Теория подобия в теплопередаче
Историческое исследование возникновения и развития теории подобия в геометрических системах. Изучение видов и описание теорем подобия. Общая характеристика основных методов исследования и условий дифференциальных уравнений технологических процессов.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 22.05.2012 |
Размер файла | 173,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию Российской Федерации
Государственное бюджетное образовательное учреждение высшего профессионального образования
Омский Государственный Технический Университет
Кафедра « Гидромеханика и транспортные машины»
РЕФЕРАТ
по теплотехнике
на тему: «Теория подобия в теплопередаче»
Выполнил:
Студент группы ТС-210
Телятников Ю.Н.
Проверил:
Шамутдинов А.Х.
Омск 2012.
Оглавление
Историческое введение
Теоремы подобия
Методы исследования технологических процессов
Виды подобия
Заключение
Список литературы
Историческое введение
Около ста пятидесяти лет назад возникла новая область научного знания - учение о подобии явлений.
Гениальное предвидение этой науки было высказано Ньютоном в 1686 г. Но только в 1848 г. Член французской академии наук Жозеф Бертран впервые установил основное свойство подобных явлений, сформулировав первую теорему подобия, теорему о существовании инвариантов подобия.
Подобными называются явления, происходящие в геометрически подобных системах, если у них во всех сходственных точках отношения одноимённых величин есть постоянные числа. Эти отношения, так называемые константы подобия, не могут быть выбираемы произвольно, так как величины, характеризующие явление, вообще говоря, не независимы друг от друга, а находятся в определённой связи, обусловленной законами природы. Во многих случаях эта связь может быть выражена в виде уравнения. Для подобных между собой явлений оно должно иметь одинаковый вид. Наличие такого «уравнения связи» между физическими величинами, характеризующими явление, налагает определённое ограничение на выбор констант подобия.
Эти отношения, так называемые константы подобия, не могут быть выбираемы произвольно, так как величины, характеризующие явления, вообще говоря, не независимы друг от друга, а находятся в определенной связи, обусловленной законами природы. Во многих случаях эта связь может быть выражена математически в виде уравнения. Для подобных между собой явлений оно должно иметь одинаковый вид. Наличие такого «уравнения связи» между физическими величинами, характеризующими явление, налагает определенное ограничение на выбор констант подобия.
Бертран вывел первую теорему подобия для случая подобия механических явлений.
Исходя из существования математической связи между силой, массой и ускорением, устанавливаемой вторым законом Ньютона, Бертран показал, что у подобных явлений комплекс величин: «сила*длина/масса*скорость в квадрате» имеет одно и то же значение в сходственных точках подобных явлений. Этот комплекс называется инвариантом, или критерием механического подобия. В природе существуют только те подобные явления, у которых критерии одинаковы.
Если бы физическое уравнение связи можно было бы преобразить так, чтобы оно было составлено из инвариантов подобия, то это было бы общее уравнение, численно одинаковое для всех подобных явлений.
Вторая история подобия устанавливает возможность такого преобразования физических уравнений.
Она была выведена русским ученым А. Федерманом в 1911 г. и несколькими годами позже, в 1914 г., американским ученым Букингэмом.
теорема подобие геометрическая система
Теоремы подобия
Для обеспечения максимальной эффективности (в широком смысле слова) любых экспериментальных исследований эти исследования необходимо организовать так, чтобы можно было определить критерии подобия и представить полученные результаты критериальной функциональной зависимость. Такой подход позволяет при ограниченном числе экспериментов дать оценку хода процесса или поведения системы при разнообразных сочетаниях параметров, их характеризующих, и, следовательно, получить ответы на те дополнительные вопросы, которые обычно возникают уже после окончания экспериментально-исследовательских и испытательных работ.
Рассмотренные положения, однако, относятся к случаю заведомо подобных процессов, т.е. определяют необходимые условия существования подобия. В связи с этим возникает естественный вопрос относительно того, как распознать подобие или специально обеспечить его при построении модели, т. е. вопрос об условиях, не только необходимых, но и достаточных для существования подобия. Такие условия включают в себя наряду с требованием равенства критериев подобия сопоставляемых процессов также и определенные дополнительные требования к условиям однозначности -- требования подобия начальных и граничных условий сопоставляемых процессов (а при соблюдении геометрического подобия -- и подобия геометрических характеристик соответствующих пространственных областей).
