Диагностика экономичности различных видов отопления жилых помещений

Понятие внутренней энергии, удельной теплоты парообразования. Количество теплоты, которое необходимо для отопления: стандартной трехкомнатной квартиры, дома с газовым отоплением и дома с печным отоплением. Сравнительный анализ различных систем отопления.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 25.05.2012
Размер файла 53,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Диагностика экономичности различных видов отопления жилых помещений

Введение

Зачастую, с наступлением холодов возникает проблема отопления жилых помещений, которая напоминает о себе всё чаще и чаще. Чем отопить свой дом, чтобы сделать его максимально комфортным и экономичным для жилья?

Мы тратим очень большую сумму денег за коммунальные услуги, не предполагая, что это может обходиться гораздо дешевле.

Основная цель отопления - создание теплового комфорта в помещениях, т.е. тепловых условий, благоприятных для жизни деятельности человека. Тепловой комфорт в холодное время года обеспечивается, если поддерживать определенную температуру воздуха в помещении, температуру внутренней поверхности наружных ограждений и поверхности отопительных установок.

Цель: Выявить наиболее экономичный вид отопления жилых помещений.

Задачи

1) Рассчитать количество теплоты, которое необходимо для отопления:

А) Трехкомнатной квартиры

Б) Дома с газовым отоплением

В) Дома с печным отоплением

2) Выяснить оплату отопления за 6 месяцев.

3) Провести сравнительный анализ различных систем отопления.

4) Рекомендации по видам отопления.

Методы исследования:

1. Изучение научной литературы.

2. Вывод формул.

3. Сравнительный анализ полученных результатов.

1. Теоретическая часть

1.1 Историческая справка

Среди тех, кто внес значительный вклад в развитие идей термодинамики, были Б. Томпсон (граф Румфорд), Р. Майер и Дж. Джоуль..

Заслугой Томпсона является опровержение бытовавшей в XVIII в. теории «калорической жидкости», которая перетекает из одного тела в другое при нагревании или охлаждении. При этом (по аналогии с течением воды) полное количество калорической жидкости должно сохраняться. Наблюдая сильное нагревание, возникавшее в результате сверления стволов пушек на оружейном заводе, Томпсон заметил, что это невозможно объяснить перетеканием калорической жидкости от других тел, тем более что эффект накапливался, т.е. теплота каким-то образом генерировалась. Он попытался провести количественные эксперименты. В одном из них для охлаждения сверла использовалась вода. Томпсон измерял рост температуры воды вплоть до кипения и, как он вспоминал, «заметил удивленное выражение лиц окружающих, когда они увидели, что вода закипела без всякого огня». Томпсон пришел к выводу, что теплота не является материальной субстанцией, так как опыт свидетельствовал, что количество этой субстанции может неограниченно возрастать. Он высказал предположение, что нагревание являлось результатом той работы, которую совершали силы трения.

Важный, но, к сожалению, не оцененный современниками вклад в установление закона сохранения энергии в приложении к тепловым процессам внес немецкий врач Р. Майер. Именно он, сравнивая цвет венозной крови у людей, живущих на севере и на юге, первым с определенностью высказал утверждение, что теплота есть просто иная форма энергии.

Опыт Джоуля

Устройство, с помощью которого Дж. Джоуль в 1847 г. доказал, что механическая и тепловая энергия могут переходить из одной формы в другую (Приложение №4), и измерил механический эквивалент количества теплоты, состояло из двух массивных тел массами М/2, подвешенных на нитях так, что при своем движении вниз с высоты h они раскручивали систему погруженных в воду легких лопастей. Сосуд с водой был теплоизолирован. Таким образом, нагревание массы m воды можно было отнести за счет механической работы, совершенной вращающимися лопастями, которые, в свою очередь, получали кинетическую энергию вращения за счет изменения потенциальной энергии опускающихся грузов. Если признать справедливость закона сохранения энергии в любых формах, то механическая работа должна равняться количеству теплоты, затраченной на нагревание воды:

A = dU = Мgh = Q = cVmdT.

Джоуль сравнил значения A в Дж (сам Джоуль употреблял, конечно, другие единицы работы) и Q в калориях, которые являются устаревшими единицами измерения количества теплоты (1 ккал равна тому количеству теплоты, которое нужно, чтобы нагреть 1 кг воды на 1°С в интервале от 14,5 до 15,5°С). Полученный Джоулем результат (1 кал = 4,15 Дж) несколько отличался от известного теперь: 1 кал = 4,186 Дж.

Однако следует признать, что для своего времени точность опыта Джоуля была очень высокой.

1.2 Внутренняя энергия

Одной из основных величин, используемых в термодинамике, является внутренняя энергия тела. Внутренняя энергия - это энергия движения и взаимодействия частиц (молекул), из которых состоит тело.

