Основы энергосбережения

Рост потребления энергии человеком. Среднее потребление электроэнергии бытовыми приборами. Закон снижения энергетической эффективности природопользования. Закон биогенной миграции атомов. Связь между накоплением информации и потреблением энергии.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 27.03.2012
Размер файла 43,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Рост потребления энергии человеком

Начиная повествование об энергии, я хочу привести почти крылатую фразу про деньги, но она актуальна и про энергию: «…их может не хватать, их может быть достаточно, но их никогда не бывает много…». Электроэнергетика в 20 столетии развивалась весьма стремительно. ТЭЦ, ГЭС, АЭС росли «как грибы после дождя». Потребление энергии растет колоссальными темпами, и оно продолжает этот рост и по сей день. Я хочу привести пример, который я наблюдал своими глазами. Последние два лета я работал программистом на одном из достаточно крупном предприятии своего города. Что я видел прошлым летом и этим это две большие разницы. Количество компьютеров удвоилось, почти в каждом отделе появились электроприборы (чайники, электроплитки, холодильники и т.д.), вентиляторы или кондиционеры, разного рода электрооборудования, пришедшее на замену ручного труда. Даже не подчитывая затраты на электричество, не трудно видеть что почти на двое повысилось потребление.

В 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Но в 2000 году произведено около 30 тысяч миллиардов киловатт часов. Население земного шара в условиях современного демографического взрыва удваивается за 40-50 лет. В тоже время в энергетике это происходит через каждые 12-15 лет. Таким образом, возрастает количество энергии на душу населения. Но не каждая душа её получает хотя бы в малых количествах. Львиная доля приходится на развитые и высокоразвитые страны. И проблема возникает, как правило, в этих странах.

В современном мире трудно представить жизнь без электричества. Экономики многих стран терпят миллиардные потери при, даже небольшом, «голоде» электричества. Тому недавний пример в США и Канаде. На электричестве «сидят» все предприятия, больницы, дома и т.д. Жизнь людей стала зависеть от электричества как напрямую, так и косвенно.

Считается, что электроприборы «экологичные» и поэтому менее вредны здоровью человека и на окружающую среду. Да это так, но её, то бишь энергию, ещё нужно произвести. А это не всегда бывает экологически приемлемо [10, c. 55].

В мире от сжигания топлива (нефтепродукты, газ, различные биоресурсы) вырабатывается около 80-85% энергии. Хотя по тенденции последних лет доля его постепенно снижается. Среди источников продуктов сжигания лидирует уголь - 52% (в Китае-75%, В России-18%). В России преобладающим источником энергии является природный газ - 40%. На долю нефти в России приходится не более 10% (в США-35). От гидроресурсов мир получает около 5-6% энергии (в России 20,5%). На атомную энергию приходится 17-18%. В России её доля около 12%, а в ряде стран она является преобладающей в энергетическом балансе. Например, Франция - 74%, Бельгия - 61%, Швеция - 45%.

Основным загрязнителем является лидер, т.е. электростанции, которые работают на сжигании топлива. Они поставляют в атмосферу техногенный углерод (в основном в виде СО2), около 50% двуокиси серы, 35% окислов азота и столько же пыли. По некоторым данным, тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС той же мощности. В выбросах ТЭЦ содержится значительно количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединения свыше 100 млн. доз, железа-400 млн. доз, магния - 1,5 млн. доз. Смертельных исходов практически не случаются, т.к. они поступают в организм в незначительных количествах, но здоровье подрывают конкретно. Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека. В обобщенном виде эти воздействия представлены в таблице №1.

Влияние энергетики на среду и её обитателей в большей мере зависит от вида используемых энергоносителей (топлива). Наиболее чистым топливом идет газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф.

