Развитие Nano-технологий
Исследование особенностей Nano-технологии, с помощью которой человек может управлять частицами и системами молекул при создании nano-структур с определенными свойствами. Характеристика принципа действия сканирующего атомно-силового микроскопа с зондом.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 29.05.2012 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru/
NANO Технологии
Слово “nano-“ на греческом языке означает “незначительного размера”, “карлик”. В науке слово “nano-“, означает 10 в -9 степени (10 -9) или одну миллиардную чего-либо. Nano-технология - технология, с помощью которой человек может управлять отдельными молекулами (частицами) или системами молекул при создании nano-структур с определенными физическими, химическими и биологическими свойствами, которые нам нужны. Принцип nano-технологии прост - найти сверхмалую частицу с необходимыми свойствами и поставить ее на нужное место. Таким образом, можно строить nano-структуры только из необходимых частиц (молекул) с нужными и полезными свойствами, а с ненужными свойствами - просто убирать. В результате этого получается изделие с необходимыми заданными свойствами.
При помощи нанотехнологий уже изготавливаются матрицы для "печати" некоторых микросхем. Американская компания Nano-Tex LLC создала не мнущиеся и не пачкающиеся брюки и рубашки, а осенью планирует представить на суд потребителей куртки с аналогичными функциями. В процессе изготовления одежду помещают в раствор, в котором находятся разработанные наночастицы, обладающие заданными свойствами. Частицы покрывают каждое волокно, не изменяя его внешний вид, однако создают вокруг него воздушную подушку, которая не позволяет ткани мяться и заставляет сворачиваться в капли попавшую на нее жидкость. В Сеуле, в университете Ханьян, в волокна полипропилена удалось внедрить частицы серебра. Это дает возможность делать антибактериальную одежду, поскольку серебро убивает сотни болезнетворных патогенов.
Что могут нанотехнологии
На наших глазах фантастика становится реальностью - люди научились перемещать отдельные атомы и складывать из них, как из кубиков, устройства и механизмы необычайно малых размеров и поэтому невидимые обычным глазом. Появилась целая отрасль знаний - НАНОТЕХНОЛОГИИ, впитавшая в себя самые новые достижения физики, химии и биологии. Ученые-нанотехнологи работают с ничтожно малыми объектами, размеры которых измеряются в нанометрах. Нанотехнология не просто количественный, а качественный скачок от работы с веществом к манипуляции отдельными атомами. О том, что может нанотехнология рассказано в этом научно-популярном обзоре.
Из истории…
Ричард Фейнман - пророк нанотехнологической революции.
Идея о том, что вполне возможно собирать устройства и работать с объектами, которые имеют наноразмеры, была впервые высказана в выступлении речи лауреата Нобелевской премии Ричарда Фейнмана в 1959 году в Калифорнийском технологическом институте ("Там, внизу, полно места!"). Слово «внизу» в названии лекции означало в «мире очень малых размеров». Тогда Фейнман сказал, что когда-нибудь, например, в 2000 г., люди будут удивляться тому, почему учёные первой половины XIX века, проскочили этот нанодиапазон размеров, сконцентрировав все свои усилия на изучении атома и атомного ядра. По словам Фейнмана люди очень долго жили, не замечая, что рядом с ними живёт целый мир объектов, разглядеть которые было невозможно. Ну, а если мы не видели эти объекты, то мы и не могли работать с ними.
Тем не менее, мы сами состоим из устройств, которые прекрасно научились работать с нанообъектами. Это наши клетки - кирпичики, из которых состоит наш организм. Клетка всю свою жизнь работает с нанообъектами, собирая из различных атомов молекулы сложных веществ. Собрав эти молекулы, клетка размещает их в различных частях - одни оказываются в ядре, другие - в цитоплазме, а третьи - в мембране. Представьте себе возможности, которые открываются перед человечеством, если оно овладеет такими же нанотехнологиями, которыми уже владеет каждая клетка человека.
