Электрические сети

Характеристика электрифицируемого района и потребителей электроэнергии. Выбор количества и мощности силовых трансформаторов на приемных подстанциях. Технико-экономическое обоснование вариантов. Выбор и обоснование оптимального варианта электрической сети.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 27.03.2012
Размер файла 43,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

Характеристика электрифицируемого района и потребителей электроэнергии

Выбор количества и мощности силовых трансформаторов на приемных подстанциях.

Технико-экономическое обоснование вариантов. Выбор и обоснование оптимального варианта электрической сети

Электрический расчет основных режимов сети

Выбор средств регулирования напряжения

Заключение

Список литературы

Введение

Начало развития электрических систем в России было положено планом ГОЭЛРО. Его идеи привели к созданию объединенных энергетических систем, в том числе и единой энергетической системы (ЕЭС). Задачу проектирования электрических систем следует рассматривать как задачу развития единой энергетической системы России. При проектировании электрических систем важно учитывать интересы и специфику административных и экономических районов. Поэтому проектирование ЕЭС России должно основываться на учете развития энергосистем и их объединений.

В соответствии с основными положениями Энергетической программы на длительную перспективу в ближайшие два десятилетия намечено завершение формирования ЕЭС страны, сооружение магистральных линий электропередачи напряжением 1150 кВ постоянного тока.

Создание мощных электрических систем обусловлено их большими технико-экономическими преимуществами. С увеличением их мощности появляется возможность сооружения более крупных электрических станций с более экономичными агрегатами, повышается надежность электроснабжения потребителей, более полно и рационально используется оборудование.

Формирование электрических систем осуществляется с помощью электрических сетей, которые выполняют функции передачи энергии и электроснабжения потребителей.

Любой проект электрической сети состоит из двух следующих основных разделов: силовой трансформатор приемный подстанция

выбор наиболее рациональных вариантов схем электрической сети и электроснабжения потребителей;

сопоставление этих вариантов по различным показателям;

выбор в результате этого сопоставления и технико-экономического расчета наиболее приемлемого варианта;

расчет характерных режимов работы электрической сети;

решение вопросов связанных с регулированием напряжения;

определение технико-экономических показателей электрической сети.

Следует учитывать, что к электрической сети предъявляются определенные технико-экономические требования, с учетом которых и производится выбор наиболее приемлемого варианта .

Экономические требования сводятся к достижению по мере возможности наименьшей стоимости передачи электрической энергии по сети, поэтому следует стремится к снижению капитальных затрат на строительство сети. Необходимо также принимать меры к уменьшению ежегодных расходов на эксплуатацию электрической сети. Одновременный учет капитальных вложений и эксплуатационных расходов может быть произведен с помощью метода приведенных затрат. В связи с этим оценка экономичности варианта электрической сети производится по приведенным затратам.

1. Характеристика электрифицируемого района и потребителей электроэнергии

Главной задачей этого раздела является максимально полный подбор исходного материала для дальнейшего проектирования. Исходные данные сведены в таблицу 1.1.

Таблица 1.1. Исходные данные для проектирования

Обозначение подстанций

Состав потребителей по категориям

Время максимума нагрузки

Режим максимальной нагрузки

Режим минимальной нагрузки

Кате-гория

%

ч/год

S,

МВА

P,

МВт

Q,

МВАр

cos

S, МВА

P,

МВт

Q,

МВАр

cos

а

50

4000

53,76

50

19,76

0,93

39,77

35

18,89

0,88

б

40

3900

13,33

12

5,81

0,9

9,41

8

4,96

0,85

в

60

5500

16,85

15

7,68

0,89

11,76

10

6,19

0,85

г

90

6500

107,53

100

39,52

0,93

94,44

85

41,17

0,9

д

40

4400

38,04

35

14,91

0,92

28,73

20

10,8

0,88

В таблице 1.1. указаны следующие потребители:

а - завод сельскохозяйственного машиностроения;

б - механический завод;

в - цементный завод;

г - медеплавильный завод;

д - завод электротехнических изделий.