Одно из важнейших воздействий гидроэнергетики связано с отчуждением значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн. га земель. На их месте уничтожены естественные экосистемы. Основные воздействия ГЭС на среду, различные звенья экосистем и человека приведены в таблице №2. Значительные площади земель вблизи водохранилищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, переходят в категорию заболоченных. В равнинных условиях подтопленные земли могут составлять 10% и более от затопленных. Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т.п. Волга во многом потеряла свое значение как нерестилище для осетровых Каспия после строительства на ней каскада ГЭС. Имеются данные, в результате заиления равнинные водохранилища теряют свою ценность как энергетические объекты через 50-100 лет после их строительства. Например, подсчитано, что большая Асуанская плотина, построенная на Ниле в 60-е годы, будет наполовину заилена уже к 2025 году. Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энергическом балансе постепенно уменьшается. Это связано как с исчерпанием наиболее дешевых ресурсов, так и с большей территориальной емкостью равнинных водохранилищ. Считается, что перспективе мировое производство энергии на ГЭС не будут превышать 5% от общей. Водохранилища оказывают заметное влияние на атмосферные процессы. Например, в засушливых (аридных) районах, испарении с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз. Только с каскада Волжско-Камских водохранилищ ежегодно испаряется около 6 км3. Это примерно 2-3 годовые нормы потребления воды Москвой. С повышенным испарением связано понижение температуры воздуха, увеличение туманных явлений. Различие тепловых балансов водохранилищ и прилегающей суши обуславливает формирование местных ветров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положительную), изменение погоды. В ряде случаев в зоне водохранилищ приходится менять направления сельского хозяйства. Например, в южных районах нашей страны некоторые теплолюбивые культуры (бахчевые) не успевают вызревать, повышается заболеваемость растений, ухудшается качество продукции [17, c. 44].

Обеспечение комфортных тепловых условий в помещениях жилых и общественных зданий в холодное время года необходимо для высокопроизводительного труда, укрепления здоровья и улучшения отдыха людей.

Но ускорение темпов развития народного хозяйства сегодня не может быть достигнуто без проведения в жизнь мероприятий по экономии материальных и трудовых ресурсов.

Развитию электроэнергетики как основополагающей отрасли народного хозяйства уделяют большое внимание. Вместе с тем возможности электроэнергетической промышленности ограничены как добычей и доставкой топлива, так и развитием генерирующих систем и линий электропередач.

Жилые и общественные здания являются одним из крупных потребителей электрической и тепловой энергии, причём удельный вес электроэнергии в общем энергетическом балансе коммунально-бытового сектора неуклонно возрастает. Это связано в первую очередь с решением социальных задач обеспечения труда в домашнем хозяйстве и на предприятиях коммунального хозяйства, снижения времени на ведение домашнего хозяйства, сближения условий жизни городского и сельского населения. Функционирование указанных зданий и предприятий сегодня немыслимо без электрификации: на электроэнергии работают осветительные приборы, аппаратура приёма и воспроизведения информации, практически все приводные механизмы. Электроэнергия применяется для получения холода в домашних холодильниках и крупных холодильных установках, для приготовления пищи, а в ряде случаев - для нагрева воды и отопления помещений. С помощью электроприборов создаются установки искусственного климата, обеспечивается гибкое регулирование теплового и воздушного режимов. Электроэнергия позволяет обеспечить теплоту воздуха в домах и населённых пунктах.

Использование электроэнергии в качестве энергоносителя позволяет создать экономичные приборы и установки практически любой мощности: от электробритв мощностью 10-25 Вт до отопительных установок мощностью в сотни киловатт. Электроэнергия позволяет максимально автоматизировать производственные процессы в коммунальном хозяйстве, обеспечивает работу многих бытовых приборов в домашнем хозяйстве.

Возможность лёгкой автоматизации процессов, работа без обслуживающего персонала, сравнительная простота электротехнологического оборудования приводят к повышению роли электроэнергии в энергообеспечении общественных зданий. Широко применяются электроплиты. Электроэнергия используется для вентиляции и кондиционирования. При этом иногда приточная вентиляция совмещается с электрическим подогревом поступающего воздуха. Требования к созданию светового комфорта вызвали увеличение норм освещённости зданий общественного назначения. Однако применение люминесцентных светильников позволило в большинстве случаев избежать увеличения расхода электроэнергии.

Коммунальная энергетика характеризуется относительно невысоким уровнем топливо потребления. Однако в силу сложившихся условий её работы резервы по улучшению использования топлива, тепловой и электрической энергии здесь чрезвычайно велики. Современные источники теплоты в коммунальной энергетике имеют низкую экономичность, значительно уступающую таковой для котельных установок промышленной энергетики и тепловых электростанций. Для теплоснабжения жилищного фонда коммунальное хозяйство Беларуси большую часть тепловой энергии получает от других отраслей. Эффективность использования этой энергии остаётся невысокой. В РБ этот показатель не выше 38%. Отсюда видно, что дальнейшее успешное развитие народного хозяйства республики будет тормозиться без реализации энергосберегающих мероприятий.