При этом мы исключаем из рассмотрения механическую энергию тела, как единого целого. (считаем, что тело неподвижно в данной системе отсчета и потенциальная энергия его взаимодействия с другими телами равно 0).

Внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) тела и потенциальных энергий взаимодействия всех молекул друг с другом.

Формула для внутренней энергии для идеального газа:

где i - число степеней свободы.

Число степеней свободы - это число возможных независимых направлений движения молекулы.

Внутренняя энергия одноатомного газа:

Внутренняя энергия двухатомного газа:

Существует два способа изменения внутренней энергии системы: теплопередача и совершение работы.

Теплопередача - процесс передачи энергии от одного тела к другому без совершения работы.

Мерой передачи энергии является количество теплоты.

Количество теплоты, получаемое телом, - энергия, передаваемая телу из вне в результате теплопередачи.

1.3 Теплопередача

Теплопередача (теплообмен) - это процесс обмена энергией между системой и окружающими ее телами; при этом нет изменения внешних параметров состояния системы (P, V, T). Теплопередача осуществляется либо путем непосредственного взаимодействия частиц системы с частицами среды при их случайных столкновениях (теплопроводность, конвекция), либо путем обмена электромагнитным излучением (лучеиспускание). Например, при столкновении «холодного» и «горячего» газов молекулы нагретого газа передают энергию (при случайных столкновениях) молекулам холодного газа. Вода в море в дневное время прогревается (получает энергию) за счет излучения, посылаемого Солнцем. Энергия, полученная или отданная системой в процессе теплопередачи, называется количеством тепла. Количество тепла Q измеряется в Джоулях (Дж) и является величиной скалярной. Q > 0 (положительная величина), если система получает тепло;

Q < 0 (отрицательная величина), если система отдает тепло.

1. Нагревание и охлаждение веществ. Удельная теплоемкость вещества

Нагревание - процесс, при котором при подводе количества тепла Q температура вещества (твердого тела, жидкости или газа) линейно повышается (рис. 1). Количество тепла, необходимое для нагревания вещества массой m, определяется по формуле

Q=cm (t1-t2)

где t1 и t2 - начальная и конечная температуры нагрева; с - удельная теплоемкость вещества.

Охлаждение - процесс, при котором при отводе количества тепла Q температура вещества линейно понижается.

Удельная теплоемкость вещества - величина, равная количеству тепла, необходимому для нагревания единицы массы вещества на один градус. Удельная теплоемкость измеряется в К (К - градус по шкале Кельвина).

2. Плавление и кристаллизация. Удельная теплота плавления.

Плавление - процесс превращения твердого тела в жидкость. Этот процесс для разных веществ происходит при определенной температуре плавления. Пока твердое тело не расплавится температура плавления tпл остается постоянной.

Обратный процесс, при котором жидкость переходит в твердую фазу, называется кристаллизацией. Количество тепла Q, которое нужно для плавления вещества массой m, можно рассчитать как Q=lm.

где l - удельная теплота плавления. Удельная теплота плавления равна количеству тепла, необходимому для расплавления единицы массы вещества. Измеряется величина l в Джоулях на килограмм.

3. Парообразование и конденсация. Удельная теплота парообразования

Парообразование (кипение) - процесс превращения жидкости в пар. Этот процесс для разных жидкостей происходит при конкретной температуре кипения. Пока жидкость кипит, температура кипения t кип остается неизменной.

Обратный процесс, при котором пар переходит в жидкость, называют конденсацией.

Количество тепла, необходимое для превращения жидкости массой m в пар:

Q=rm,

где r - удельная теплота парообразования

Удельная теплота парообразования равна количеству тепла, которое нужно для превращения единицы массы жидкости в пар. Величина r измеряется в Джоулях на килограмм.

4. Горение топлива. Удельная теплота сгорания

Количество тепла, выделяющееся при сгорании топлива массой m рассчитывается по формуле:

отопление квартира дом газовый

Q=qm,

где q - удельная теплота сгорания топлива.

Удельная теплота сгорания топлива q численно равна количеству тепла, выделенному при сгорании единицы массы топлива. Величина q измеряется в Джоулях на килограмм.

2.4 Тепловые сети

Для отопления жилых домов используют теплосети.

Тепловая сеть - это система прочно и плотно соединенных между собой участников теплопроводов, по которым теплота с помощью теплоносителей (пара или горячей воды) транспортируется от источников к тепловым потребителям.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки, изоляционная конструкция, предназначенная для защиты трубопровода от наружной коррозии и тепловых потерь, и несущая конструкция, воспринимающая вес трубопровода и усилия, возникающие при его эксплуатации.