Фейнман так описывает последствия нанотехнологической революции для компьютеров. «Если, например, диаметр соединяющих проводов будет составлять от 10 до 100 атомов, то размер любой схемы не будет превышать нескольких тысяч ангстрем. Каждый, кто связан с компьютерной техникой, знает о тех возможностях, которые обещает ее развитие и усложнение. Если число используемых элементов возрастет в миллионы раз, то возможности компьютеров существенно расширятся. Они научатся рассуждать, анализировать опыт и рассчитывать собственные действия, находить новые вычислительные методы и т. п. Рост числа элементов приведет к важным качественным изменениям характеристик ЭВМ.»
Позвав учёных в наномир, Фейнман сразу же предупреждает о тех препятствиях, которые их там ожидают, на примере изготовления микроавтомобиля длиной всего 1 мм. Так как детали обычного автомобиля сделаны с точностью 10-5 м, то детали микроавтомобиля следует изготовлять с точностью в 4000 раз выше, т.е. 2,5.10-9 м. Таким образом, размеры деталей микроавтомобиля должны соответствовать расчётным с точностью ± 10 слоёв атомов.
Наномир не только полон препятствий и проблем. Нас в наномире ожидают и хорошие новости - все детали наномира оказываются очень прочными. Происходит это из-за того, что масса нанообъектов уменьшается пропорционально третьей степени их размеров, а площадь их поперечного сечения - пропорционально второй степени. Значит, механическая нагрузка на каждый элемент объекта - отношение веса элемента к площади его поперечного сечения - уменьшается пропорционально размерам объекта. Таким образом, пропорционально уменьшенный наностол обладает в миллиард раз более толстыми наноножками, чем это необходимо.
Фейнман считал, что человек сможет легко освоить наномир, если создаст машину-робота, способного делать уменьшенную, но работоспособную копию самого себя. Пусть, например, мы научились делать робот, который может без нашего участия создавать свою уменьшенную в 4 раза копию. Тогда уже этот маленький робот сможет сделать копию первоначального, уменьшенную уже в 16 раз и т.д. Очевидно, что 10-е поколение таких роботов будут создавать роботы, размеры которых будут в миллионы раз меньше первоначальных (см. рис.)
Конечно, по мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Ничтожный вес деталей наноробота приведёт к тому, что они будут прилипать друг другу под действием сил межмолекулярного взаимодействия, и, например, гайка не будет отделяться от болта после откручивания. Однако известные нам законы физики не запрещают создавать объекты «атом за атомом». Манипуляция атомами, в принципе, вполне реальна и не нарушает никаких законов природы. Практические же трудности ее реализации обусловлены лишь тем, что мы сами являемся слишком крупными и громоздкими объектами, вследствие чего нам сложно осуществлять такие манипуляции.
Чтобы как-то стимулировать создание микрообъектов, Фейнман обещал заплатить 1000 долларов тому, кто соорудит электромоторчик размером 1/64 дюйма (1 дюйм » 2,5 см). И совсем скоро такой микромоторчик был создан (см. рис. ). С 1993 года премия имени Фейнмана присуждается ежегодно за выдающиеся достижения в области нанотехнологий.
Оборудование нанотехнологии
Всякая технология, будь то обработка материала на макро, микро или наноуровне, не может обходиться без средств измерения соответствующих величин.
В начале ХХ века появилась оригинальная идея изучать вещество, не увеличивая визуально исследуемую площадь его поверхности, а как бы трогая её. Здесь пригодился открытый к тому времени туннельный эффект, на основе которого в 1981 году был создан первый сканирующий туннельный микроскоп (СТМ).
Туннельный эффект является принципиально квантово - механическим эффектом, не имеющим аналога в классической физике. Он основан на корпускулярно - волновом дуализме - двойственной природе элементарных частиц.