С каждым годом на бытовые нужды расходуется всё большая доля электроэнергии, газа, тепла, воды; в огромных масштабах растёт применение бытовой электрифицированной техники. Между тем, многие месторождения в обжитых местах уже исчерпаны, а новые приходится искать и обустраивать в труднодоступных районах Сибири и Дальнего Востока. Обходится всё это очень недёшево. Поэтому именно экономия становится важнейшим источником роста производства. Расчёты показали, а практика подтвердила, что каждая единица денежных средств, истраченных на мероприятия, связанные с экономией электроэнергии, даёт такой же эффект, как в два раза большая сумма, израсходованная на увеличение её производства. На фоне экономического (и энергетического) кризиса в нашей стране этот факт, как мне кажется, стоит принять во внимание.

Коммунально-бытовое хозяйство является на сегодня крупным потребителем топлива и энергии: на его долю приходится около 20% топливно-энергетических ресурсов. Потребление электроэнергии в жилом секторе достигает сейчас более 100 миллиардов кВт*ч, или 8% всей электроэнергии страны, что равно годовой производительности пяти Братских ГЭС; из них около 40% расхода электроэнергии приходится на электробытовые приборы, 30% расходуется на освещение и более 12% - на приготовление пищи.

Самыми крупными потребителями электроэнергии в коммунально-бытовом хозяйстве являются жилые дома. В них ежегодно расходуется в среднем 400 кВт*ч на человека, из которых примерно 280 кВт*ч потребляется внутри квартиры на освещение и бытовые приборы различного назначения и 120 кВт*ч - в установках инженерного оборудования и освещения общедомовых помещений. Внутриквартирное потребление электроэнергии составляет примерно 900 кВт*ч в год в расчёте на «усреднённую» городскую квартиру с газовой плитой и 2000 кВт*ч - с электрической плитой.

Среднее потребление электроэнергии бытовыми приборами (из расчёта на семью из 4 человек) приведено в таблице 1.

Таблица 1

Прибор

Установленная мощность, кВт

Годовое потребление, кВт*ч

Среднее число часов работы в год

Электроплита

5,8

1100

1400

Холодильник

0,15

450

3000

Телевизор

0,2

300

1500

Утюг

1

100

200

Пылесос

0,6

60

100

Стиральная машина

0,35

45

120

Итак, потребность в энергии постоянно увеличивается. Электростанции работают с полной нагрузкой, особенно напряжённо - в осенне-зимний период года в часы наибольшего потребления электроэнергии: с 8.00 до 10.00 и с 17.00 до 21.00. И в это напряжённое время где-то столь необходимые для производства киловатт-часы тратятся напрасно. В пустующих помещениях горят электрические лампы, бесцельно работают конфорки электроплит, светятся экраны телевизоров. Установлено, что 15-20% потребляемой в быту электроэнергии пропадает из-за небережливости потребителей.

Простота и доступность электроэнергии породили у многих людей представление о неисчерпаемости наших энергетических ресурсов, притупили чувство необходимости её экономии.

Между тем, электроэнергия сегодня дорожает. Поэтому старый призыв «Экономьте электроэнергию!» стал ещё более актуальным. Посмотрим, как и за счёт чего это можно сделать.

Рациональное освещение квартиры

Освещение квартиры складывается из естественного и искусственного. Любое из них должно обеспечивать достаточную освещённость помещения, а также должно быть равномерным, без резких и неприятных теней.

В помещения, окна которых выходят на север и частично на запад и восток, попадает лишь рассеянный свет. Для улучшения естественного освещения комнат отделку стен и потолка рекомендуется делать светлой. Естественная освещённость зависит также от потерь света при попадании через оконные стёкла. Запылённые стёкла могут поглощать до 30% света. Наличие в настоящее время различных химических препаратов для чистки стёкол позволяет без особых физических усилий содержать их в надлежащей чистоте.

Значительное количество электроэнергии напрасно расходуется днём в квартирах первых, а некоторых домах - вторых и третьих этажей. Причина этому - беспорядочные посадки зелени перед окнами, затрудняющие проникновение в квартиры естественного дневного света. Согласно существующим нормам деревья высаживаются на расстоянии не ближе 5 м от стен жилого дома, кустарник - 1,5 м.