Определим необходимые климатические параметры в (соответствии с [1]), характеризующие заданный район.

Район характеризуется:

Умеренной пляской проводов (1 раз в 5-10 лет);

Различными скоростными напорами ветра;

Невысоким числом грозовых часов (не более 20 в год);

Различной толщиной стенки гололеда.

Выбор количества и мощности силовых трансформаторов на приемных подстанциях

Для условий нормальной работы на подстанции устанавливают два трехфазных трансформатора с номинальной мощностью каждого, рассчитанной в пределах от 60 до 70% максимальной нагрузки т.е.

Sн.тр.=(0,60,7)Smax.

Несмотря на то, что отключения трансформаторов довольно редки, однако с такой возможностью следует считаться и при наличии потребителей I и II категорий устанавливают на ГПП два трансформатора. При аварии любой из трансформаторов, оставшийся в работе, должен обеспечить бесперебойное питание потребителей нагрузки.

Согласно ПУЭ, при наличии централизованного резерва трансформаторов и возможности замены поврежденного трансформатора за время не более 1 суток допускается питание потребителей II категории от одного трансформатора. Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта и замены поврежденного элемента системы электроснабжения не превышают одних суток. Опыт Норильской энергосистемы показывает, что за это время возможна замена одного трансформатора мощностью не более 80 МВА, независимо от номинального напряжения.

Ряд номинальных напряжений трансформаторов и автотрансформаторов, рекомендуемых для современных проектов регламентирован ГОСТом 9680-77.

Условия выбора трансформаторов сведены в таблице 3.1. (по [4]).

Таблица 3.1. Условия выбора трансформаторов ГПП

Вариант

П/ст

Макс.нагрузка,

МВА

Мощность потребителей I и II категорий,

МВА

Тип и номин.

Мощность

тр-ра, МВА

Кол-во тр-ров

Коэф. загрузки в норм. реж.,

Кз.н.

Коэф. Загрузки в послеавар. реж.,

Кз.п.

а

57,76

26,88

ТРДН-40000/220

2

0,68

1,34

б

13,33

5,33

ТДН-10000/110

2

0,67

1,33

I

в

16,85

10,11

ТДН-16000/110

2

0,54

1,05

г

107,6

96,78

ТРДЦН-100000/220

2

0,54

1,08

д

38,4

15,36

ТДН-40000/110

2

0,61

1,19

а

57,76

26,88

ТРДН-40000/220

2

0,68

1,34

б

13,33

5,33

ТДН-10000/110

2

0,67

1,33

II

в

16,85

10,11

ТДН-16000/110

2

0,54

1,05

г

107,6

96,78

ТРДЦН-100000/220

2

0,54

1,08

д

38,4

15,36

ТДН-40000/110

2

0,61

1,19

В таблице 3.1. имеют место следующие обозначения

коэффициент загрузки одного трансформатора в нормальном режиме;

коэффициент загрузки оставшегося в работе трансформатора в послеаварийном режиме. В соответствии с ПУЭ перегрузка трансформаторов в послеаварийном режиме не должна превышать 40% (для условий Крайнего Севера - 50%), что выполняется для выбранных типов трансформаторов.

Характеристики выбранных типов трансформаторов представлены в таблице 3.2. (источник - [2]).

Таблица 3.2. Характеристики выбранных типов трансформаторов

Вар

П/ст

Тип трансформатора

Ном.напряжение, кВ

Пределы регулирования, %

Рх,

кВт

Рк,

кВт

Uk,

%

Ixx,

%

Стоим.,

тыс.руб.

