Плазменная электростанция

Гипотеза о существовании четвертого состояния вещества в виде плазмы, кроме известных твердого, жидкого и газообразного. Описание установки тороидальной формы для удержания плазмы с помощью магнитного поля. Волны в плазме. Принципиальная схема ТОКАМАКа.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.04.2012
Размер файла 4,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Плазменная электростанция

плазменный магнитный поле волна

Вездесущая плазма

Что такое четвертое состояние вещества, чем оно отличается от трех других и как заставить его служить человеку.

Полтораста лет назад почти все химики и многие физики считали, что материя состоит лишь из атомов и молекул, которые объединяются в более-менее упорядоченные или же совсем неупорядоченные комбинации. Мало кто сомневался, что все или почти все вещества способны существовать в трех разных фазах -- твердой, жидкой и газообразной, которые они принимают в зависимости от внешних условий. Но гипотезы о возможности других состояний вещества уже высказывались.

Предположение о существовании первого из состояний вещества, выходящих за рамки классической триады, было высказано в начале ХIХ века, а в 1920-х оно получило свое название -- плазма. Изображение: "Популярная механика".

Эту универсальную модель подтверждали и научные наблюдения, и тысячелетия опыта обыденной жизни. В конце концов, каждый знает, что вода при охлаждении превращается в лед, а при нагревании закипает и испаряется. Свинец и железо тоже можно перевести и в жидкость, и в газ, их надо лишь нагреть посильнее. С конца XVIII века исследователи замораживали газы в жидкости, и выглядело вполне правдоподобным, что любой сжиженный газ в принципе можно заставить затвердеть. В общем, простая и понятная картина трех состояний вещества вроде бы не требовала ни поправок, ни дополнений.

Ученые того времени немало удивились бы, узнав, что твердое, жидкое и газообразное состояния атомно-молекулярного вещества сохраняются лишь при относительно низких температурах, не превышающих 10000°, да и в этой зоне не исчерпывают всех возможных структур (пример -- жидкие кристаллы). Нелегко было бы и поверить, что на их долю приходится не больше 0,01% от общей массы нынешней Вселенной. Сейчас-то мы знаем, что материя реализует себя во множестве экзотических форм. Некоторые из них (например, вырожденный электронный газ и нейтронное вещество) существуют лишь внутри сверхплотных космических тел (белых карликов и нейтронных звезд), а некоторые (такие как кварк-глюонная жидкость) родились и исчезли в краткий миг вскоре после Большого взрыва. Однако интересно, что предположение о существовании первого из состояний, выходящих за рамки классической триады, было высказано все в том же ХIХ столетии, причем в самом его начале. В предмет научного исследования оно превратилось много позже, в 1920-х. Тогда же и получило свое название -- плазма.

Во второй половине 70-х годов XIX века член Лондонского королевского общества Уильям Крукс, весьма успешный метеоролог и химик (он открыл таллий и чрезвычайно точно определил его атомный вес), заинтересовался газовыми разрядами в вакуумных трубках. К тому времени было известно, что отрицательный электрод испускает эманацию неизвестной природы, которую немецкий физик Ойген Голдштейн в 1876 году назвал катодными лучами. После множества опытов Крукс решил, что эти лучи есть не что иное, как частицы газа, которые после столкновения с катодом приобрели отрицательный заряд и стали двигаться в направлении анода. Эти заряженные частицы он назвал "лучистой материей", radiant matter.

Следует признать, что в таком объяснении природы катодных лучей Крукс не был оригинален. Еще в 1871 году сходную гипотезу высказал крупный британский инженер-электротехник Кромвелл Флитвуд Варли, один из руководителей работ по прокладке первого трансатлантического телеграфного кабеля. Однако результаты экспериментов с катодными лучами привели Крукса к очень глубокой мысли: среда, в которой они распространяются, - это уже не газ, а нечто совершенно иное. 22 августа 1879 года на сессии Британской ассоциации в поддержку науки Крукс заявил, что разряды в разреженных газах "так непохожи на все происходящее в воздухе или любом газе при обычном давлении, что в этом случае мы имеем дело с веществом в четвертом состоянии, которое по свойствам отличается от обычного газа в такой же степени, что и газ от жидкости".