Искусственное освещение создаётся электрическими светильниками. В современных квартирах широко распространены три системы освещения: общее, местное и комбинированное.

При общем освещении можно заниматься работой, не требующей сильного напряжения зрения. Светильники общего освещения обычно являются самыми мощными светильниками в помещении, их основная задача - осветить всё как можно более равномерно. Для этого обычно используют потолочные или подвесные светильники, установленные в центре потолка. Общую освещённость можно считать достаточной, если на 1 кв. м площади приходится 15-25 Вт мощности ламп накаливания.

В одном или нескольких местах помещения следует обеспечить местное освещение в учётом конкретных условий. Такое освещение требует специальных светильников, устанавливаемых в непосредственной близости к письменному столу, креслу, туалетному столику и т.п. Так, например, достаточное освещение листа ватмана при черчении обеспечит светильник с лампой накаливания мощностью 150 Вт на расстоянии 0,8-1 м. Штопку чёрными нитками (что требует очень высокой освещённости) можно выполнять при лампе мощностью 100 Вт на расстоянии 20-30 см. Для продолжительного чтения рекомендуется светильник с лампой накаливания в 60 Вт.

Комбинированное освещение достигается одновременным использованием светильников общего и местного назначения, а также при помощи светильников комбинированного освещения. К ним относятся многоламповые светильники (например, люстры), имеющие 2 группы ламп, одна из которых обеспечивает местное, а другая - общее освещение. Местное создаётся световым потоком, направленным вниз (одна лампа накаливания в 100, 150, 200 Вт), а общее - световым потоком, рассеянным во всех направлениях (несколько ламп в 15-40 Вт).

Наиболее рациональным является принцип зонального освещения, основанный на использовании общего, комбинированного или местного освещения отдельных функциональных зон. Если при освещении этих зон этих зон использовать лампы направленного света, настольные лампы, торшеры, бра, то в квартире станет уютнее, а следовательно, и комфортнее. Для такого зонального освещения подходят лампы в 1,5-2 раза менее мощные, чем в подвесных светильниках. В результате на комнату 18-20 кв. м экономится до 200 кВт*ч в год.

Лампы накаливания являются традиционными и широко применяемыми источниками света. Весьма ощутимую экономию электроэнергии при использовании ламп накаливания могут дать следующие мероприятия:

применение криптоновых ламп накаливания, имеющих световую отдачу на 10% выше, чем у ламп накаливания с аргоновым наполнением;

замена двух ламп меньшей мощности на одну несколько большей мощности. Например, использование 1 лампы мощностью 100 Вт вместо 2 ламп по 60 Вт каждая экономит при той же освещённости потребление энергии на 12%;

поддержание допустимого напряжения. Для нормальной работы электрических ламп необходимо, чтобы отклонение напряжения не выходило за пределы -2,5% и +5% от номинального. Световой поток ламп зависит от уровня напряжения. Так, при снижении напряжения на 1% у ламп накаливания световой поток уменьшается на 3-4%;

периодическая замена ламп к концу срока службы (около 1000 ч). Световой поток ламп накаливания к концу срока службы снижается на 15%;

периодическая чистка от пыли и грязи ламп, плафонов и осветительной арматуры. Не чистившиеся в течение года лампы и люстры пропускают на 30% света меньше, даже в сравнительно чистой среде. На кухне с газовой плитой лампочки грязнятся намного быстрее;

снижение уровня освещённости в подсобных помещениях, коридорах, туалетах и т.п.;

широкое применение светорегуляторов, позволяющих в широких пределах изменять уровень освещённости;

применение реле времени для отключения светильника через определённое время.

Экономия электроэнергии при приготовлении пищи

Правильная эксплуатация бытовых электроприборов заключает в себе большие резервы экономии электроэнергии.

Самыми энергоёмкими потребителями являются электроплиты. Годовое потребление электроэнергии ими составляет 1200-1400 кВт. Как же рационально пользоваться электроплитами?