а

ТРДН-40000/220

230/6,3

81,5

50

170

12

28

0,9

169

б

ТДН-10000/110

115/6,3

91,78

14

60

10,5

-

0,7

54

I

в

ТДН-16000/110

125/6,6

91,78

18

85

10,5

-

0,7

48

г

ТРДЦН-100000/220

230/6,3

81,5

115

360

12

28

0,7

265

д

ТДН-40000/110

115/6,3

91,5

34

170

10,5

-

0,65

78

а

ТРДН-40000/220

230/6,3

81,5

50

170

12

28

0,9

169

б

ТДН-10000/110

115/6,3

91,78

14

60

10,5

-

0,7

54

I

в

ТДН-16000/110

125/6,6

91,78

18

85

10,5

-

0,7

48

г

ТРДЦН-100000/220

230/6,3

81,5

115

360

12

28

0,7

265

д

ТДН-40000/110

115/6,3

91,5

34

170

10,5

-

0,65

78

3.Технико-экономическое обоснование вариантов. Выбор и обоснование оптимального варианта электрической сети

Данный раздел проекта является основным. Из отобранных по результатам предварительного анализа трех вариантов необходимо выбрать наивыгоднейший. Определим сечение проводов ЛЭП. Для электрических сетей и линий электропередач до 220 кВ включительно оно выбирается по экономической плотности тока jЭК (по табл. 8 [1]) из соотношения

, мм2

где

расчетный ток соответствующий максимуму нагрузки, в нормальном режиме работы;

S - мощность в начале линии.

По таблице 8 [1] определяем значения экономической плотности тока для каждой из подстанций

jэка = 1,1 А/мм2;

jэкб = 1,0 А/мм2 ;

jэкв = 1,1 А/мм2;

jэкг = 1,0 А/мм2;

jэкд = 1,1 А/мм2.

Определим расчетные токи и сечения проводов линий для каждого из вариантов схем электрических сетей (по [4]). Результаты расчетов сведены в таблицу 5.1.

Таблица 5.1. Определение расчетных токов в линиях, сечений и марки проводов линий

Вар.

Участок сети

Номинальное напряжение, кВ

Кол-во линий

Макс. рабочий ток на одну цепь, А

Эконом. плотность тока,

А/мм2

Расчетно-экон. сечение провод,

мм2

Принятый стандартный провод

Послеаварийный ток,

А

Допустимый по нагреву ток, А

ИП - а

230

2

213,95

1,1

194,5

АС-240

427,9

605

а - г

230

2

139,46

1,0

139,46

АС-240

278,9

605

I

ИП - б

115

2

35,44

1,1

32,21

АС-70

70,88

265

ИП - в

115

2

147,66

1,0

147,66

АС-150

295,3

450

в - д

115

2

99,84

1,1

90,76

АС-95

199,68

330

ИП - а

230

2

213,95

1,1

144,75

АС-240

144,75

605

а - г

230

2

139,46

1,0

139,46

АС-240

139,46

605

II

ИП - в

115

2

183,1

1,0

183,1

АС-185

188,1

510

в - б

115

2

35,44

1,1

35,44

АС-70

32,21

265

в - д

115

2

99,84

1,1

99,84

АС-95

90,76

330

Далее произведем сравнение вариантов по минимуму приведенных затрат.

При сооружении всей сети в течении одного года и одинаковой степени надежности приведенные затраты каждого из вариантов определяются как

З = РН К + И,

где К - единовременные капиталовложения в данный вариант сети, тыс.руб;

И - ежегодные эксплуатационные расходы, тыс.руб;

РН = 0,15 - нормативный коэффициент эффективности капиталовложений.

Капиталовложения включают в себя затраты на сооружение линий КЛ и понизительных подстанций КП/СТ . В капитальные затраты КП/СТ входят стоимость оборудования подстанции (стоимость ячеек выключателей на стороне высокого напряжения или другого коммутационного оборудования и трансформаторов) и постоянная часть затрат.