Нередко пишут, что именно Крукс первым додумался до четвертого состояния вещества. В действительности эта мысль гораздо раньше осенила Майкла Фарадея. В 1819 году, за 60 лет до Крукса, Фарадей предположил, что вещество может пребывать в твердом, жидком, газообразном и лучистом состояниях, radiant state of matter. В своем докладе Крукс прямо сказал, что пользуется терминами, заимствованными у Фарадея, но потомки об этом почему-то забыли. Однако фарадеевская идея была все-таки умозрительной гипотезой, а Крукс обосновал ее экспериментальными данными.

Катодные лучи интенсивно изучали и после Крукса. В 1895 году эти эксперименты привели Вильяма Рёнтгена к открытию нового вида электромагнитного излучения, а в начале ХХ века обернулись изобретением первых радиоламп. Но круксовская гипотеза четвертого состояния вещества не вызвала интереса у физиков -- скорее всего потому, что в 1897 году Джозеф Джон Томсон доказал, что катодные лучи представляют собой не заряженные атомы газа, а очень легкие частицы, которые он назвал электронами. Это открытие, казалось, сделало гипотезу Крукса ненужной.

Однако она возродилась, как феникс из пепла. Во второй половине 1920-х будущий нобелевский лауреат по химии Ирвинг Ленгмюр, работавший в лаборатории корпорации General Electric, вплотную занялся исследованием газовых разрядов. Тогда уже знали, что в пространстве между анодом и катодом атомы газа теряют электроны и превращаются в положительно заряженные ионы. Осознав, что подобный газ имеет множество особых свойств, Ленгмюр решил наделить его собственным именем. По какой-то странной ассоциации он выбрал слово "плазма", которое до этого использовали лишь в минералогии (это еще одно название зеленого халцедона) и в биологии (жидкая основа крови, а также молочная сыворотка). В своем новом качестве термин "плазма" впервые появился в статье Ленгмюра "Колебания в ионизованных газах", опубликованной в 1928 году. Лет тридцать этим термином мало кто пользовался, но потом он прочно вошел в научный обиход.

Четвертое состояние вещества

Плазма в окружающем мире почти вездесуща -- ее можно найти не только в газовых разрядах, но и в ионосфере планет, в поверхностных и глубинных слоях активных звезд. Это и среда для осуществления управляемых термоядерных реакций, и рабочее тело для космических электрореактивных двигателей, и многое, многое другое. Изображение: "Популярная механика".

Классическая плазма -- это ионно-электронный газ, возможно, разбавленный нейтральными частицами (строго говоря, там всегда присутствуют фотоны, но при умеренных температурах их можно не учитывать). Если степень ионизации не слишком мала (как правило, вполне достаточно одного процента), этот газ демонстрирует множество специфических качеств, которыми не обладают обычные газы. Впрочем, можно изготовить плазму, в которой свободных электронов не будет вовсе, а их обязанности возьмут на себя отрицательные ионы. Для простоты рассмотрим лишь электронно-ионную плазму. Ее частицы притягиваются или отталкиваются в соответствии с законом Кулона, причем это взаимодействие проявляется на больших расстояниях. Именно этим они отличаются от атомов и молекул нейтрального газа, которые чувствуют друг друга лишь на очень малых дистанциях. Поскольку плазменные частицы пребывают в свободном полете, они легко смещаются под действием электрических сил. Для того чтобы плазма находилась в состоянии равновесия, необходимо, чтобы пространственные заряды электронов и ионов полностью компенсировали друг друга. Если это условие не выполняется, в плазме возникают электрические токи, которые восстанавливают равновесие (например, если в какой-то области образуется избыток положительных ионов, туда мгновенно устремятся электроны). Поэтому в равновесной плазме плотности частиц разных знаков практически одинаковы. Это важнейшее свойство называется квазинейтральностью.

Практически всегда атомы или молекулы обычного газа участвуют только в парных взаимодействиях -- сталкиваются друг с другом и разлетаются в стороны. Иное дело плазма. Поскольку ее частицы связаны дальнодействующими кулоновскими силами, каждая из них находится в поле ближних и дальних соседей. Это означает, что взаимодействие между частицами плазмы не парное, а множественное -- как говорят физики, коллективное. Отсюда следует стандартное определение плазмы -- квазинейтральная система большого числа разноименных заряженных частиц, демонстрирующих коллективное поведение.

