Свет и его свойства

Распространение в вакууме. Зависимость показателя преломления от длины волны света (дисперсия). Физические фотометрические величины, связанные со светом. Свойства света, характер освещения, источники искусственного света. Виды осветительной техники.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 10.06.2012
Размер файла 345,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • Основные свойства света
  • Осветительная техника
  • Заключение
  • Литература

Введение

Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.

Скорость света в вакууме с = 299 792 458 м/с (точно, так как с 1983 года единица длины в СИ - метр - определяется как расстояние, проходимое светом за определённый промежуток времени).

Свет на границе между средами испытывает преломление и отражение. Распространяясь в среде, свет поглощается веществом и рассеивается. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению скорости света в вакууме к скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления является скалярной функцией (в общем случае - от времени и координаты); в анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света (дисперсия) приводит к тому, что свет разных длин волн распространяется в среде по-разному; благодаря этому возможно разложение немонохроматического света (например, белого) в спектр.

Как любая электромагнитная волна, свет может быть поляризованным. У линейно поляризованного света определена плоскость (т. н. плоскость поляризации), в которой происходят колебания электрического вектора волны. У циркулярно поляризованного света электрический вектор, в зависимости от направления поляризации, вращается по или против часовой стрелки. Неполяризованный свет является смесью световых волн со случайными направлениями поляризации. Поляризованный свет может быть выделен из неполяризованного пропусканием через поляризатор или отражением/прохождением на границе раздела сред при падении на границу под определённым углом, зависящим от коэффициентов преломления сред (см. угол Брюстера). Некоторые среды могут вращать плоскость поляризации проходящего света, причём угол поворота зависит от концентрации оптически активного вещества; это явление используется, в частности, в поляриметрическом анализе веществ (например, для измерения концентрации сахара в растворе).

Физические фотометрические величины, связанные со светом: яркость, освещённость, световой поток, световая отдача. Фотометрические величины характеризуют ощущение света человеком, поэтому применимы только к видимому свету. Соответствующие физические величины, применяемые в радиометрии, используются в случаях, когда исследуется лишь перенос энергии светом, вне зависимости от физиологического зрительного эффекта. Так, при одной и той же освещённости фиолетовым и зелёным светом поток энергии будет выше в первом случае, так как глаз более чувствителен к зелёному свету.

Видимый свет - электромагнитное излучение с длинами волн ? 380-760 нм (от фиолетового до красного).

свет осветительная техника искусственный

Основные свойства света

Сила света или яркость освещенной поверхности являются наиболее понятными характеристиками освещенности, оцениваемыми глазом Многие опытные фотографы могут делать это с большой точностью и теряются лишь в условиях искусственного освещения или при работе в незнакомых географических широтах.

Абсолютная темнота, т.е. полное отсутствие видимого света, существует, и ее нетрудно получить. Абсолютного света не существует, если не считать таковым блеск самой яркой звезды. На Земле теоретически максимальный уровень.

В реальных условиях влажность, загрязнение, облачность, отражение от слоев воздуха с различной температурой и многие другие факторы снижают этот уровень. Диапазон существующей на Земле освещенности простирается от яркого солнечного света на экваторе до безлунной ночи. Фотографические и видеосистемы проектируются в расчете на надежное функционирование при наиболее сильной освещенности, а их способность работать в условиях слабой освещенности определяется совершенством аппаратуры.

Почти все факторы, влияющие на уровень освещенности, могут быть выявлены, определены и даже предсказаны. Хотя погодные условия меняются, можно рассчитать уровень освещенности, если известны широта местности, время года, время суток и состояние неба (ясно, облачно, тяжелые тучи и т.д.). Вышедшие из употребления калькуляторы экспозиции, основанные на этом принципе, обеспечивали достаточно высокую точность.

Белый, или дневной, свет - это совокупность электромагнитных излучений с различными длинами волн, которую глаз воспринимает как белый цвет. Распределение по длинам волн не всегда равномерно, но глаз способен компенсировать эти отличия. Все указанные "типы" света могут восприниматься глазом как"белый".

Труднее оценить спектральный состав света, т.е. совокупность электромагнитных излучений с различными длинами волн, составляющих видимый свет. Белый цвет - это смесь излучений со всеми длинами волн видимого спектра, от фиолетового до красного, в равных пропорциях; при фотографировании и видеозаписи полная гамма цветов воспроизводится с использованием сравнительно ограниченной чувствительности к полосам частот, соответствующих синему, зеленому и красному цветам. Аналогично действует человеческий глаз, который не обладает одинаковой чувствительностью ко всем длинам волн, а имеет пики и провалы чувствительности. Разные люди отличаются друг от друга чувствительностью к цветам или восприятием цветовых сигналов головным мозгом, подтверждением чему является, например, существование дальтонизма.