Ежегодные эксплуатационные расходы И имеют три составляющие: отчисление на амортизацию И1, ремонт и обслуживание И2, стоимость потерь электроэнергии И3. Стоимость потерь электроэнергии определяется как

И3 = А ,

где А - потери электроэнергии в сети, кВтч;

= 100 руб/кВтч - удельная стоимость потерь электроэнергии.

Потери электроэнергии в сети суммируются из потерь в линиях и потерь в трансформаторах.

Укрупненные показатели ЛЭП и прочего электрооборудования определяем по справочнику [4]. Результаты расчетов сведены в таблицу 5.2.

Таблица 5.2. Укрупненные показатели электрооборудования схем всех вариантов

Вариант

Кап затраты, млн. руб.

Эксплуатационные показатели, млн.руб.

Приведенные затраты,

млн.руб.

КЛ

КП/СТ

К

И1

И2

И3

И

З

I

3768

2917

6685

259,62

102,58

354,5

616,66

1619,41

II

3768

2917

6685

259,62

102,58

452,6

814,45

1817,2

Из данной таблицы видно, что наименьшие приведенные затраты приходятся на схему электроснабжения по варианту 1, т.е. данный вариант является оптимальным по экономическим показателям.

4. Электрический расчет основных режимов работы

Цель данного раздела - уточненный расчет распределения активной и реактивной мощностей по линиям сети, определение потерь мощности, требуемой мощности источника питания, а также уровня напряжений на шинах подстанций. Расчеты ведутся в следующей последовательности: составляется схема замещения сети и определяются параметры ее элементов; определяют расчетные нагрузки подстанций; производят расчет потокораспределения мощностей в сети; определяют уровни напряжений на шинах подстанций. Все это устанавливают для трех режимов: нормального (максимальные нагрузки) и нормального при минимальных нагрузках. Схема замещения составляется путем объединения схем замещений отдельных элементов в соответствии с последовательностью их соединения в рассчитываемой сети.

Выполним приведение заданных на стороне низкого напряжения нагрузок потребителей к стороне высокого напряжения для каждой из подстанций. Расчетная нагрузка приведенная к стороне ВН определяется по формуле

где Sнн=Pнн+jQнн -

заданная нагрузка на стороне НН;

Rтр, Хтр - сопротивления трансформатора (определяемые по [5]);

Рх, Qх - потери холостого хода трансформатора в стали;

Qз = 0,5U2ном b0 - сумма зарядных мощностей линий электропередач;

b0 - удельная реактивная проводимость для конкретной линии ( по [4]).

Результаты расчетов по приведениям нагрузок подстанций к стороне ВН приведены в таблице 6.1.

Таблица 6.1. Приведение нагрузок п/ст к стороне ВН

П/ст

S, МВА

SР, МВА

Активн. составл.

Реактивн.составл.

Активн.

составл.

Реактивн.

составл.

а

50

19,76

50,11

15,95

б

12

5,8

12,08

4,5

в

15

7,68

15,11

8,75

г

100

39,52

100,97

59,95

д

35

14,91

35,19

18,09

Определяем потоки мощности в сети с учетом потерь в линиях и с учетом приведенных к стороне ВН нагрузок. Для этого воспользуемся ранее полученными соотношениями (см. стр. 13-14).

Таблица 6.2. Определение потоков мощности в проектируемой сети

Участок сети

Мощность в конце линии S, МВА

Мощность в начале линии S,

МВА

Потери мощности

S,

МВА

Акт. составл.

Реакт.

составл.

Акт. составл.

Реакт.

Составл

Акт. составл.

Реакт.