Плазма отличается от нейтрального газа и реакцией на внешние электрические и магнитные поля (обычный газ их практически не замечает). Частицы плазмы, напротив, чувствуют сколь угодно слабые поля и немедленно приходят в движение, порождая объемные заряды и электрические токи. Еще одна важнейшая особенность равновесной плазмы -- зарядовое экранирование. Возьмем частицу плазмы, скажем, положительный ион. Он притягивает электроны, которые формируют облако отрицательного заряда. Поле такого иона ведет себя в соответствии с законом Кулона лишь в его окрестности, а на расстояниях, превышающих определенную критическую величину, очень быстро стремится к нулю. Этот параметр называется дебаевским радиусом экранирования -- в честь голландского физика Питера Дебая, который описал этот механизм в 1923 году.

Легко понять, что плазма сохраняет квазинейтральность, лишь если ее линейные размеры по всем измерениям сильно превышают дебаевский радиус. Стоит отметить, что этот параметр возрастает при нагреве плазмы и падает по мере увеличения ее плотности. В плазме газовых разрядов по порядку величины он равен 0,1 мм, в земной ионосфере -- 1 мм, в солнечном ядре -- 0,01 нм.

В наши дни плазма используется в великом множестве технологий. Одни из них известны каждому (газосветные лампы, плазменные дисплеи), другие представляют интерес для узких специалистов (производство сверхпрочных защитных пленочных покрытий, изготовление микрочипов, дезинфекция). Однако наибольшие надежды на плазму возлагают в связи с работами по осуществлению управляемых термоядерных реакций. Это и понятно. Чтобы ядра водорода слились в ядра гелия, их надо сблизить на расстояние порядка одной стомиллиардной доли сантиметра -- а там уже заработают ядерные силы. Такое сближение возможно лишь при температурах в десятки и сотни миллионов градусов -- в этом случае кинетической энергии положительно заряженных ядер хватит для преодоления электростатического отталкивания. Поэтому для управляемого термоядерного синтеза необходима высокотемпературная водородная плазма.

Правда, плазма на основе обычного водорода здесь не поможет. Такие реакции происходят в недрах звезд, но для земной энергетики они бесполезны, поскольку слишком мала интенсивность энерговыделения. Лучше всего использовать плазму из смеси тяжелых изотопов водорода дейтерия и трития в пропорции 1:1 (чисто дейтериевая плазма тоже приемлема, хотя даст меньше энергии и потребует более высоких температур для поджига).

Однако для запуска реакции одного нагрева маловато. Во-первых, плазма обязана быть достаточно плотной; во-вторых, попавшие в зону реакции частицы не должны покидать ее слишком быстро -- иначе потеря энергии превысит ее выделение. Эти требования можно представить в виде критерия, который в 1955 году предложил английский физик Джон Лоусон. В соответствии с этой формулой произведение плотности плазмы на среднее время удержания частиц должно быть выше некоторой величины, определяемой температурой, составом термоядерного топлива и ожидаемым коэффициентом полезного действия реактора.

Плазменная электростанция

В 70 км от Марселя, в Сен-Поль-ле-Дюранс, по соседству с французским исследовательским центром атомной энергии Кадараш, будет построен исследовательский термоядерный реактор ITER (от лат. iter -- путь). Основная официальная задача этого реактора -- "продемонстрировать научную и технологическую возможность получения энергии термоядерного синтеза для мирных целей". В долговременной перспективе (30-35 лет) на основе данных, полученных во время экспериментов на реакторе ITER, могут быть созданы прототипы безопасных, экологически чистых и экономически прибыльных электростанций. Изображение: "Популярная механика"