С точки зрения классической механики, очевидно, что никакое материальное тело, имеющее энергию E, не может преодолеть потенциальный барьер высотой V0 , если V0>E. Например, если принять за материальное тело мяч, а за потенциальный барьер - очень высокий бетонный забор, то понятно, что если кинуть мяч в сторону забора недостаточно высоко - так, что его энергии не хватит на перелет стоящего перед ним барьера, то он, ударившись о преграду, отскочит назад. (Рис. 1а)
Однако если в качестве материального тела рассмотреть электрон, то оказывается, что даже если высота потенциального барьера выше, чем собственная энергия электрона, то он с определенной вероятностью может оказаться с другой стороны барьера, лишь незначительно изменив свою энергию, как если бы в "заборе" оказалась некая "дырка" или туннель.(Рис.1б)
а) б)
Рис.1. Туннельный эффект
Это необъяснимое, на первый взгляд, туннелирование является следствием того, что электрону присущи как корпускулярные, так и волновые свойства. Будь электрон классической частицей, обладающей энергией E, он, встретив на своем пути преграду, требующую для преодоления большей энергии, должен был бы отразиться от этой преграды. Однако будучи одновременно и волной, он проходит сквозь эту преграду, подобно тому, как рентгеновские волны свободно проходят сквозь материальные объекты .
Таким образом, над поверхностью любого проводника или полупроводника всегда наблюдается некоторое количество свободных электронов, "вышедших" за его пределы не в результате термоэлектронной эмиссии, а благодаря туннельному эффекту.
Если взять два проводящих вещества, расположить их на расстоянии 0,5 нм друг от друга и приложить к ним сравнительно малую разность потенциалов (0,1 - 1 В), то между ними возникнет электрический ток, обусловленный туннельным эффектом, который называется туннельным током.
Если повторить тот же опыт, но к поверхности интересующего тела поднести острый предмет, например, очень тонкую иглу с кончиком в атом толщиной, то, проводя ею над изучаемым объектом (сканируя его поверхность) можно получать информацию о строении объекта на атомном уровне.
В 1981 году сотрудники компании IBM Г. Бининг и Г. Рорер на основе этого явления построили первый сканирующий туннельный микроскоп (СТМ) и в 1982 г., с его помощью впервые в истории получили изображение поверхности золота, а затем и кремния с атомарным разрешением.
Рис.2. STM изображение поверхности монокристаллического кремния
Рабочим органом СТМ - зондом - служит токопроводящая металлическая игла. Зонд подводится к изучаемой поверхности на очень близкое расстояние (? 0,5 нм) и, при подаче на зонд постоянного напряжения, между ними возникает туннельный ток, который экспоненциально зависит от расстояния между зондом и образцом. Это значит, что при увеличении расстояния лишь на 0,1 нм туннельный ток уменьшается почти в 10 раз! Именно это и обеспечивает высокую разрешающую способность микроскопа, поскольку незначительные изменения по высоте рельефа поверхности вызывают существенное изменение туннельного тока.
Поддерживая ток или расстояние до поверхности постоянными при помощи следящей системы, зонд сканирует поверхность, перемещаясь над нею по осям X и Y, то опускаясь, то поднимаясь в зависимости от ее рельефа. (Рис.3)
Рис.3. Схема работы СТМ
Информация об этом перемещении отслеживается компьютером, и программно визуализируется чтобы исследователь мог увидеть на экране объект с нужным разрешением.
Существуют два варианта конструкции СТМ в зависимости от режима сканирования образцов.
В режиме постоянной высоты острие иглы перемещается в горизонтальной плоскости над образцом, а ток туннелирования изменяется (рис. 4а). Исходя из данных о величине тока туннелирования, измеренной в каждой точке поверхности, строится образ ее рельефа.
В режиме постоянного тока СТМ задействуется система обратной связи для поддержания постоянного тока туннелирования путем подстройки высоты сканирующего устройства над поверхностью в каждой ее точке (рис. 4б).
Рис.4.Режимы работы СТМ
У каждого режима есть преимущества и недостатки. Режим постоянной высоты быстрее, так как системе не приходится передвигать сканирующее устройство вверх-вниз, но при этом можно получить полезную информацию только с относительно гладких образцов. В режиме постоянного тока можно с высокой точностью изучать сложные поверхности, но он занимает и больше времени.
Важной деталью сканирующего туннельного микроскопа является механический манипулятор, который должен обеспечивать перемещение зонда над поверхностью с точностью до тысячных долей нанометра. Обычно механический манипулятор изготавливают из пьезокерамического материала.