составл

ИП - а

50,33

23,68

50,43

24,06

0,11

0,38

а - г

75,43

28,42

76,1

30,83

0,67

2,4

ИП - в

17,57

7,79

17,79

8,09

0,21

0,3

в - д

25,29

11,61

25,58

12,22

0,29

0,61

ИП - б

6,04

2,25

6,09

2,3

0,05

0,05

Определим суммарную мощность, потребляемую всей схемой с шин электростанции:

S = Sа + Sб + Sв + Sг + Sд = 55,62+6,45+19,22+80,61+27,83 = 189,73 МВА

Расчет напряжений и послеаварийных режимов

Напряжение источника питания, к которому подсоединены распределительные сети должно поддерживаться не ниже 105% от номинального в период наибольших нагрузок и не выше 100% номинального в период наименьших нагрузок. С учетом вышесказанного, напряжение на шинах источника питания принимаем равным:

- для режима максимальных нагрузок - 115 кВ;

- для режима минимальных нагрузок - 110 кВ.

Потери напряжения в линии ИП-а

max 4.2+j5.46

min 3.57+j5.69

Потери напряжения в линии а-г

max 1.36+j6.68

min 1.16+j6.95

Потери напряжения в линии ИП-в

max 2.71+j1.52

min 1.54+j1.22

Потери напряжения в линии в-д

max 2.7+j1.57

min 1.81+j1.27

Потери напряжения в линии ИП-б

max 1.08+j0.57

min 0.76+j0.48

Рассмотрим послеаварийные режимы.

ИП-а 3.54+j3.5

а-г 7.36+j6.92

ИП-в 6,39+j2.89

в-д 6.07+j2.96

б 2.48+j0.79

Определим напряжение на шинах НН трансформатора приведенное к стороне ВН, путем вычитания из напряжения падения напряжения на трансформаторе.

где Pр и Qр - расчетные нагрузки подстанций;

Rтр, Xтр - соответственно активные и реактивные сопротивления трансформатора установленного на подстанции (определяемые по [5]);

U - напряжение на шинах ВН, кВ.

Далее определяем параметры схемы в режиме наименьших нагрузок. С некоторой погрешностью можно считать, что потери напряжения в элементах сети уменьшаются пропорционально снижению нагрузок подстанций. Тогда потери напряжения в линии можно определить путем умножения соответствующих значений, найденных для режима максимальных нагрузок, на отношение наименьшей нагрузки к наибольшей.

Результаты расчетов сведены в таблицу 6.3.

Таблица 6.3. Расчет напряжений для трех режимов работы сети

Обозн. п/ст

а

г

в

д

б

Участки линий

ИП - а

а - г

ИП - в

в - д

ИП - б

Режим наибольших нагрузок

Напряж. в начале уч-ка, кВ

242

237,66

121

118,3

121

Падение напряж. в линии, кВ

4,34

1,07

2,7

2,69

1,06

Напряж. в конце уч-ка, кВ

237,66

236,59

118,3

115,61

119,94

Падение напряж. на тр-рах, кВ

1,35

8,44

3,65

5,76

4,23

Напряж. на стороне НН приведенное к стороне ВН, кВ

236,31

228,15

114,65

109,85

115,71

Режим наименьших нагрузок

Напряж. в начале уч-ка, кВ

230

226,5

115

113,47

115

Падение напряж. в линии, кВ

3,5

1,05

1,53

1,8

0,06

Напряж. в конце уч-ка, кВ

226,5

225,45

113,47

111,67

114,94

Падение напряж. на тр-рах, кВ

1,31

6,89

2,08

3,86

2,94

Напряж. на стороне НН приведенное к стороне ВН, кВ

225,19

218,56

111,39

107,81

112

Послеаварийный режим

Напряж. в начале уч-ка, кВ

242

238,48

121

120,65

121

Падение напряж. в линии, кВ

3,52

7,28

0,35

6,03

2,48

Напряж. в конце уч-ка, кВ

238,48

231,2

120,65

114,62

118,52

Падение напряж. на тр-рах, кВ

1,55

8,42

4,45

6,07

8,02

Напряж. на стороне НН приведенное к стороне ВН, кВ

236,93

222,78

116,2

108,55

110,5

5. Выбор средств регулирования напряжения

В данном разделе требуется проверить достаточность стандартных диапазонов регулирования устройств РПН, установленных на трансформаторах. Для сетей с номинальным напряжением 6 кВ необходимые напряжения равны 6,3 кВ в режиме наибольших нагрузок и в послеаварийном режиме и 6 кВ - в режиме наименьших нагрузок. Расчетное (желаемое) напряжение регулировочного ответвления трансформатора определяется по формуле