Легко увидеть, что существуют два пути выполнения критерия Лоусона. Можно сократить время удержания до наносекунд за счет сжатия плазмы, скажем, до 100-200 г/см3 (поскольку плазма при этом не успевает разлететься, этот метод удержания называют инерционным). Физики отрабатывают эту стратегию с середины 1960-х годов; сейчас ее наиболее совершенной версией занимается Ливерморская национальная лаборатория. В этом году там начнут эксперименты по компрессии миниатюрных капсул из бериллия (диаметр 1,8 мм), заполненных дейтериево-тритиевой смесью, с помощью 192 ультрафиолетовых лазерных пучков. Руководители проекта полагают, что не позднее 2012 года они смогут не только поджечь термоядерную реакцию, но и получить положительный выход энергии. Возможно, аналогичная программа в рамках проекта HiPER (High Power Laser Energy Research) в ближайшие годы будет запущена и в Европе. Однако даже если эксперименты в Ливерморе полностью оправдают возлагаемые на них ожидания, дистанция до создания настоящего термоядерного реактора с инерционным удержанием плазмы все равно останется очень большой. Дело в том, что для создания прототипа электростанции необходима очень скорострельная система сверхмощных лазеров. Она должна обеспечить такую частоту вспышек, зажигающих дейтериево-тритиевые мишени, которая в тысячи раз превысит возможности ливерморской системы, делающей не более 5-10 выстрелов в секунду. Сейчас активно обсуждаются различные возможности создания таких лазерных пушек, но до их практической реализации еще очень далеко.

Первая плазма

Снимок испытательного запуска корейского токамака KSTAR (Korea Superconducting Tokamak Advanced Reactor) с получением "первой плазмы" 15 июля 2008 г. KSTAR, научно-исследовательский проект по изучению возможности термоядерного синтеза для получения энергии, использует 30 сверхпроводящих магнитов, охлаждаемых жидким гелием. Изображение:

Альтернативно можно работать с разреженной плазмой (плотностью в нанограммы на кубический сантиметр), удерживая ее в зоне реакции не менее нескольких секунд. В таких экспериментах вот уже более полувека применяют различные магнитные ловушки, которые удерживают плазму в заданном объеме за счет наложения нескольких магнитных полей. Самыми перспективными считают токамаки -- замкнутые магнитные ловушки в форме тора, впервые предложенные А.Д. Сахаровым и И.Е. Таммом в 1950 году. В настоящее время в различных странах работает с дюжину таких установок, крупнейшие из которых позволили приблизиться к выполнению критерия Лоусона. Международный экспериментальный термоядерный реактор, знаменитый ITER, который построят в поселке Кадараш неподалеку от французского города Экс-ан-Прованс, -- тоже токамак. Если все пойдет по плану, ITER позволит впервые получить плазму, удовлетворяющую лоусоновскому критерию, и поджечь в ней термоядерную реакцию.

Как устроен токамак

Токамак -- установка тороидальной формы для удержания плазмы с помощью магнитного поля. Плазма, разогретая до очень высоких температур, не касается стенок камеры, а удерживается магнитными полями -- тороидальным, созданным катушками, и полоидальным, которое образуется при протекании тока в плазме. Сама плазма выполняет роль вторичной обмотки трансформатора (первичная -- катушки для создания тороидального поля), что обеспечивает предварительный нагрев при протекании электрического тока. Изображение: "Популярная механика".

"За последние два десятка лет мы добились огромного прогресса в понимании процессов, которые происходят внутри магнитных плазменных ловушек, в частности -- токамаков. В целом мы уже знаем, как движутся частицы плазмы, как возникают неустойчивые состояния плазменных потоков и до какой степени увеличивать давление плазмы, чтобы ее все-таки можно было удержать магнитным полем. Были также созданы новые высокоточные методы плазменной диагностики, то есть измерения различных параметров плазмы, -- рассказал "ПМ" профессор ядерной физики и ядерных технологий Массачусетского технологического института Йен Хатчинсон, который свыше 30 лет занимается токамаками. -- К настоящему времени в крупнейших токамаках достигнуты мощности выделения тепловой энергии в дейтериево-тритиевой плазме порядка 10 мегаватт на протяжении одной-двух секунд. ITER превзойдет эти показатели на пару порядков. Если мы не ошибаемся в расчетах, он сможет выдавать не менее 500 мегаватт в течение нескольких минут. Если уж совсем повезет, энергия будет генерироваться вообще без ограничения времени, в стабильном режиме".

