее время испытываются два пути. Один из них основан на удержании водорода в сильном магнитном поле. Установка такого типа получила название ТОКАМАК (Тороидальная камера с магнитным полем). Такая камера разработана в российском институте им. Курчатова. Второй путь предусматривает использование лазерных лучей, за счет которых обеспечивается получение нужной температуры, в места концентрации которых подается водород.
Несмотря на некоторые положительные результаты по осуществлению управляемого ядерного синтеза, высказываются мнения, что в ближайшей перспективе он вряд ли будет использован для решения энергетических и экологических проблем. Это связано с нерешенностью многих вопросов и с необходимостью колоссальных затрат на дальнейшие экспериментальные, а тем более промышленные разработки.
В заключение можно сделать вывод, что современный уровень знаний, а также имеющиеся и находящиеся в стадии разработок технологии дают основание для оптимистических прогнозов: человечеству не грозит тупиковая ситуация ни в отношении исчерпания энергетических ресурсов, ни в плане порождаемых энергетикой экологических проблем. Есть реальные возможности для перехода на альтернативные источники энергии (неисчерпаемые и экологически чистые). С этих позиций современные методы получения энергии можно рассматривать как своего рода переходные. Вопрос заключается в том, какова продолжительность этого переходного периода и какие имеются возможности для его сокращения.
экологический энергетика энергосбережение источник
Список использованной и рекомендуемой литературы
1. Закон Республики Беларусь об энергосбережении // Энергоэффективность. - 1998. - №7. - С.2-5
2. Закон Республики Беларусь "О внесении дополнений и изменений в Кодекс Республики Беларусь об административных нарушениях" от 31 декабря 1999 г., № 350-3 // Энергоэффективность. - 2000. - № 1. - С.2; Ведомости Национального собрания Республики Беларусь. - 2000.
3. Постановление Совета Министров Республики Беларусь от 31 октября 2001 г. № 1583 "Об утверждении Положения о Комитете по энергоэффективности при Совете Министров Республики Беларусь" // Национальный реестр правовых актов Республики Беларусь. - 2002. - №105. - С.29-32.
4. Постановление Совета Министров Республики Беларусь от 31 октября 2001 г. № 1595 "Об утверждении Положения о Министерстве энергетики Республики Беларусь" // Национальный реестр правовых актов Республики Беларусь. - 2002. - № 107. - С.44-47.
5. Постановление Совета Министров Республики Беларусь от 2 июля 1997 г. № 819 "О дополнительных мерах по обеспечению эффективного использования топливно-энергетических ресурсов" // Собрание декретов, указов Президента и постановлений Правительства Республики Беларусь. - 1997. - № 20. - Ст.706; Национальный реестр правовых актов Республики Беларусь // 2000. - № 69. - 5/3605.
6. Постановление Совета Министров Республики Беларусь от 31.03.1998 г. № 504 "О мерах по экономическому стимулированию деятельности субъектов хозяйствования, направленной на сокращение потребления топливно-энергетических ресурсов и освоение энергосберегающих технологий" // Собрание декретов, указов Президента и постановлений Правительства Республики Беларусь. - 1998. - № 10. - С.72-75.
7. Постановление Совета Министров Республики Беларусь от 16.10.1998 г. № 1582 "О порядке разработки, утверждения и пересмотра норм расхода топлива и энергии" // Собрание декретов, указов Президента Республики Беларусь и постановлений Правительства Республики Беларусь. - 1998. - № 29. - С.53-54.
8. Постановление Совета Министров Республики Беларусь от 16 октября 1998 г. № 1583 "О порядке проведения энергетического обследования предприятий, учреждений и организаций" // Собрание декретов, указов Президента и постановлений Правительства Республики Беларусь. - 1998. - № 29. - С.55-56.
9. Постановление Совета Министров Республики Беларусь от 11 ноября 1998 г. № 1731 "Об утверждении положения о порядке разработки и выполнения республиканских и региональных программ энергосбережения" // НЭГ. - 1998. - № 49. - С.6-8.
10. Постановление Совета Министров Республики Беларусь от 27 июля 1999 г. № 1150 ( (О проведении государственной комплексной экспертизы инвестиционных проектов" // Собрание декретов, указов Президента и постановлений Правительства Республики Беларусь. - 1999. - № 21. - С.136-144.
11. Постановление Совета Министров Республики Беларусь от 21.10 1999 г. № 1630 "О создании межведомственной комиссии по энергосбережению" // Собрание декретов, указов Президента и постановлений Правительства Республики Беларусь. - 1999. - № 29. - С.99-102.
12. Постановление Совета Министров Республики Беларусь от 10 августа 2000 г. № 1232 "О мерах по развитию малой энергетики" // Национальный реестр правовых актов РБ. - 2000. - № 8. - С. 19-20; Энергоэффективность. - 2000. - № 9. - С.2-7.