Изложенные выше положения относительно необходимых и достаточных условий подобия обычно систематизируются в виде первой, второй и третьей теорем о подобии; первые две теоремы определяют необходимые, третья -- необходимые и достаточные условия подобия (Высказываются соображения, что только вторая теорема подобия может рассматриваться как теорема в том смысле, в каком это понятие употребляется в математике, а первая и третья теоремы являются правилами выявления и обеспечения подобия. В данном изложении сохраняется наиболее распространенная терминология -- введенное еще И. Ньютоном название первой теоремы и предложенное М. В. Кирпичевым и А. А. Гухманом название третьей теоремы).
Первая теорема подобия. В основной современной формулировке, учитывающей возможность существования различных видов подобия, первая теорема имеет следующий вид: явления, подобные в том или ином смысле (полно, приближенно, физически, математически и т. д.), имеют определенные сочетания параметров, называемые критериями подобия, численно одинаковые для подобных явлений. Первая теорема подобия называется также теоремой Ньютона или Ньютона--Бертрана.
Например,
Первая теорема подобия утверждает, что для явлений (объектов, процессов), подобных в том или ином смысле, существуют одинаковые критерии подобия -- идентичные по форме алгебраической записи и равные численно безразмерные степенные комплексы (произведения или отношения) определенных групп физических факторов, характеризующих эти явления. Формулируя необходимые условия существования подобия (одинаковые критерии подобия у подобных явлений), первая теорема, однако, не указывает способы установления подобия и способы его реализации при построении моделей.
Вторая теорема подобия. В основной формулировке эта теорема, чаще встречающаяся под названием р-теоремы, имеет следующий вид: всякое полное уравнение физического процесса, записанное в определенной системе единиц, может быть представлено функциональной зависимостью между критериями подобия, полученными из участвующих в процессе параметров.
Эта теорема утверждает, что полное уравнение физического процесса, записанное в определённой системе единиц, может быть представлено зависимостью между критериями подобия, т. е. зависимостью, связывающей безразмерные величины, определенным образом полученные из участвующих в процессе параметров. Так же как и первая, вторая теорема подобия основывается на предпосылке, что факт подобия между процессами известен, и устанавливает число критериев подобия и существование однозначной зависимости между ними. При этом выражения для критериев подобия могут быть получены, если известен состав параметров (факторов), участвующих в рассматриваемом процессе, но неизвестно его математическое описание. Теорема эта, однако, также как и первая, не указывает способов выявления подобия между сопоставляемыми процессами и способов реализации подобия при построении моделей.
Вторая теорема устанавливает возможность представления интеграла дифференциального уравнения физического процесса не как функции параметров процесса и системы, в которой протекают эти процессы, а как функция соответствующим образом построенных некоторых безразмерных величин -- критериев подобия. Если исходное дифференциальное уравнение проинтегрировано, то функциональные связи между критериями подобия будут однозначно определены в соответствии с теми допущениями, которые были приняты при составлении и интегрировании данного уравнения. Если же дифференциальное уравнение отсутствовало или не интегрировалось, то вид функциональных связей между критериями подобия не будет выявлен.
Вторая теорема основывается на исследованиях Букингема, Федермана и Эренфест-Афанасьевой. Возможность представления интеграла как функции от критериев подобия, найденных из дифференциального уравнения, была строго доказана для частного случая Букингемом. В более общем виде это положение как математическая теорема было доказано Федерманом. Эренфест-Афанасье-ва привела доказательство в общем виде, показав условия, при которых интеграл можно представить как функцию критериев подобия. Одновременно было показано, что из соотношений, указывающих на однородность уравнения, связывающего физические величины (одинаковая размерность всех членов уравнения), и из возможности получения безразмерных соотношений после деления этого уравнения на любой из его членов следует важный вывод о существовании определенных соотношений между размерностями физических параметров. Эренфест-Афанасьевой было показано, что критерии подобия можно найти при отсутствии дифференциального уравнения процесса на основе анализа размерностей физических величин, участвующих в этом процессе. Эта возможность была сформулирована и строго доказана в виде теоремы, названной л-теоремой, поскольку упомянутые выше безразмерные параметры (критерии подобия) обозначались буквой л.
Третья теорема подобия. В наиболее распространенной формулировке третья теорема имеет следующий вид: необходимыми и достаточными условиями для создания подобия являются пропорциональность сходственных параметров, входящих в условия однозначности, и равенство критериев подобия сопоставляемых явлений. Третья теорема подобия именуется также обратной теоремой подобия или теоремой Кирпичева--Гухмана.