Волны в плазме

Коллективный характер внутриплазменных явлений приводит к тому, что эта среда гораздо более склонна к возбуждению различных волн, нежели нейтральный газ. Простейшие из них изучали еще Ленгмюр с его коллегой Леви Тонксом (более того, анализ этих колебаний сильно укрепил Ленгмюра в мысли, что он имеет дело с новым состоянием вещества). Пусть в каком-то участке равновесной плазмы немного изменилась электронная плотность -- иначе говоря, группа соседних электронов сдвинулась из прежнего положения. Тут же возникнут электрические силы, возвращающие удравшие электроны в начальную позицию, которую те по инерции чуть-чуть проскочат. В итоге появится очаг колебаний, которые станут распространяться по плазме в виде продольных волн (в очень холодной плазме они могут быть и стоячими). Эти волны так и называются -- ленгмюровскими.

Открытые Ленгмюром колебания накладывают ограничение на частоту электромагнитных волн, которые могут проходить через плазму. Она должна превышать ленгмюровскую частоту, в противном случае электромагнитная волна затухнет в плазме или же отразится, как свет от зеркала. Это и происходит с радиоволнами с длиной волны свыше примерно 20 м, которые не проходят сквозь земную ионосферу.

Принципиальная схема ТОКАМАКа

Вакуумная камера в форме тора заполнена смесью изотопов водорода и свободных электронов. Она охватывает стальной сердечник, играя роль вторичной обмотки трансформатора. На первичную обмотку подаётся переменное напряжение, индуцирующее в камере электрический ток -- движение электронов. Сталкиваясь с атомами, электроны высокой энергии ионизуют их -- сила тока возрастает. В камере возникает плазма. На камеру надеты обмотки тороидального поля, которое сжимает плазму в шнур. Поле полоидальных катушек удерживает плазменный шнур в центре камеры, не давая ему коснуться стенок.

Принцип работы. работает на принципе прямого преобразования плазмы в электроэнергию, что позволяет обеспечивать очень высокий КПД установки. Это достигается за счёт устранения лишних ступеней преобразования энергии, таких как, - преобразования в энергию пара, вращения турбин и электрогенераторов…

Ресурс. Установка не имеет в основе конструкции движущихся частей, - что обеспечивает большую надёжность и долговечность.

Экологичность. Установка не производит выбросов в окружающую среду, - что позволяет называть её экологически чистой и безопасной.

Себестоимость электроэнергии. Себестоимость электроэнергии по данным расчётов основанных на исследованиях, проведённых на лабораторной модели, составляет 4 копейки за киловатт/час максимум.

Топливо. В качестве топлива (хотя такое название используемого ресурса здесь не корректно, - так как металл не окисляется, а испаряется, с последующим осаждением) используется алюминий. Для работы электростанции мощностью 1 мегаватт, потребность в алюминии как в рабочем теле, составляет 200 кг в год.

Официальные подтверждения работоспособности установки. Установка получила золотую медаль на международной выставке "Эврика 1995" в Брюсселе и бронзовую медаль на "Архимеде 2010". На "Архимеде 2010" мы получить и золотую медаль, - просто не вовремя утащили образец установки домой (прямо перед приходом оценочной комиссии). Так же подтверждением работоспособности установки являются официальные отчёты об её испытаниях на "Техномаше", - копии отчётов находятся в описании установки.

Данный источник энергии универсален.

Планируется выпуск 3-х линеек продукции на основе его конструкции. А). Маломощные, - до 100 киловатт. Б). Средней мощности, - от 100 киловатт, до нескольких мегаватт. В). И большой мощности, - от нескольких мегаватт, до гигаватта.

Была создана и испытана лабораторная установка. Результаты её испытаний, - весьма положительные. Имеются официальные заключения о подтверждении положительных результатов испытаний и патенты.

Более подробно можно ознакомиться с описанием установки на сайте www.mostplus.ru Ссылка на сам файл описания, - www.mostplus.ru/701.pdf. На странице сайта www.mostplus.ru, открывающейся по нажатию закладки шоукейс (showcase), - есть видео и подробное описание проекта. В патентах и описании нет некоторых ноу-хау, без которых установка работать не будет. Желающих прошу писать в личку и на почту сайта фирмы. У Вас нет прав скачивать данный файл.