13. Постановление Совета Министров Республики Беларусь от 25 октября 2000 г. № 1650 "О продлении срока установки приборов учета топливно-энергетических ресурсов в некоторых котельных" // Собрание декретов, указов Президента и постановлений Правительства Республики Беларусь. - 2000. - № 30. - С.103-104; Энергоэффективность. - 2000. - №10. - С.4.
14. Постановление Госкомэнергосбережения от 3 апреля № 1 "Об утверждении Положения о демонстрационных зонах высокой энергоэффективности Республики Беларусь" // Энергоэффективность. - 2000. - № 5. - С.2-3.
15. Положение о проведении энергетического обследования предприятий, учреждений и организаций // Национальный реестр правовых актов, - № 88 от 26 ноября 1999 г. Рег. № 8/749 от 17 августа 1999 г.
16. Постановление Министерства экономики Республики Беларусь от 25 августа 2000 г. № 170 "Об утверждении Положения о единых государственных подходах к формированию и регулированию тарифов на тепловую энергию, вырабатываемую энергоснабжающими организациями, не входящими в состав Белорусского государственного энергетического концерна, и отпускаемую ими на договорной основе юридическим лицам // НРПА РБ. - 2000. - № 85. - С.66-68.
17. Порядок определения трудозатрат на проведение работ по энергетическому обследованию, на разработку энергетических балансов и норм расхода топливно-энергетических ресурсов // Энергоэффективность. - 2000. - № 10. - С.17-19.
18. Государственная научно-техническая программа "Энергосбережение", - Минск, 2000.
19. Внутренние санитарно-технические системы. Производство работ П1-2000 к СНиП 2.04.01-85. Издание официальное / Министерство архитектуры и строительства Республики Беларусь. - Мн., 2000.
20. Республиканская программа энергосбережения на 2001-2005 годы // Энергоэффективность. - 2001. - № 4. - С.4-7; № 5. - С.8-10; № 6. - С.5-6.
21. Барышев В., Трутаев В. Источник энергии - в ее экономии // Белор. думка. 1997.
22. Герасимов В.В. Основные направления развития энергетики Республики Беларусь // Нестор-вестник-НВ. 1997.
23. Основы энергосбережения: Учеб. пособие / М.В. Самойлов, В.В. Паневчик, А.Н. Ковалев.2-е изд., стереотип. - Мн.: БГЭУ, 2002. - 198 с.
24. Стандартизация энергопотребления - основа энергосбережения / П.П. Безруков, Е.В. Пашков, Ю.А. Церерин, М.Б. Плущевский // Стандарты и качество. 1993.
Размещено на Allbest.ru
Подобные документы
Энергия солнца, ветра, вод, термоядерного синтеза как новые источники энергии. Преобразование солнечной энергии в электрическую посредством использования фотоэлементов. Использование ветродвигателей различной мощности. Спирт, получаемый из биоресурсов.
реферат [20,0 K], добавлен 16.09.2010Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.
реферат [253,9 K], добавлен 30.05.2016История использования энергии ветра. Современные методы генерации электроэнергии, конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения. Мировые мощности ветряной энергетики, проблемы, экологические аспекты и перспективы развития.
реферат [580,7 K], добавлен 21.11.2010Экологические аспекты ветроэнергетики. Достоинства и недостатки солнечной, геотермальной, космической и водородной энергетики. Развитие биотопливной индустрии. Использование когенерационных установок малой и средней мощности для экономии топлива.
презентация [1,4 M], добавлен 17.02.2016Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.
реферат [4,5 M], добавлен 29.03.2011Источники энергии Древнего мира, раннего Средневековья и Нового времени. Технологии, используемые в процессе получения, передачи и использования энергии. Тепловые двигатели, двигатели внутреннего сгорания, электрогенераторы. Развитие ядерной энергетики.
презентация [2,7 M], добавлен 15.05.2014Анализ первостепенных проблем глобальной энергетики и проблемы обеспечения человечества устойчивыми поставками электроэнергии. Энергетическая безопасность населения Земли. Политика энергоэффективности. Политика замещения. Новые технологии в энергетике.
реферат [53,2 K], добавлен 13.01.2017Достоинства и недостатки солнечной энергетики. Направления научных исследований: фундаментальные, прикладные и экологические. Типы фотоэлектрических элементов: твердотельные и наноантенны. Альтернативное мнение на перспективы солнечной энергетики.
презентация [11,7 M], добавлен 21.01.2015Производство электроэнергии различными способами. Фотоэлектрические установки, системы солнечного теплоснабжения, концентрирующие гелиоприемники, солнечные коллекторы. Развитие солнечной энергетики. Экологические последствия развития солнечной энергетики.
реферат [315,1 K], добавлен 27.10.2014Состояние атомной энергетики. Особенности размещения атомной энергетики. Долгосрочные прогнозы. Оценка потенциальных возможностей атомной энергетики. Двухэтапное развитие атомной энергетики. Долгосрочные прогнозы. Варианты структуры атомной энергетики.
курсовая работа [180,7 K], добавлен 13.07.2008