Наиболее ответственными элементами являются трубы, которые должны быть достаточно прочными и герметичными при максимальных давлениях и температурах теплоносителя, обладать низким коэффициентом температурных деформаций, малой шероховатостью внутренней поверхности, высоким термическим сопротивлением стенок, способствующим сохранению теплоты, неизменностью свойств материала при длительном воздействии высоких температур и давлений.

Снабжение теплотой потребителей (систем отопления, вентиляции, горячего водоснабжения и технологических процессов) состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения классифицируются по следующим основным признакам: мощности, виду источника теплоты и виду теплоносителя.

По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей. Они могут быть местными и централизованными. Местные системы теплоснабжения - это системы, в которых три основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях (печи). Централизованные системы, в которых от одного источника теплоты подается теплота для многих помещений.

По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При системе районного теплоснабжения источником теплоты служит районная котельная, теплофикации-ТЭЦ.

По виду теплоносителя системы теплоснабжения делятся на две группы: водяные и паровые.

Теплоноситель - среда, которая передает теплоту от источника теплоты к нагревательным приборам систем отопления, вентиляции и горячего водоснабжения.

Теплоноситель получает теплоту в районной котельной (или ТЭЦ) и по наружным трубопроводам, которые носят название тепловых сетей, поступает в системы отопления, вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированной в нем теплоты и отводится по специальным трубопроводам обратно к источнику теплоты.

В водяных системах теплоснабжения теплоносителем служит вода, а в паровых - пар. В Беларуси для городов и жилых районов используются водяные системы теплоснабжения. Пар применяется на промышленных площадках для технологических целей.

Но в нашей стране много домов, которые имеют печное отопление их отапливают дровами, углем или устанавливают специальные газовые котлы.

2. Практическая часть

Описание опыта:

1. Рассчитаем объем в 3-х комнатной квартире и доме:

2. Рассчитаем массы воздуха в каждой комнате:

(p=1,29 кг/м)

3. Вычислим внутреннюю энергию.

4. Рассчитаем количество теплоты, которое необходимо для нагревания помещения на 25С.

Q= cm (t1 - t2) (с=1,01 кДж/кг*К)

5. Рассчитаем внутреннюю энергию, которую приобрел воздух при нагревании на 25С.

U2=Q+U1

6. Рассчитаем количество топлива, необходимого для нагревания этой массы воздуха за 1 день.

U2=qm

Удельная теплота сгорания:

А) каменный уголь q= 29 МДж/кг

Б) СН4 (метан) q= 44 МДж/кг

В) дерево q= 13 МДж/кг

7.) Рассчитаем количество необходимого топлива с учетом того, что отопительный сезон длится 6 месяцев. (N=180 дней)

M= N*m (M-масса топлива за 6 месяцев)

8.) расчет стоимости, Ц=N*M*ц (ц-цена 1 кг топлива)

Вычислим объем каждой комнаты, зная её площадь и высоту.

1 комната V, м3

2 комната V,м3

3 комната V,м3

Кухня V,м3

Общий V,м3

40

22

31

40

133

Высчитаем массу находящегося воздуха в каждой комнате по формуле: m=V*p (где p воздуха=1, 29 кг/м3)

1 комната m, кг

2 комната m, кг

3 комната m, кг

Кухня m, кг

Общая m, кг

51,6

28,4

40

51,6

171,6

Рассчитаем внутреннюю энергию (первоначальную) по формуле:

,

(где p-Па)

1 комната U, Дж

2 комната U, Дж

3 комната U, Дж

Кухня U, Дж

Общая U, Дж

100*

55*

77,5*

100*

332,5*

Высчитаем количество теплоты, требуемое для обогрева комнат по формуле:

Q=cmT

T=25К,

m - масса воздуха в комнатах, с возд.=1,01* Дж/кг*К

1 комната, Дж

2 комната, Дж

3 комната, Дж

Кухня, Дж

Общая, Дж

1302900

717100

1010000

1302900

4332900

Рассчитаем внутреннюю энергию по формуле:

U2=Q+U1

1 комната

2 комната

3 комната

Кухня

Общая

U1 (Дж)

10000000

5500000

7750000

10000000

33250000

Q(Дж)

1302900

717100

1010000

1302900

4332900

U2 (Дж)

11302900

6217100

8760000

11302900

37582900

Таблица массы топлива

Способ отопления

Масса топлива за 1 день, если топить 2 раза в день, кг

Масса топлива за 180 дней (6 мес.), кг

Каменный уголь

2,8

519

Газ

1,9

355

Дрова

6

1199

Таблица стоимости

Способ отопления

Стоимость за 1 кг топлива, руб.