Основным свойством такого материала является пьезоэффект. Суть его заключается в следующем: если из пьезоматериала вырезать прямоугольную балку, нанести на противоположные стороны металлические электроды и приложить к ним разность потенциалов, то под действием тока произойдет изменение геометрических размеров балки. И наоборот: при малейшей деформации (сжатии) балки, на ее противоположных концах возникнет разность потенциалов. Таким образом, управляя малыми изменениями тока, можно добиться перемещения зонда на очень малые расстояния, необходимые для работы сканирующего микроскопа.
Но прогресс не стоит на месте, и в 1986 г в лаборатории цюрихского отделения IBM были созданы микроскопы следущего поколения - атомно-силовые (АСМ). АСМ тоже позволяет исследовать поверхности с атомной точностью, но уже вовсе не обязательно электропроводящие. Сегодня именно он представляет наибольший интерес для исследователей.
На малых расстояниях (около 0,1 нм) между атомами двух тел действуют силы Ван дер Ваальса.(Рис.5)
а) б)
Рис. 5 Схема работы АСМ(где d - расстояние от сканирующей головки до образца, а R0 - расстояние, при котором силы Ван дер Ваальса нейтральны)
В сканирующем атомно-силовом микроскопе такими телами служат исследуемая поверхность и скользящее над нею острие. В качестве зонда в АСМ обычно используется алмазная игла. При изменении силы F, действующей между поверхностью и острием, пружинка, на которой оно закреплено, отклоняется, и это регистрируется датчиком. Величина отклонения упругого элемента (пружинки) несет информацию о рельефе поверхности.
На рис.6 схематически представлена кривая зависимости межатомной силы от расстояния между острием иглы и образцом. расстояния между острием иглы и образцом
Рис. 6 Кривая зависимости межатомной силы от расстояния
молекула сканирующий атомный микроскоп
По мере приближения иглы к поверхности, ее атомы все сильней притягиваются к атомам образца. Сила притяжения будет возрастать пока игла и поверхность не сблизятся настолько, что их электронные облака начнут отталкиваться электростатически. При дальнейшем сближении электростатическое отталкивание экспоненциально ослабляет силу притяжения. Эти силы уравновешиваются на расстоянии между атомами около 0,2 нм.
Подобно СТМ в АСМ сканирование поверхности может происходить двумя способами: сканирование кантилевером и сканирование подложкой. Кантилевер представляет собой массивное прямоугольное основание, размерами примерно 1.5x3.5x0.5 мм, с выступающей из него балкой (собственно кантилевером), шириной порядка 0.03 мм и длиной от 0.1 до 0.5 мм. Одна из сторон балки является зеркальной, что позволяет использовать оптическую систему контроля изгиба кантилевера. На противоположной стороне балки на свободном конце находится игла, взаимодействующая с измеряемым образцом. Радиус острия иглы промышленных кантилеверов находится в пределах 5--50 нм, лабораторных -- от 1 нм. В первом случае вдоль исследуемой поверхности движется кантилевер, во втором относительно неподвижного кантилевера движется сама подложка.
Для регистрации сил взаимодействия зонда с поверхностью обычно используют метод, основанный на регистрации отклонения лазерного луча, отраженного от кончика зонда. Луч направляется на самый кончик кантилевера, покрытый специальным алюминиевым зеркальным слоем, после чего попадает в специальный четырёхсекционный фотодиод.
Рис. 7. Сканирование кантилевером
Таким образом, малейшие отклонения кантилевера приводят к смещению луча лазера относительно секций фотодиода, что, в свою очередь, меняет сигнал с фотодиода, показывающего смещения кантилевера в ту или иную сторону. Такая система позволяет измерять отклонения луча на угол 0.1", что соответствует отклонению кантилевера всего на сотые доли нанометра!
Поскольку АСМ не требует, чтобы образцы были проводящими, он позволяет исследовать свойства проводников и изоляторов, молекул ДНК и других мягких материалов.
Дальнейшее развитие зондовой микроскопии показало, что изложенный принцип может быть реализован практически для любого вида взаимодействия острия зонда с поверхностью. Это привело к созданию целого ряда различных подвидов микроскопов, носящих общее название - сканирующие зондовые микроскопы (СЗМ).