Технология приготовления пищи требует включения конфорки на полную мощность только на время, необходимое для закипания. Варка пищи может происходить при меньших мощностях. Суп совершенно не обязательно должен кипеть ключом: он от этого быстрее не сварится, потому что выше 100С вода всё равно не нагреется. Зато при интенсивном кипении она будет очень активно испаряться, унося около 0,6 кВт*ч на каждый литр выкипевшей воды. То, что должно вариться долго, следует варить на маленькой конфорке, нагретой до минимума, и обязательно при закрытой крышке. Варка пищи на малых мощностях значительно сокращает расход электроэнергии, поэтому конфорки электроплит снабжают переключателями мощности. Большинство электроплит оснащены сейчас 4-ступенчатыми регуляторами мощности; в результате при приготовлении пищи электроэнергия расходуется нерационально. Применение 7-ступенчатых переключателей снизит затраты энергии на 5-12%, а бесступенчатых - ещё на 5-10%.

Принцип бесступенчатого регулирования мощности состоит в изменении относительной продолжительности цикла «включено на полную мощность - отключено».

Основным элементом регулятора является биметаллическая пластина, связанная с механическим прерывателем. Пластина нагревается теплом, выделяемым нагревательным резистором мощностью 2-6 Вт, включенным параллельно нагревательному элементу конфорки или встроенному непосредственно в её корпус. Изменяя положение ручки переключателя, можно регулировать относительную продолжительность периодов «включено - отключено», а следовательно, и среднюю мощность конфорки. Бесступенчатые регуляторы мощности позволяют плавно регулировать мощность в пределах от 4 до 100%.

Более совершенным методом регулирования мощности является автоматическое управление конфорками в зависимости от температуры дна налитого сосуда. Среди известных конструкций таких регуляторов наиболее распространены два: с манометрическим датчиком температуры и с измерительным резистором. Регуляторы первого типа применяют для чугунных конфорок, второго типа - для трубчатых. Качество работы датчика температуры зависит от плотности контакта его с дном сосуда. С этой целью он устанавливается немного выше плоскости рабочей поверхности конфорки, в её центре, и удерживается в этом положении пружиной. При установке на конфорку кастрюли пружина плотно прижимает датчик к её дну.

Несвоевременная смена неисправных конфорок приводит к перерасходу электроэнергии на 3-5%. Перегорание в конфорке одной или двух спиралей нарушает режим регулирования - минимальная ступень мощности увеличивается а 2-3 раза. При расслоении, растрескивании или вспучивании чугуна нарушается плотный контакт поверхности конфорки с дном сосуда.

Для снижения расхода электроэнергии на приготовление пищи на электроплитах надо применять специальную посуду с утолщённым обточенным дном диаметром, равным или несколько большим диаметра конфорки.

Исследования показали, что наиболее часто пользуются конфорками мощностью 1500 Вт. Это вызывает перерасход электроэнергии, да и срок службы этих конфорок меньше, чем у конфорок мощностью 1000 Вт. Учитывая это обстоятельство, следует подумать о том, какую включать конфорку. Если, например, готовится небольшое количество пищи, лучше поставить кастрюлю на малую конфорку. При этом потеряется лишь несколько минут, так как максимальная мощность нужна только при закипании.

Особо следует остановиться на кипячении воды на электрической плите. Для рационального использования энергии необходимо налить воды ровно столько, сколько потребуется для данного случая. Совершенно неразумно наливать полный чайник, а впоследствии его подогревать.

Одним из условий улучшения работы электрочайника и посуды является своевременное удаление накипи. Накипь - это твёрдый осадок на внутренних стенках посуды, который образуется в результате многократного нагревания и кипячения воды. Накипь обладает малой теплопроводностью, поэтому вода в посуде с накипью нагревается медленно. Кроме того, изолированные от воды слоем накипи стенки посуды нагреваются до высоких температур, при этом железо постепенно окисляется, что приводит к быстрому прогоранию посуды. Для удаления накипи выпускают препарат «Антинакипин». Можно использовать и уксусную эссенцию (1 часть эссенции на 5-6 частей воды).

Ещё один весомый резерв экономии электроэнергии - использование специализированных приборов для приготовлению пищи. Эти приборы предназначены для приготовления отдельных видов блюд. Блюда получаются лучшего качества, чем приготовленные на плите, а энергии затрачивается меньше. Имея набор таких приборов, можно свести пользование электроплитой к минимуму. В набор могут входить электросковорода, электрокастрюля, электрогриль, электротостер, электрошашлычница, электрочайник, электросамовар, электрокофейник.