Некоторые источники света, которые воспринимаются глазом как "белые", на самом деле не являются таковыми. Головной мозг не различает бледные оттенки голубого, желтого, розового или другие слабо окрашенные цвета, если в какой-либо из этих цветов окрашено излучение единственного имеющегося в данный момент светильника, и воспринимает их как белые. Другие источники света выглядят как истинно белые даже в сравнении с дневным светом, однако это не так - в их цветовом спектре имеются "провалы", которые глаз не замечает, а фотопленка и аппаратура видеозаписи улавливают. Наиболее распространенными источниками света с таким дискретным спектром являются люминесцентные лампы. Существуют приборы для анализа цветового состава излучения, с помощью которых можно осуществить необходимую корректировку, а современные фотоэмульсии передающие телевизионные трубки специально делаются с определенным диапазоном работоспособности, что позволяет выполнить окончательную визуальную настройку изображения, исходя из очевидного согласования цветов. Даже ограниченные знания по рассматриваемому вопросу могут быть весьма полезны для получения оптимальных по качеству изображений.

Остальные свойства света легче поддаются пониманию, но и они бесконечно разнообразны. В зависимости от размера или площади источника света по отношению к предмету можно получить самые различные изображения последнего. Двумя предельными вариантами освещения можно считать: освещение, создаваемое, с одной стороны, совершенно белым светлым облачным небом над заснеженным пространством и, с другой стороны, - единственным прожектором с узким направленным пучком света ночью. Между этими предельными вариантами освещения существует множество других.

Характер освещения зависит от размера источника света и расстояния до него. Источник света площадью 1м2, расположенный над небольшим предметом на высоте 10см, создает освещение, эквивалентное освещению под открытым небом, а тот же источник, расположенный на расстоянии 10м, по характеру создаваемого освещения подобен маленькому узкому окну. Важное значение имеет угол падения света на предмет (который непосредственно связан сточкой наблюдения). Максимальное количество света, отраженного от обычного предмета, воспринимается в том случае, когда источник света расположен в непосредственной близости к точке наблюдения. Если свет падает на предмет с одной стороны, то половина предмета находится в тени; если к наблюдателю обращена теневая сторона, можно убедиться, что освещены лишь незначительная часть поверхности контуры предмета. Но источников света может быть несколько, и они создадут целый узор света и тени на наблюдаемом сюжете. Некоторые источники света могут показаться простыми, но на самом деле это не так. Одним из таких источников является солнце на ясном голубом небе - точечный источник белого света и гигантский источник рассеянного бледно-голубого света.

В том, что мы видим как "свет", могут быть скрыты разрывы непрерывности - моменты темноты. Люминесцентная лампа мерцает с частотой электросети (50-60 Гц). Высокочастотная стробоскопическая лампа также кажется источником непрерывного света, но на самом деле она производит сотни отдельных вспышек в секунду Световой импульс от лампы-вспышки кажется мгновенным, однако он продолжается в течение сравнительно длительного времени, около 50 мс; световой импульс от автоматической электронной импульсной лампы, производящей примерно такой же визуальный эффект, длится 1/50 мс.

Осветительная техника

Некоторые источники искусственного света излучают свет, мерцая. Например, люминесцентные лампы с большой частотой чередуют моменты света и темноты. Глаза и мозг человека этого не улавливают, но фотопленка фиксирует эти моменты при очень коротких выдержках.

Свет является также источником цвета. Световые волны различной длины воспринимаются нами как разные цвета. Оттенки красного цвета образуют волны большой длины, а синие и фиолетовые цвета - это волны малой длины. Качество цветного изображения зависит от многочисленных факторов, но, пожалуй, наиважнейший из всех - спектральный состав освещения. Дневной свет состоит из смеси волн разной длины и воспринимается человеком как имеющий белый цвет. При восприятии искусственного освещения глаз адаптируется и свет ламп накаливания или ламп дневного света также воспринимается как белый. Почувствовать Глазом желтоватый оттенок, например, ламп накаливания мы можем, сравнив его с другим типом освещения. Фотопленка всегда "видит" то, что есть на самом деле. Для количественного и качественного анализа смеси белого света существует понятие цветовой температуры.

Цветовая температура характеризует спектральный состав лучистой энергии и выражается температурой, до которой необходимо нагреть абсолютно черное тело в градусах абсолютной шкалы, когда видимое излучение его будет иметь такой же спектральный состав, что и данный источник света. Абсолютная температура выражается в градусах Кельвина (К) и отсчитывается от абсолютного нуля, соответствующего минус 73 градусам по шкале Цельсию.

