Электронно-лучевая трубка
Понятие и назначение электронно-лучевой трубки, ее структура и основные элементы, принцип работы, история развития и функциональные особенности, сферы практического применения. Задержка подачи напряжения на анод либо модулятор, ее причины и устранение.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 23.05.2012 |
Размер файла | 9,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Электронно-лучевая трубка
лучевой трубка модулятор напряжение
История развития
В 1859 году Юлиус Плюккер открыл катодные лучи. В 1879 году Уильям Крукс создал прообраз электронной трубки, установил, что катодные лучи распространяются линейно, но могут отклоняться магнитным полем. Так же он обнаружил, что при попадании катодных лучей на некоторые вещества, последние начинают светиться.
В 1895 году немецкий физик Карл Фердинанд Браун на основе трубки Крукса создал катодную трубку, получившую названия трубки Брауна. Луч отклонялся магнитно только в одном измерении, второе направление развёртывалось при помощи вращающегося зеркала. Браун решил не патентовать свое изобретение, выступал со множеством публичных демонстраций и публикаций в научной печати.[3] Трубка Брауна использовалась и совершенствовалась многими учёными. В 1903 году Артур Венельт поместил в трубке цилиндрический электрод (цилиндр Венельта), позволяющий менять интенсивность электронного луча, а соответственно и яркость свечения люминофора.
В 1905 году Альберт Эйнштейн опубликовал уравнение внешнего фотоэффекта, открытого в 1877 году Генгихом Герцем, и исследованного Александром Григорьевичем Столетовым.
В 1906 году сотрудники Брауна М. Дикман и Г. Глаге получили патент на использование трубки Брауна для передачи изображений, а в 1909 году М. Дикман предложил в статье фототелеграфное устройство для передачи изображений с помощью трубки Брауна, в устройстве для развёртки применялся диск Нипкова.
С 1902 года c трубкой Брауна работает Борис Львович Розинг. 25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. В 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.
В начале и середине XX века значительную роль в развитии ЭЛТ сыграли Владимир Зворыкин, Аллен Дюмонт и другие.
Устройство и принцип работы
Общие принципы
В баллоне 9 создан глубокий вакуум - сначала выкачивается воздух, затем все металлические детали кинескопа нагреваются индуктором для выделения поглощённых газов, для постепенного поглощения остатков воздуха используется геттер.
Для того, чтобы создать электронный луч 2, применяется устройство, именуемое электронной пушкой. Катод 8, нагреваемый нитью накала 5, испускает электроны. Чтобы увеличить испускание электронов, катод покрывают веществом, имеющим малую работу выхода (крупнейшие производители ЭЛТ для этого применяют собственные запатентованные технологии). Изменением напряжения на управляющем электроде (модуляторе) 12 можно изменять интенсивность электронного луча и, соответственно, яркость изображения (также существуют модели с управлением по катоду). Кроме управляющего электрода, пушка современных ЭЛТ содержит фокусирующий электрод (до 1961 года в отечественных кинескопах применялась электромагнитная фокусировка при помощи фокусирующей катушки 3 с сердечником 11), предназначенный для фокусировки пятна на экране кинескопа в точку, ускоряющий электрод для дополнительного разгона электронов в пределах пушки и анод. Покинув пушку, электроны ускоряются анодом 14, представляющем собой металлизированное покрытие внутренней поверхности конуса кинескопа, соединённое с одноимённым электродом пушки. В цветных кинескопах со внутренним электростатическим экраном его соединяют с анодом. В ряде кинескопов ранних моделей, таких, как 43ЛК3Б, конус был выполнен из металла и представлял анод сам собой. Напряжение на аноде находится в пределах от 7 до 30 киловольт. В ряде малогабаритных осциллографических ЭЛТ анод представляет собой только один из электродов электронной пушки и питается напряжением до нескольких сот вольт.
Далее луч проходит через отклоняющую систему 1, которая может менять направление луча (на рисунке показана магнитная отклоняющая система). В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие.
Электронный луч попадает в экран 10, покрытый люминофором 4. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.
Люминофор от электронов приобретает отрицательный заряд, и начинается вторичная эмиссия - люминофор сам начинает испускать электроны. В результате вся трубка приобретает отрицательный заряд. Для того, чтобы этого не было, по всей поверхности трубки находится соединённый с общим проводом слой аквадага - проводящей смеси на основе графита (6).
Кинескоп подключается через выводы 13 и высоковольтное гнездо 7.
В чёрно-белых телевизорах состав люминофора подбирают таким, чтобы он светился нейтрально-серым цветом. В видеотерминалах, радарах и т.д. люминофор часто делают жёлтым или зелёным для меньшего утомления глаз.
Угол отклонения луча
Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит отношение диагонали (диаметра) экрана к длине ЭЛТ. У осциллографических ЭЛТ составляет как правило до 40 градусов, что связано с необходимостью повысить чувствительность луча к воздействию отклоняющих пластин. У первых советских телевизионных кинескопов с круглым экраном угол отклонения составлял 50 градусов, у чёрно-белых кинескопов более поздних выпусков был равен 70 градусам, начиная с 60-х годов увеличился до 110 градусов (один из первых подобных кинескопов-43ЛК9Б). У отечественных цветных кинескопов составляет 90 градусов.