Напомним понятия условий однозначности. Известно, что дифференциальное уравнение в общем виде описывает бесконечное множество процессов, относящихся к данному классу. Так, например, дифференциальное уравнение u=iR+Ldi/dt описывает изменение тока во времени в цепи с активным сопротивлением R и индуктивностью L при включении ее на u=const. Условия, определяющие индивидуальные особенности процесса или явления и выделяющие из общего класса конкретный процесс или явление, называются условиями однозначности. К ним относятся следующие, не зависящие от механизма самого явления, факторы и условия:
- геометрические свойства системы, в которой протекает процесс;
- физические параметры среды и тел, образующих систему;
- начальное состояние системы (начальные условия);
- условия на границах системы (граничне или краевые условия);
- взаимодействие объекта и внешней среды.
Очевидно, нельзя математически формулировать условия однозначности в общем виде. В каждом конкретном случае они могут быть различны в зависимости от рода решаемой задачи и вида уравнения. Так, для выделения определенного процесса из совокупности процессов, описываемых приведенным уравнением, достаточно знать параметры u, R, L и начальные условия, например, i=i0 при t=t0. В большинстве задач, связанных с исследованием полей, однозначность процессов определяется не только начальными условиями, но и свойствами среды, геометрическими свойствами системы и граничными условиями.
Методы исследования технологических процессов
Исследования процессов, протекающих в технологических установках, установление закономерностей их протекания, нахождение зависимостей, необходимых для их анализа и расчета, можно проводить разными методами: экспериментальным, теоритическим, подобия.
Метод теории подобия позволяет с достаточной для практики точностью изучать сложные процессы на более простых моделях, обобщать результаты опытов и получать закономерности, справедливые не только для данного процесса, но и для всей группы подобных процессов. При моделировании процессов можно вместо дорогостоящих трудоемких опытов на промышленных установках проводить исследования на моделях значительно меньших размеров, а вместо зачастую опасных и вредных веществ использовать безопасные модельные вещества, опыты проводить в условиях, отличных от производственных. Кроме того, материальную модель можно заменить физической схемой (моделью), отражающей существенные особенности данного процесса. Поэтому в данном учебном пособии наиболее подробно будет рассмотрена теория подобия.
Виды подобия
Метод обобщенных переменных составляет основу теории подобия. Одним из основных принципов теории подобия является выделение из класса явлений (процессов), описываемых общим законом (процессы движения жидкостей, диффузии, теплопроводности и т.п.), группы подобных явлений.
Подобными называются такие явления, для которых отношения сходственных и характеризующих их величин постоянны.
Различают следующие виды подобия: геометрическое; временное; физических величин; начальных и граничных условий.
Геометрическое подобие соблюдается при равенстве отношений всех сходственных линейных размеров натуры и модели. Например, при изучении движения жидкости в канале длиной L, диаметром D. В модели сходственные размеры равны l и d. Тогда
L/l =D/d= ... = соnst= kl (0)
Безразмерная величина k (а в Дытнерском), называется константой геометрического подобия, или масштабным (переходным) множителем. Константы подобия характеризуют отношение однородных сходственных величин в подобных системах и позволяют перейти от размеров одной системы (модели) к другой (натуре).
Временное подобие предполагает, что сходственные частицы в геометрически подобных системах, двигаясь по геометрически подобным траекториям, проходят геометрически подобные пути за промежутки времени, отношение которых является константой подобия kх, т.е.
(1)
На рис.1. изображен канал (натура) с размерами L и D и модель с размерами l и d. Некая частица в точке А (натура) находится в момент времени фА, в точке В -- в момент времени фв. В геометрически подобной модели сходственная частица находится в подобной точке а в момент времени фа, в точке b -- в момент времени фb.
Рис. 1. Условия подобия в натуре (a) и в модели (б) теория подобие переменная обобщенный
При соблюдении геометрического и временного подобия константа подобия скоростей kх определяется из соотношений
(2)
Подобие физических величин предполагает, что для двух любых сходственных точек натуры и модели, размещенных подобно в пространстве и во времени, соотношение физических величин (м,си т.д.) является величиной постоянной:
(3)
и т.д.
Подобие начальных и граничных условий заключается в том, что для начальных и граничных условий должно соблюдаться геометрическое, временное и физическое подобие так же, как и для других сходственных точек натуры и модели.
Рассмотренные константы подобия постоянны для различных сходственных точек подобных систем, но могут изменяться в зависимости от соотношения размеров натуры и модели, т. е. если имеется другая модель, подобная натуре, константы подобия будут другими.
Если подобные величины выразить в относительных единицах, т.е. в виде отношений сходственных величин в пределах одной системы (натуры или модели), то получим инварианты подобия:
(4)
и т.д.
Инварианты подобия не зависят от соотношения размеров натуры и модели, т.е. для всех моделей, подобных натуре, они будут одни и те же. Инварианты подобия, представляющие собой отношение однородных величин, называются симплексами, или параметрическими критериями, например отношение L/D - геометрический симплекс.