Сегодня СЗМ являются основными инструментами нанотехнологии. Благодаря значительным усовершенствованиям, они позволяют изучать не только топологию (геометрические свойства) исследуемых объектов, но и массу других характеристик: магнитные и электрические свойства, твердость, однородность состава и др. и все это с нанометровым разрешением!
Кроме определения различных параметров, современные СЗМ позволяют манипулировать нанообъектами, обеспечивать захват отдельных атомов и перенос их в новую позицию, производить атомарную сборку проводников шириной в один атом, придавая тем самым поверхностям различных предметов новые нужные качества.
Существуют два основных способа манипуляции атомами с помощью иглы СТМ - горизонтальный и вертикальный. При вертикальной манипуляции после захвата нужный атом отрывают от поверхности, поднимая зонд на несколько ангстрем. Отрыв атома от поверхности контролируют по скачку тока. Разумеется, отрыв и перетаскивание атома требует больших усилий, чем просто его "перекатывание" по поверхности, как при горизонтальной манипуляции, но зато потом процесс переноса не зависит от встречающихся на поверхности препятствий (ступеней, ям, адсорбированных атомов). После перемещения в необходимое место атом "сбрасывают", приближая острие к поверхности и переключая напряжение на игле.
Размещено на Allbest.ru
Подобные документы
Сканирующий туннельный микроскоп, применение. Принцип действия атомного силового микроскопа. Исследование биологических объектов – макромолекул (в том числе и молекул ДНК), вирусов и других биологических структур методом атомно-силовой микроскопии.
курсовая работа [2,7 M], добавлен 28.04.2014Создание атомного силового микроскопа, принцип действия, преимущества и недостатки. Методы атомно-силовой микроскопии. Технические возможности атомного силового микроскопа. Применение атомно-силовой микроскопии для описания деформаций полимерных пленок.
курсовая работа [2,5 M], добавлен 14.11.2012Общие сведения об атомно-силовой микроскопии, принцип работы кантилевера. Режимы работы атомно-силового микроскопа: контактный, бесконтактный и полуконтактный. Использование микроскопа для изучения материалов и процессов с нанометровым разрешением.
реферат [167,4 K], добавлен 09.04.2018Consideration of the need to apply nanotechnology in agriculture to improve nutrition in the soil, management of toxic elements in the hydrosphere, monitoring the ecological state of land, spraying of mineral substances, purifying water surfaces.
реферат [12,3 M], добавлен 25.06.2010Теоретические основы сканирующей зондовой микроскопии. Схемы сканирующих туннельных микроскопов. Атомно-силовая и ближнепольная оптическая микроскопия. Исследования поверхности кремния с использованием сканирующего зондового микроскопа NanoEducator.
дипломная работа [2,8 M], добавлен 16.08.2014Сущность молекулы как наименьшей частицы вещества, обладающей всеми его химическими свойствами, экспериментальное доказательство их существования. Строение молекул, взаимосвязь атомов и их прочность. Методы измерения размеров молекул, их диаметра.
лабораторная работа [45,2 K], добавлен 11.02.2011Основные положения атомно-молекулярного учения. Закономерности броуновского движения. Вещества атомного строения. Основные сведения о строении атома. Тепловое движение молекул. Взаимодействие атомов и молекул. Измерение скорости движения молекул газа.
презентация [226,2 K], добавлен 18.11.2013Ознакомление с методами измерения показателя преломления с помощью микроскопа. Вычисление погрешности измерений для пластинок из обычного стекла и оргстекла. Угол отражения луча. Эффективность определения коэффициента преломления для твердого тела.
лабораторная работа [134,3 K], добавлен 28.03.2014Управление свойствами полупроводниковых материалов, основанное на формировании в полупроводниковой матрице наноразмерных кластеров. Обработка экспериментальных данных и спектральные характеристики вентильной фотоэдс, структур, содержащих нанокластеры.
презентация [552,9 K], добавлен 06.12.2015Обзор технологий и развитие электроустановок солнечных электростанций. Машина Стирлинга и принцип ее действия. Производство электроэнергии с помощью солнечных батарей. Использования солнечной энергии в различных отраслях производства промышленности.
реферат [62,3 K], добавлен 10.02.2012