Значительные удобства, экономию времени и энергии даёт применение скороварок. Их использование примерно в три раза сокращает время приготовления блюд и упрощает технологию. Расход электроэнергии при этом сокращается в два раза. Эти преимущества скороварок обеспечиваются её герметичностью и особым тепловым режимом - температура 120 0С при избыточном давлении пара.

Неоспоримые преимущества имеют и микроволновые печи, получившие в последнее время широкое распространение. В них разогрев и приготовление продуктов происходят за счёт поглощения ими энергии электромагнитных волн. Причём продукт подогревается не с поверхности, а сразу по всей его толще. В этом заключается эффективность этих печей. При эксплуатации микроволновой печи необходимо помнить, что она боится недогрузки, когда излученная электромагнитная энергия ничем не поглощается. Поэтому во время работы печи нужно держать в ней стакан воды.

Экономия электроэнергии при пользовании электробытовыми приборами

Холодильник - энергоемкий прибор. Поскольку холодильники постоянно включены в сеть, они потребляют столько же, а то и больше энергии, сколько электроплиты: компрессорный холодильник - 250 - 450 кВт*ч, абсорбционный - 500 - 1400 кВт*ч в год.

Холодильник следует ставить в самое прохладное место кухни (ни в коем случае не к батарее, плите), желательно возле наружной стены, но ни вплотную к ней. Чем ниже температура теплообменника, тем эффективнее он работает и реже включается. При снижении температуры теплообменника с 21 до 20 градусов, холодильник начинает расходовать электроэнергии на 6% меньше. Ледяная «шуба», нарастая на испарители, изолирует его от внутреннего объема холодильника, заставляя включаться чаще и работать каждый раз больше. Чтобы влага из продуктов не намерзала на испарители, следует хранить их в коробках, банках и кастрюлях, плотно закрытых крышками, или завернутыми в фольгу. А регулярно оттаивая и просушивая холодильник можно сделать его гораздо экономичнее.

Стиральные машины - наиболее экономичные с точки зрения потребления электроэнергии автоматические машины, включение и выключение которых производиться строго по программе. Они рассчитаны на единовременную загрузку определенной массы сухого белья. Перегружать машину не следует: ее мотору будет тяжело работать, а белье плохо отстирается. Не следует думать, что загрузив бак машины лишь наполовину, можно добиться экономии энергии и повысить качество стирки. Половина мощности машины уйдет на то, чтобы вхолостую гонять воду в баке, а белье чище все равно не станет.

Мощность утюга довольно велика - около киловатта. Чтобы добиться некоторой экономии, белье должно быть слегка влажным: пересушенное или слишком мокрое приходится гладить дольше, тратя лишнюю энергию. Массивный утюг можно выключить незадолго до конца работы: накопленного им тепла хватит еще на несколько минут.

Для эффективной работы пылесоса большое значение имеет хорошая очистка пылесборника. Забитые пылью фильтры затрудняют работу пылесоса, уменьшают тягу воздуха. Для их очистки надо обзавестись щетками двух типов: плоской широкой и узкой длинной. Такими щетками легко удалять пыль как с пылесборника, так и с матерчатых фильтров.

Если рассмотреть тепловой баланс жилища, станет ясно, что большая часть тепловой энергии отопительной системы идет на то, чтобы перекрыть потери тепла. Они в жилище с центральным отоплением и водоснабжением выглядят так:

потери из-за не утепленных окон и дверей - 40%;

потери через оконные стекла - 15%;

потери через стены - 15%;

потери через потолки и полы - 7%;

потери при пользовании горячей водой - 23%[8, c. 67];

Повышенный расход электроэнергии вызывает применение электроотопительных приборов (каминов, радиаторов, конвекторов и др.) дополнительно к системе центрального отопления, в котором часто нет необходимости, если выполнить простейшие мероприятия, а именно своевременно подготовить окна к зиме; привести в порядок до наступления холодов оконные задвижки; покрыть полы толстыми коврами или половиками; расставить мебель так, чтобы не препятствовать циркуляции теплого воздуха от батареи; гардины должны быть не очень длинными, чтобы не закрывать батареи центрального отопления; убрать лишнюю краску с батарей.