Системы для удержания плазмы. Магнитное удержание

Принцип магнитного удержания заключается в использовании сильного магнитного поля для изоляции горячей смеси от первой стенки реактора. Ниже мы рассмотрим лишь общие принципы, лежащие в основе магнитного удержания. Более детальный обзор этого направления термоядерных исследований можно найти в работе [11].

При тех температурах, которые нужны для термоядерных реакций, реагирующая смесь полностью ионизована и состоит из заряженных частиц ионов и электронов, которые движутся независимо друг от друга с относительно редкими столкновениями между собой. Сила Лоренца, действующая на заряженную частицу в магнитном поле, заставляет ее вращаться по так называемой ларморовской окружности с радиусом.

Здесь m - масса частицы, е - заряд частицы. В - индукция магнитного поля, v - проекция скорости частицы на направление поперек магнитного поля. Вдоль постоянного магнитного поля частица может двигаться свободно и, поэтому, ее траектория в магнитном поле представляет собой спираль, навивающуюся на магнитную силовую линию. Увеличивая магнитное поле, можно уменьшить ларморовский радиус частицы и сделать его существенно меньшим размеров системы и, таким образом, воспрепятствовать разлету плазмы поперек магнитного поля. Для того, чтобы избежать продольных к магнитному полю потерь, можно либо замкнуть силовые линии, либо поставить на концах силовой линии специальные магнитные или электростатические "пробки" для заряженных частиц.

Для увеличения объемной плотности выделения энергии смеси в реакторе, выгодно увеличивать плотность и температуру плазмы до таких пределов, когда газокинетическое давление плазмы (p) составляет заметную долю от давления магнитного поля B 2/ 8p. Отношение давления плазмы p к давлению внешнего магнитного поля принято характеризовать параметром в, который играет важную роль в определении стоимости и экономической эффективности ловушки. Чем больше в, тем лучше используется магнитное поле для удержания плазмы в ловушке. Очевидно, что в не может быть больше 1. В противном случае, давления магнитного поля не хватит для того, чтобы удержать давление плазмы и обеспечить ее равновесие. Однако, как показали теоретические и экспериментальные исследования различных магнитных ловушек, давление плазмы, как правило, ограничивается не условием равновесия плазмы, а плазменными неустойчивостями, которые приводят к более жестким ограничениям на максимальную величину в. Вместе с частицами плазмы магнитное поле будет удерживать в ловушке и заряженные продукты реакций. В случае DT-реакций, это альфа-частицы, которые рождаются с энергией 3.5 МэВ. Охлаждаясь при кулоновских столкновениях с частицами основной плазмы, быстрые заряженные частицы будут передавать свою энергию плазме. Это открывает возможность получать режимы с самоподдерживающимся термоядерным горением, при котором потери энергии из ловушки компенсируются термоядерным нагревом плазмы. В этом случае, дополнительный нагрев плазмы не требуется и Qfus.

За прошедшие годы напряженных термоядерных исследований было изобретено и проверено в эксперименте большое количество различных устройств для удержания горячей плазмы. Некоторые системы показали себя неработоспособными с самых первых экспериментов. Многие из систем потребовали многих лет исследований прежде, чем стало ясно, что они проигрывают своим более успешным конкурентам. Среди "выживших" систем для магнитного удержания плазмы, в настоящее время, лидируют ТОКАМАКи и СТЕЛЛАРАТОРы.

Слово "ТОКАМАК" - это сокращение слов ТОроидальная, КАмера, МАгнитные Катушки, которые описывают основные элементы этой магнитной ловушки, изобретенной А.Д. Сахаровым в 1950 г. Схема ТОКАМАКа показана на рисунке.