Инварианты подобия, выраженные отношением разнородных величин, называются критериями подобия. Критерии подобия обозначаются начальными буквами имен ученых, которые внесли большой вклад в развитие данной области знаний.
Критерии подобия безразмерны, их значения для разных точек системы могут быть различными, но для сходственных точек подобных систем они одинаковые и не зависят от относительных размеров натуры и модели.
Критерии подобия имеют физический смысл, являясь мерами соотношения между какими-то двумя эффектами, силами и т.п., оказывающими влияние на протекание данного процесса.
Критерии подобия могут быть получены для любого процесса, если известны уравнения, описывающие этот процесс.
Заключение
Таким образом, для исследования технологических процессов методом подобия необходимо:
1. выбрать дифференциальное уравнение и условия однозначности, описывающие данный процесс; затем путем преобразования найти критерии подобия;
2. опытным путем с помощью моделей установить зависимость между критериями подобия; полученное обобщенное уравнение будет справедливым для всех подобных процессов в пределах изменения определяющих критериев подобия.
Преобразование дифференциальных уравнений методом теории подобия проводится в следующем порядке:
1. каждый из членов дифференциального уравнения умножается на соответствующие константы подобия кф, кv, кl и т.д.;
2. полученные коэффициенты перед членами уравнения для соблюдения тождественности приравниваются;
3. в полученных индикаторах подобия константы подобия заменяются соответствующими отношениями величин, и полученные комплексы являются критериями подобия.
Список литературы
1. Теплопередача. Учебник для вузов, Изд. 3-е, перераб. и доп. М., Исаченко В.П. 1981
Размещено на Allbest.ru
Подобные документы
Особенности методов исследования технологических процессов: теоретические, экспериментальные, подобие. Общая характеристика теории подобия, его виды, расчет их некоторых параметров. Основные положения теории подобия. Специфика критериев подобия.
реферат [2,8 M], добавлен 06.06.2011Основы теории подобия. Особенности физического моделирования. Сущность метода обобщенных переменных или теории подобия. Анализ единиц измерения. Основные виды подобия: геометрическое, временное, физических величин, начальных и граничных условий.
презентация [81,3 K], добавлен 29.09.2013Условия подобия процессов конвективного теплообмена. Безразмерное дифференциальное уравнение теплоотдачи. Приведение к безразмерному виду уравнения движения. Числа подобия Рейнольдса, Грасгофа, Эйлера. Общий вид решений конвективной теплоотдачи.
презентация [155,3 K], добавлен 18.10.2013Описание процесса передачи тепла от нагретого твердого тела к газообразному теплоносителю. Определение конвективного коэффициента теплоотдачи экспериментальным методом и с помощью теории подобия. Определение чисел подобия Нуссельта, Грасгофа и Прандтля.
реферат [87,8 K], добавлен 02.02.2012Жидкости, обладающие свойством сплошности и уравнение неразрывности. Обобщенный закон трения, сопротивление смещению частиц относительно других в жидкостях и газах. Основы теории подобия, получение критериев подобия методом масштабных преобразований.
презентация [281,4 K], добавлен 14.10.2013Структуризация теплоэнергетической системы в рамках ее модельного представления. Теория подобия в теплопередаче. Анализ пространственно-энергетического состояния децентрализованной системы отопления. Расчет коэффициента эффективности работы конвектора.
дипломная работа [2,8 M], добавлен 15.02.2017Основная идея использования метода анализа размерностей. Понятие о безразмерных величинах. Основные понятия теории подобия. Метод масштабных преобразований. Первая теорема Ньютона. Критерий Нуссельта, Фурье, Эйлера. Подобие нестационарных процессов.
реферат [570,2 K], добавлен 23.12.2014Современная общая теория дифференциальных уравнений. Обзор основных понятий и классификации дифференциальных уравнений в частных производных. Уравнение теплопроводности. Начальные и граничные условия. Численное решение уравнений математической физики.
курсовая работа [329,9 K], добавлен 19.12.2014Моделирование процессов конвективного теплообмена. "Вырождение" критериев подобия. Определение средней скорости жидкости в трубе. Теплоотдача при продольном обтекании горизонтальной поверхности. Изменение коэффициента теплоотдачи вдоль пластины.
презентация [175,2 K], добавлен 18.10.2013Характеристики центробежных насосов, использование теории геометрического и кинематического подобия для их испытания, законы пропорциональности. Организация сети с помощью присоединения насоса к трубопроводу, его рабочая точка, способы подключения.
презентация [857,6 K], добавлен 28.09.2013