2. Закон снижения энергетической эффективности природопользования

Применительно к деятельности по природопользованию и охране природной среды часто приходится слышать о необходимости учета законов развития природы. Человек, осознав свою роль в биосфере лишь как одного из многочисленных видов, образующих ее многообразие, как часть ее, должен, как и все остальные, подчиняться законам природы. При этом сила homo sapiens заключается не в том, чтобы, проявляя свою мощь, перестраивать природу, а в том, чтобы, правильно поняв законы ее развития, следовать им. Законы развития природы - законы более высокого порядка для человека в сравнении с законами развития общества. Это - объективные законы. В силу их действия и благодаря им человек появился и может существовать. Законы общества написаны человеком для собственного социального, политического и экономического удобства, организации и обеспечения общежития.

Проявляющиеся во взаимодействии общества и природы законы развития природы создают естественнонаучные и философские основы разнообразной деятельности по природопользованию и охране окружающей среды, в том числе в сфере права. Учет законов природы при планировании и осуществлении экологически вредной деятельности и их соблюдение должно служить основным критерием экологической обоснованности и допустимости такой деятельности. Их знание и учет особенно важны при осуществлении таких правовых мер охраны природы, как нормирование предельно допустимых воздействий на природу, оценка воздействия планируемой деятельности на окружающую среду, экологическая экспертиза, планирование мер по охране природы и др. Законы развития природы должны учитываться также при подготовке законопроектов об охране окружающей среды. Обеспечение учета и соблюдение законов природы при принятии хозяйственных, управленческих и иных экологически значимых решений - одно из условий, методологическая основа выхода из экологического кризиса.

Рассмотрим некоторые основные законы развития природы в интерпретации одного из ведущих ученых-экологов России профессора Н.Ф. Реймерса [5].

Закон биогенной миграции атомов (В.И. Вернадского). Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция) или протекает в среде, геохимические особенности которой (О2, СО2, Н2 и т.д.) обусловлены живым веществом - как тем, которое в настоящее время населяет биосферу, так и тем, которое было на Земле в течение всей геологической истории.

Согласно этому Закону, имеющему важное теоретическое и практическое значение, понимание общих химических процессов, протекавших и протекающих на поверхности суши, в атмосфере и в заселенных организмами глубинах литосферы и вод, а также геологических слоях, сложенных прошлой деятельностью организмов, невозможно без учета биотических и биогенных факторов, в том числе эволюционных. Поскольку люди воздействуют прежде всего на биосферу и ее живое население, они тем самым изменяют условия биогенной миграции атомов, создавая предпосылки для еще более глубоких химических перемен в исторической перспективе. Таким образом, процесс может стать саморазвивающимся, не зависящим от желания человека и практически, при глобальном размахе, неуправляемым. Отсюда одна из самых насущных потребностей - сохранение живого покрова Земли в относительно неизменном состоянии.

Закон внутреннего динамического равновесия. Вещество, энергия, информация и динамические качества отдельных природных систем и их иерархия взаимосвязаны настолько, что любое изменение одного из этих показателей вызывает сопутствующие функциональные структурные качественные и количественные перемены, сохраняющие общую сумму вещественно-энергетических, информационных и динамических качеств систем, где эти изменения происходят.

Пока изменения среды слабы и произведены на относительно небольшой площади, они или ограничиваются конкретным местом, или «гаснут» в цепи иерархии экосистем. Но как только перемены достигают существенных значений для крупных экосистем, например происходят в масштабах больших речных бассейнов, они приводят к существенным сдвигам в этих обширных природных образованиях, а через них и во всей биосфере Земли.

Закон «все или ничего» (X. Боулича). Слабые воздействия могут не вызывать у природной системы ответных реакций до тех пор, пока, накопившись, не приведут к развитию бурного динамического процесса. Закон полезен при экологическом прогнозировании.

Закон константности (В.И. Вернадского). Количество живого вещества природы (для данного геологического периода) есть константа. Любое изменение количества живого вещества в одном из регионов биосферы неминуемо влечет за собой такую же по размеру его перемену в каком-либо регионе, но с обратным знаком. Полярные изменения могут быть использованы в процессах управления природой, но следует учитывать, что не всегда происходит адекватная замена. Обычно высокоразвитые виды и экосистемы вытесняются другими, стоящими на относительно эволюционно более низком уровне (крупные организмы - более мелкими), а полезные для человека формы - менее полезными, нейтральным или даже вредными.

Закон минимума (Ю. Либиха). Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, т.е. жизненные возможности лимитируют экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму; дальнейшее их снижение ведет к гибели организма или деструкции экосистемы.