Таблица цветовой температуры искусственных источников света:

Импульсная лампа-вспышка 3400-6500°К

Лампа кинопроекционная 3300-3400°К

Лампа прожекторная 3300-3500°К

Лампа галогеновая 3300-3350°К

Вспышка магния 3650°К

Лампа дуговая 3700-5500°К

Лампа люминесцентная типа ЛТБ 2800°К

Лампа люминесцентная типа ЛБ 3500 ± 300°К

Лампа люминесцентная типа ЛХБ 4300 ± 400°К

Лампа люминесцентная типа ЛД 6750 ± 800°К

Фильтры янтарного цвета имеют плюсовые значения, а фильтры синего цвета - минусовые. Ниже приведена таблица с характеристиками конверсионных и коррекционных светофильтров.

Заключение

Свет - электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин "невидимый свет" - ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 740 нанометров, что соответствует частотам от 790 до 405 терагерц, соответственно.

Раздел физики, в котором изучается свет, носит название оптика.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов - частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой.

Литература

1. http://fafa. su/svet/03. htm

2. http://www.nado5.ru/e-book/svet-istochniki-sveta-rasprostranenie-sveta

3. Общие вопросы о П. света см. Свет. О поляризующих призмах см.Д. Бобылев, "Поляризующие призмы, устроенные наивыгоднейшим образом" (СПб., 1870); К. Feussner, "Ueber die Prismen zur P. des Lichts" ("Zeitschr. fьr Instrumenten-Kunde", 1884, 41); Grosse, "Die Prismen zur P. des Lichtes" (1888); Lippich, "Ueber polaristrobometrische Methoden" ("Wiener Akad. Berichte", т.85, 1892).П. солнечного света см. Busch, "Atmosphaerische Polarisation" ("Berichle d. Gymnas. zu Arnsberg", 1890). Приборы для оптического исследования кристаллов в поляризованном свете см. Groth, "Physikalische Krystallographie" (русск. перевод). См. также Оптика.

Размещено на Allbest.ru


Подобные документы

  • Особенности физики света и волновых явлений. Анализ некоторых наблюдений человека за свойствами света. Сущность законов геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), основные светотехнические величины.

    курсовая работа [2,1 M], добавлен 13.10.2012

  • Взаимодействие света с веществом. Основные различия в дифракционном и призматическом спектрах. Квантовые свойства излучения. Поглощение и рассеяние света. Законы внешнего фотоэффекта и особенности его применения. Электронная теория дисперсии света.

    курсовая работа [537,4 K], добавлен 25.01.2012

  • Волновые свойства света: дисперсия, интерференция, дифракция, поляризация. Опыт Юнга. Квантовые свойства света: фотоэффект, эффект Комптона. Закономерности теплового излучения тел, фотоэлектрического эффекта.

    реферат [132,9 K], добавлен 30.10.2006

  • Определение видимого света, его характеристика, основные свойства и измерение. Характеристика освещения при различных соотношениях линейных размеров источника света и расстояния до объекта съемки. Сочетание направленного и рассеянного света в фотосъемке.

    реферат [1,4 M], добавлен 01.05.2009

  • Длины световых волн. Закон прямолинейного распространения света. Относительные показатели преломления. Явление полного внутреннего отражения для построения световодов. Вектор плотности потока энергии. Фазовая и групповая скорости монохроматической волны.

    реферат [893,5 K], добавлен 20.03.2014

  • Волновые и квантовые аспекты теории света. Теоретические вопросы интерференции и дифракции. Оценка технических возможностей спектральных приборов, дифракционной решетки. Методика определения длины волны света по спектру от дифракционной решетки.

    методичка [211,1 K], добавлен 30.04.2014

  • Изучение явления интерференции света с помощью интерференционной картины, ее получение по заданным параметрам (на экране не менее восьми светлых полос). Сравнение длины световой волны с длиной волны падающего света. Работа программы "Интерференция волн".

    лабораторная работа [86,5 K], добавлен 22.03.2015

  • Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.

    презентация [1,3 M], добавлен 02.10.2014

  • Зависимость показателя преломления от частоты падающего света. Разложение сложного излучения в спектр. Уравнение движения электронов атомов вещества под действием поля световой волны. Скорости ее распространения. Суммарный дипольный момент атомов.

    презентация [229,6 K], добавлен 17.01.2014

  • Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.

    презентация [9,4 M], добавлен 25.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.