Схема принципиальных узлов ТОКАМАКа

Основное магнитное поле в тороидальной камере, содержащей горячую плазму, создается тороидальными магнитными катушками. Существенную роль в равновесии плазмы играет плазменный ток, который протекает вдоль тороидального плазменного шнура и создает полоидальное магнитное поле, Вр, направленное вдоль малого обхода тора. Результирующее магнитное поле имеет силовые линии в виде бесконечных спиралей, охватывающих центральную линию плазменного тора - магнитную ось. Таким образом, силовые линии магнитного поля образуют в ТОКАМАКе замкнутые, вложенные друг в друга тороидальные магнитные поверхности. Ток в плазме поддерживается вихревым электрическим полем, создаваемым первичной обмоткой индуктора. При этом, плазменный виток играет роль вторичной обмотки. Очевидно, что индукционное поддержание тока в ТОКАМАКе ограничено запасом потока магнитного поля в первичной обмотке и возможно лишь в течении конечного времени. Кроме тороидальных катушек и первичной обмотки индуктора в ТОКАМАКе должны быть полоидальные обмотки, которые нужны для поддержания равновесия плазмы и контроля ее положения в камере. Токи, текущие в полоидальных катушках создают электромагнитные силы действующие на плазменный ток и таким образом могут изменить ее положение в камере и форму сечения плазменного шнура.

Первый ТОКАМАК был построен в России в Институте Атомной Энергии им И.В. Курчатова в 1956 г. Десять лет напряженных исследований и усовершенствований этого устройства привели к существенному прогрессу в плазменных параметрах ТОКАМАКов. ТОКАМАК Т-З получил к 1968 г температуру плазмы 0.5 КэВ и достиг ntE = 5 ·1017, что существенно превосходило параметры, достигнутые на других магнитных ловушках [1]. С этого момента началось активное развитие этого направления и в других странах. В семидесятые года были построены ТОКАМАКи следующего за Т-З поколения: Т-7, Т-10, Т-11 в СССР, PLT и DIII-D в США, ASDEX в Германии, TFR во Франции, JFT-2 в Японии и др. На ТОКАМАКах этого поколения были разработаны методы дополнительного нагрева плазмы, такие как инжекция нейтральных атомов, электронный и ионный циклотронный нагрев, различные плазменные диагностики и разработаны системы управления плазмой. В результате на ТОКАМАКах второго поколения были получены внушительные параметры плазмы: температура в несколько КэВ, плотности плазмы превышающие 1020 м-3. Параметр ntE достиг величины 5 ·1018. Кроме того, ТОКАМАК получил дополнительный, принципиально важный для реактора элемент - дивертор. С помощью токов в системе полоидальных витков силовые линии магнитного поля выводятся в современном ТОКАМАКе в специальную часть камеры. Диверторная конфигурация плазмы показана на рисунке на примере ТОКАМАКа DIII-D.

1- ярмо трансформатора; 2 -- магнитные катушки; 3 -- рабочая камера; 4 -- виток плазмы; 5 -- теплоизоляция; 6 -- обмотка трансформатора; 7 -- кольцевая камера; 8 -- парогенератор

Сечение современного ТОКАМАКа DIII-D с вытянутой по вертикали плазмой и диверторной магнитной конфигурацией.

Дивертор позволяет лучше контролировать потоки энергии из плазмы и уменьшать поступление примесей в плазму. Важным достижением этого поколения ТОКАМАКов было открытие режимов с улучшенным удержанием плазмы - Н-моды.

В начале 80-х годов в строй вошло третье поколение ТОКАМАКов - машин с большим радиусом тора 2-3 м и плазменным током в несколько МА. Были построены пять таких машин: JET и TORUS-SUPRA в Европе, JT60-U в Японии, TFTR - в США и Т-15 в СССР. Параметры больших ТОКАМАКов приведены в Таблице 2. Две из этих машин, JET и TFTR, предусматривали работу с тритием и получение термоядерного выхода на уровне Qfus = Рсинтез/Рзатрат = 1.

ТОКАМАКи Т- 15 и TORUS-SUPRA имеют сверхпроводящие магнитные катушки, подобные тем, которые будут нужны в ТОКАМАКе-реакторе. Основная физическая задача машин этого поколения заключалась в исследовании удержания плазмы с термоядерными параметрами, уточнении предельных плазменных параметров, получение опыта работы с дивертором и др. Технологические задачи включали в себя: разработку сверхпроводящих магнитных систем, способных создавать поле с индукцией до 5 Тл в больших объемах, разработку систем для работы с тритием, приобретение опыта снятия высоких потоков тепла в диверторе, разработку систем для дистанционной сборки и разборки внутренних узлов установки, совершенствование плазменных диагностик и др.