где UHH - номинальное напряжение обмотки НН трансформатора;

UН.Ж - напряжение, которое необходимо поддерживать на шинах НН при различных режимах работы сети;

U'Н - напряжение на шинах по низкой стороне трансформатора, приведенное к высокой стороне в режиме наибольшей (наименьшей) нагрузки и в послеаварийном режиме.

Действительные значения напряжения на шинах НН подстанции определяют как:

где

- действительное значение напряжения трансформатора на стороне ВН.

Для трансформаторов со стандартным диапазоном регулирования будем иметь значения регулировочных отпаек приведенных в таблице 7.1.

Таблица 7.1. Стандартные значения регулировочных отпаек выбранных тр-ров

Номер ответвления

Добавка напряжения

Напряжение ответвления,

UВН.Д, кВ

Напряжение ответвления,

UВН.Д, кВ

1

16,02

266,8

133,4

2

14,24

263,8

131,4

3

12,46

258,7

129,3

4

10,68

254,6

127,3

5

8,9

250,47

125,2

6

7,12

246,4

123,2

7

5,34

242,3

121,1

8

3,56

238,2

119,1

9

1,78

234,1

117,0

10

0

230,0

115,0

11

-1,78

225,9

113,0

12

-3,56

221,8

110,9

13

-5,34

217,7

108,9

14

-7,12

213,6

106,8

15

-8,9

209,5

104,8

16

-10,68

205,4

102,7

17

-12,46

201,3

100,7

18

-14,24

197,24

98,6

19

-16,02

193,2

96,6

По определенному значению расчетного напряжения регулировочного ответвления выбираем стандартные ответвления с напряжением ближайшим к расчетному. Результаты расчетов сведены в таблицу 7.2.

Таблица 7.2. Выбор регулировочных отпаек

Обозн. п/ст

а

г

в

д

б

Режим наибольших нагрузок

Напряж.UН.ВЖ, кВ

236,31

228,15

114,65

109,85

115,71

Стандартн. напряжение, кВ

238,2

230

115

110,9

115

Номер регулировочн. отпайки

8

10

10

12

10

Напряж. на шинах НН, кВ

6,25

6,26

6,28

6,24

6,34

Режим наименьших нагрузок

Напряж.UН.ВЖ, кВ

225,19

218,56

111,39

107,81

112

Стандартн. напряжение, кВ

225,9

217,7

110,9

106,8

113

Номер регулировочн. отпайки

11

13

12

14

11

Напряж. на шинах НН, кВ

6,28

6,32

6,33

6,35

6,24

Послеаварийный режим

Напряж.UН.ВЖ, кВ

236,93

222,78

116,2

108,55

110,5

Стандартн. напряжение, кВ

236,2

221,8

117

108,9

110,9

Номер регулировочн. отпайки

8

12

9

13

12

Напряж. на шинах НН, кВ

6,32

6,32

6,26

6,28

6,28

Заключение

Спроектированная электрическая сеть за счет взаиморезервирования линий и применения двух трансформаторов на подстанции, подключенных к разным секциям источника питания, обеспечивает надежное электроснабжение потребителей всех категорий заданного района ( в том числе и в послеаварийном режиме), а также удовлетворяет всем требованиям ПУЭ. Предусмотренная конфигурация коммутационных аппаратов (выключателей и разъединителей) обеспечивает удобство оперативных переключений и техническую гибкость схемы. Все двухцепные линии смонтированы на двух опорах (одна цепь на одну опору), что также повышает надежность электроснабжения.