При увеличении угла отклонения луча уменьшаются габариты и масса кинескопа, однако, увеличивается мощность, потребляемая узлами развёртки. В настоящее время в некоторых областях возрождено применение 70-градусных кинескопов: в цветных VGA мониторах большинства диагоналей. Также угол в 70 градусов продолжает применяться в малогабаритных чёрно-белых кинескопах (например, 16ЛК1Б), где длина не играет такой существенной роли.
Ионная ловушка
Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ионы, которые, имея массу, многократно превышающую массу электронов, практически не отклоняются, постепенно выжигая люминофор в центре экрана и образуя так называемое ионное пятно. Для борьбы с этим до середины 60 гг. применялись ионная ловушка, обладающая крупным недостатком: её правильная установка - довольно кропотливая операция, а при неправильной установке изображение отсутствует. В начале 60 гг. был разработан новый способ защиты люминофора: алюминирование экрана, кроме того позволившее вдвое повысить максимальную яркость кинескопа, и необходимость в ионной ловушке отпала.
Задержка подачи напряжения на анод либо модулятор
В телевизоре, строчная развёртка которого выполнена на лампах, напряжение на аноде кинескопа появляется только после прогрева выходной лампы строчной развёртки и демпферного диода. Накал кинескопа к этому моменту успевает разогреться.
Внедрение в узлы строчной развёртки полностью полупроводниковой схемотехники породило проблему ускоренного износа катодов кинескопа по причине подачи напряжения на анод кинескопа одновременно с включением. Для борьбы с этим явлением разработаны любительские узлы, обеспечивающие задержку подачи напряжения на анод либо модулятор кинескопа. Интересно, что в некоторых из них, несмотря на то, что они предназначены для установки в полностью полупроводниковые телевизоры, в качестве элемента задержки использована радиолампа. Позднее начали выпускаться телевизоры промышленного производства, в которых такая задержка предусмотрена изначально.
Размещено на Allbest.ru
Подобные документы
Понятие и сферы практического использования электронно-оптических преобразователей как устройств, преобразующих электронные сигналы в оптическое излучение или в изображение, доступное для восприятия человеком. Устройство, цели и задачи, принцип действия.
презентация [275,5 K], добавлен 04.11.2015Устройство, принцип действия и назначение электронно-коммутируемого вентилятора со встроенной электроникой. Его преимущество и испытание работы. Отличие синхронных и асинхронных двигателей. Принцип пропорционально-интегрально-дифференциального регулятора.
лабораторная работа [889,3 K], добавлен 14.04.2015Понятие электрического тока. Поведение потока электронов в разных средах. Принципы работы вакуумно-электронной лучевой трубки. Электрический ток в жидкостях, в металлах, полупроводниках. Понятие и виды проводимости. Явление электронно-дырочного перехода.
презентация [2,3 M], добавлен 05.11.2014Понятие и внутренняя структура, взаимосвязь компонентов и назначение электрического котла, требования к нему, принцип действия и сферы практического применения. Критерии развития: функциональные, технологические, эконометрические, антропологические.
контрольная работа [117,9 K], добавлен 19.02.2015Организация процесса электронно-лучевого испарения. Формула электростатического напряжения между катодом и анодом, повышения температуры поверхности мишени за одну секунду. Расчёт величины тока луча и температуры на поверхности бомбардируемого материала.
статья [201,1 K], добавлен 31.08.2013Понятие и классификация полевых транзисторов, их разновидности и функциональные особенности. Входные и выходные характеристики данных устройств, принцип их действия, внутренняя структура и элементы. Физическое обоснование работы и сферы применения.
презентация [2,4 M], добавлен 29.03.2015Понятие и функциональные особенности стробоскопа как прибора, позволяющего быстро воспроизводить повторяющиеся яркие световые импульсы. История и основные этапы разработок данного устройства, его современные конфигурации сферы практического применения.
презентация [316,4 K], добавлен 26.03.2014Понятие и внутреннее устройство парогенератора, его функциональные особенности и возможности, направления и сферы практического применения на современном этапе. Схема расположения теплообменных труб. Система продувки ПГВ-1000М. Аварийная подпитка.
презентация [757,1 K], добавлен 24.08.2013Классическая теория колебательных спектров и их квантово-механическое представление. Принцип работы и внутреннее устройство инфракрасных спектрометров, их классификация и типы, функциональные особенности, условия и сферы практического применения.
курсовая работа [180,6 K], добавлен 21.01.2017Понятие и назначение электронных генераторов, их классификация и разновидности, структура и основные элементы, принцип действия и сферы применения. Характеристика, возможные режимы работы генераторов постоянного тока и автоматического включения резерва.
шпаргалка [1,1 M], добавлен 20.01.2010