Основные параметры больших экспериментальных ТОКАМАКов. ТОКАМАК TFTR, уже, выполнил свою программу и был остановлен в 1997 г. Остальные машины продолжают работать.

Волны в плазме

Коллективный характер внутриплазменных явлений приводит к тому, что эта среда гораздо более склонна к возбуждению различных волн, нежели нейтральный газ. Простейшие из них изучали еще Ленгмюр с его коллегой Леви Тонксом (более того, анализ этих колебаний сильно укрепил Ленгмюра в мысли, что он имеет дело с новым состоянием вещества). Пусть в каком-то участке равновесной плазмы немного изменилась электронная плотность -- иначе говоря, группа соседних электронов сдвинулась из прежнего положения. Тут же возникнут электрические силы, возвращающие удравшие электроны в начальную позицию, которую те по инерции чуть-чуть проскочат. В итоге появится очаг колебаний, которые станут распространяться по плазме в виде продольных волн (в очень холодной плазме они могут быть и стоячими). Эти волны так и называются -- ленгмюровскими.

Открытые Ленгмюром колебания накладывают ограничение на частоту электромагнитных волн, которые могут проходить через плазму. Она должна превышать ленгмюровскую частоту, в противном случае электромагнитная волна затухнет в плазме или же отразится, как свет от зеркала. Это и происходит с радиоволнами с длиной волны свыше примерно 20 м, которые не проходят сквозь земную ионосферу.

Размещено на Allbest.ru


Подобные документы

  • Расчет основных параметров низкотемпературной газоразрядной плазмы. Расчет аналитических выражений для концентрации и поля пространственного ограниченной плазмы в отсутствие магнитного поля и при наличии магнитного поля. Простейшая модель плазмы.

    курсовая работа [651,1 K], добавлен 20.12.2012

  • Агрегатные состояния вещества. Что такое плазма? Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение плазмы. Использование плазмы. Плазма как негативное явление. Возникновение плазменной дуги.

    доклад [10,9 K], добавлен 09.11.2006

  • Возникновение плазмы. Квазинейтральность плазмы. Движение частиц плазмы. Применение плазмы в науке и технике. Плазма - ещё мало изученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках.

    реферат [43,8 K], добавлен 08.12.2003

  • Изменение свободной энергии, энтропии, плотности и других физических свойств вещества. Плазма - частично или полностью ионизированный газ. Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение и использование плазмы.

    доклад [10,5 K], добавлен 28.11.2006

  • Механизм функционирования Солнца. Плазма: определение и свойства. Особенности возникновения плазмы. Условие квазинейтральности плазмы. Движение заряженных частиц плазмы. Применение плазмы в науке и технике. Сущность понятия "циклотронное вращение".

    реферат [29,2 K], добавлен 19.05.2010

  • Состав газоразрядной плазмы. Восстановление плазмой нейтральности. Энергетический спектр тяжелых частиц (атомов и молекул). Столкновения частиц в плазме. Диффузия и амбиполярная диффузия в плазме. Механизмы эмиссии электронов из катода в газовом разряде.

    контрольная работа [66,6 K], добавлен 25.03.2016

  • Исследование газообразного состояния вещества, в котором частицы не связаны или весьма слабо связаны силами взаимодействия. Изучение плазмы, частично или полностью ионизированного газа, в котором плотности отрицательных и положительных зарядов одинаковы.

    презентация [477,5 K], добавлен 19.12.2011

  • Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.

    реферат [855,2 K], добавлен 11.08.2014

  • Характеристика закона дисперсии высокочастотных продольных плазменных волн, математическое описание ленгмюровских колебаний и волн в условиях холодной плазмы. Понятие плазмонов. Описание ионных ленгмюровских волн простыми дисперсионными уравнениями.

    реферат [59,7 K], добавлен 04.12.2012

  • Анализ отрицательных и положительных свойств пылевой плазмы. Изучение процессов в пылевой плазме при повышенных давлениях. Механизмы самоорганизации и образования плазменно-пылевых кристаллов. Зарядка в газоразрядной плазме. Пылевые кластеры в плазме.

    реферат [25,8 K], добавлен 26.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.