Список литературы

Электрические сети и системы: Методические указания по курсовому проектированию для студентов специальности 10.04 всех форм обучения. - Норильск, 1991;

Правила устройства электроустановок / Минэнерго СССР.- 6-е изд., перераб. и доп.-М.:Энергоатомиздат,1987;

Идельчик В.И. Электрические системы и сети: Учебник для вузов. - М.: Энергоатомиздат, 1989;

Неклепаев Б.Н., Крючков И.П. Электрическая часть станций и подстанций: Справочные материалы для курсового и дипломного проектирования: Учебн. пособ. для вузов. - М.: Энергоатомиздат, 1989;

Поспелов Г.Е., Федин В.Т. Электрические системы и сети. Проектирование: Учеб. пособие для втузов Мн.: Выш. шк.,1988.

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика электрифицируемого района и потреблений электроэнергии. Выбор количества и мощности силовых трансформаторов на приемных подстанциях. Анализ и обоснование схем электрической сети. Электрический расчет основных режимов работы сети.

    курсовая работа [369,6 K], добавлен 13.07.2012

  • Характеристика электрифицируемого района и потребителей электроэнергии. Составление и обоснование вариантов схемы электрической сети. Баланс реактивной мощности и выбор компенсирующих устройств. Выбор номинального напряжения и сечений проводов сети.

    курсовая работа [89,3 K], добавлен 13.04.2012

  • Выбор оптимального варианта конфигурации электрической сети и разработка проекта электроснабжения населённых пунктов от крупного источника электроэнергии. Расчет напряжения сети, подбор трансформаторов, проводов и кабелей. Экономическое обоснование сети.

    курсовая работа [2,2 M], добавлен 20.10.2014

  • Разработка вариантов конфигураций и выбор номинальных напряжений сети. Выбор компенсирующих устройств при проектировании электрической сети. Выбор числа и мощности трансформаторов на понижающих подстанциях. Электрический расчет характерных режимов сети.

    курсовая работа [599,7 K], добавлен 19.01.2016

  • Выбор вариантов развития существующей сети. Выбор номинальных напряжений сооружаемых воздушных линий радиального варианта сети. Определение сечений проводов сооружаемых линий радиального варианта сети. Выбор понижающих трансформаторов на подстанции.

    курсовая работа [2,9 M], добавлен 22.07.2014

  • Типовые графики нагрузок. Выбор схемы электроснабжения района. Проверка сечения проводов по экономической плотности тока, допустимой нагрузке и короне. Выбор типа, числа и мощности силовых трансформаторов. Технико-экономическое сопоставление вариантов.

    контрольная работа [1,5 M], добавлен 16.02.2015

  • Характеристика электрифицируемого района и потребителей электроэнергии. Выбор конструкции, номинального напряжения линий сети, количества и мощности силовых трансформаторов. Электробаланс предприятия, себестоимость передачи и распределения электроэнергии.

    курсовая работа [110,4 K], добавлен 24.07.2012

  • Составление вариантов схемы электрической сети, выбор и обоснование наиболее рациональных из них. Расчет потокораспределения в электрической сети. Выбор номинальных напряжений, трансформаторов на подстанциях. Баланс активной и реактивной мощностей.

    курсовая работа [372,7 K], добавлен 17.12.2015

  • Основные разделы проектирования и расчет схем электросети. Краткая характеристика электроснабжаемого района. Выбор числа и мощности силовых трансформаторов и ответвлений к ним; построение схем коммутации, обоснование технико-экономических вариантов.

    курсовая работа [1,6 M], добавлен 24.03.2011

  • Этапы и методы проектирования районной электрической сети. Анализ нагрузок, выбор оптимального напряжения сети, типа и мощности силовых трансформаторов. Электрический расчёт варианта сети при максимальных нагрузках. Способы регулирования напряжения.

    методичка [271,9 K], добавлен 27.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.