За 1 день, руб.

За месяц, руб.

За отопительный сезон, руб.

Каменный уголь

4,4

12,32

369,6

2217,6

Газ

1,78

3,382

101,46

608,76

Дрова

2.23

13.38

101,4

2408.4

Коммунальная квартира

-

43.2

1400

8400

Таблица переплаты за отопление

Виды топлива

Процент переплаты за отопление

Газ

100%

Каменный уголь

247%

Дрова

125%

Коммунальная квартира

246%

Заключение

В результате полученных данных можно сделать вывод:

1.) Люди живущие в частных домах с газовым отоплением платят за отопление меньше всего. Из этого следует, что этот вид наиболее экономичен. Это объясняется тем, что они в любой момент могут включить и отключить свою систему отопления. Идет экономия топлива.

2.) Проживающие в многоэтажных домах с центральным отоплением платят за отопление почти в 2,5 раза больше, чем в частных домах с газовым отоплением. Это можно объяснить, что они оплачивают все тепловые потери в теплосетях. Но при наличии счетчиков на отопление они бы платили намного меньше.

3.) В домах отапливаемых дровами и каменным углем мы переплачиваем в 2-2,4 раза. Такой вид отопления не экономичный.

Литература

1. Р. «Фейнмановские лекции по физике» Фейнман, Р. Лейтон, М. Сендс 1976 г.

2. «Элементарный учебник физики» - Наука под ред. Академика Г.С. Ландсберга 1971 г.

3. Перельман Я.И. «Занимательная физика» 1999 г.

4. Энциклопедии «Физика» и «Техника» - Москва: Аванта+, 2001 г.

Размещено на Allbest.ru


Подобные документы

  • Выявление наиболее экономичного вида отопления жилых помещений. Расчет количества теплоты, которое необходимо для отопления. Сравнительный анализ различных систем отопления. Формула для внутренней энергии для идеального газа. Отопление тепловыми сетями.

    реферат [53,9 K], добавлен 21.11.2010

  • Классификация видов отопления помещений в зависимости от преобладающего способа теплопередачи. Особенности конвективной и лучистой систем отопления. Характеристика огневоздушного, водяного, парового, инфракрасного и динамического вида отопления.

    курсовая работа [1,2 M], добавлен 02.04.2015

  • Проектирование насосной системы водяного отопления индивидуального жилого дома. Характеристика наружных ограждений. Составление тепловых балансов помещений. Гидравлический расчет главного циркуляционного кольца. Тепловой расчет отопительных приборов.

    курсовая работа [210,5 K], добавлен 22.03.2015

  • Требуемое сопротивление теплопередаче ограждающих конструкций. Пол над неотапливаемым подвалом. Безчердачное перекрытие. Общие потери теплоты помещением через наружные ограждения. Составление тепловых балансов помещений. Выбор системы отопления.

    курсовая работа [130,6 K], добавлен 28.10.2013

  • Система отопления как совокупность конструктивных элементов, предназначенных для получения, переноса и передачи необходимого количества теплоты в обогреваемые помещения. Рассмотрение особенностей электрификации жилого дома с разработкой теплоснабжения.

    дипломная работа [2,4 M], добавлен 14.05.2013

  • Теплотехнический расчет воздухообмена, мощности систем отопления, калориферов воздушного отопления, систем вентиляции; выбор вентиляторов для приточной вентиляции. Составление и расчет тепловой схемы котельной, расхода теплоты на горячее водоснабжение.

    курсовая работа [195,8 K], добавлен 05.10.2010

  • Определение тепловых нагрузок помещений на систему отопления. Подбор приборов к системе отопления основной части здания и для четвертой секции, балансировка системы отопления. Гидравлический расчет системы отопления двухтрубной поквартирной системы.

    курсовая работа [101,6 K], добавлен 23.07.2011

  • Тепловой баланс, характеристика системы теплоснабжения предприятия. Расчет и подбор водоподогревателей систем отопления и горячего водоснабжения. Расчет установки по использованию теплоты пароконденсатной смеси для нужд горячего водоснабжения и отопления.

    курсовая работа [194,9 K], добавлен 18.04.2012

  • Основные преимущества электрического отопления загородного дома. Распространение инверторов (преобразователей переменного напряжения в постоянное) в сварочной технике. Применение импульсного источника питания для получения на выходе низкого напряжения.

    контрольная работа [40,3 K], добавлен 04.09.2013

  • Система отопления в древние времена. Принципы и механизмы обогрева помещений в древнем Риме. Печное отопление: русская печь, камин, оценка их эффективности, влияние на быт человека. Современные системы отопления: паровое, водяное, а также лучистое.

    курсовая работа [173,9 K], добавлен 15.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.