Закон ограниченности природных ресурсов. Все природные ресурсы (и условия) Земли конечны. Закон основан на том, что, поскольку планета представляет собой естественно ограниченное целое, на ней не могут существовать бесконечные части. Следовательно, категория «неисчерпаемых» природных ресурсов возникла по недоразумению.

Закон развития природной системы за счет окружающей ее среды. Любая природная система может развиваться только за счет использования материально-энергетических и информационных возможностей окружающей ее среды. Абсолютно изолированное саморазвитие невозможно. Этот же Закон имеет чрезвычайно важное теоретическое и практическое значение благодаря основным своим следствиям:

а) абсолютно безотходное производство невозможно

Согласно первому следствию мы можем рассчитывать лишь на малоотходное производство. Поэтому первым этапом развития технологий должна быть их малая ресурсоемкость (как на входе, так и на выходе - экономность и незначительные выбросы), вторым этапом будет создание цикличности производств (отходы одних могут быть сырьем для других) и третьим - организация разумного захоронения неминуемых остатков и нейтрализация неустранимых энергетических отходов. Представление, будто биосфера работает по принципу безотходности, ошибочно, так как в ней всегда накапливаются выбывающие из биологического круговорота вещества, формирующие осадочные породы.

б) любая более высокоорганизованная биотическая система (например, вид живого), используя и видоизменяя среду жизни, представляет потенциальную угрозу для менее организованных систем;

Согласно второму следствию рассматриваемого Закона воздействие человека на природу требует мероприятий по нейтрализации этих воздействий, поскольку они могут оказаться разрушающими для остальной природы и, согласно правилу соответствия условий среды генетической предопределенности организма, угрожают и самому человеку. В связи с этим охрана природы - одно из обязательных составляющих социально-экономического развития высокоразвитого общества.

в) биосфера Земли как система развивается не только за счет ресурсов планеты, но опосредованно за счет и под управляющим воздействием космических систем (прежде всего Солнечной).

Третье следствие Закона имеет особое значение для долгосрочного прогнозирования. Оно должно учитываться при рассмотрении всех процессов, происходящих на Земле.

Закон снижения энергетической эффективности природопользования. С ходом исторического времени при получении из природных систем полезной продукции на ее единицу затрачивается в среднем все больше энергии.

Расход энергии на одного человека (в ккал/сут.) в каменном веке был порядка 4 тыс., в аграрном обществе - 12 тыс., в индустриальную эпоху - 7 тыс., а в передовых развитых странах настоящего времени - 230-250 тыс., т.е. в 58-62 раза больше, чем у далеких предков.

Закон снижения энергетической эффективности природопользования - в экологии - закон, в соответствии с которым с течением времени при получении полезной продукции из природных систем на ее единицу затрачивается все большее количество энергии.

3. Связь между накоплением информации и потреблением энергии

энергия природопользование биогенный миграция

Характерной особенностью перспективного развития мировой энергетики будет постоянный рост доли преобразованных энергоносителей в конечном использовании энергии (в первую очередь электрической энергии). Повышение цен на электроэнергию, особенно базисную, происходит значительно медленнее, чем на углеводородное топливо. В перспективе, когда ядерные источники энергии будут играть более заметную роль, чем в настоящее время, следует ожидать стабилизации или даже снижения стоимости электроэнергии.

В предстоящей перспективе быстрыми темпами ожидается рост доли мирового потребления энергии развивающимися странами (до 50%). Перемещение центра тяжести энергетических проблем в течение первой половины XXI века с развитых стран на развивающиеся выдвигает перед человечеством совершенно новые задачи по социальной и экономической перестройке мира, начинать решать которые необходимо уже сейчас. При относительно малой обеспеченности энергоресурсами развивающихся стран это создает сложную проблему для человечества, которая может перерасти в кризисную ситуацию в течение XXI в., если не будут приняты соответствующие меры организационного, экономического и политического характера [6, c. 61].

Одной из первоочередных задач в стратегии развития энергетики в регионе развивающихся стран должен стать немедленный переход к новым источникам энергии, способным сократить зависимость этих стран от импорта жидкого топлива и положить конец недопустимому уничтожению лесов, служащих для этих стран (Станы и народы, 1985) основным источником топлива.

Ввиду глобального характера этих проблем их решение, также как и выше перечисленных, возможно только при дальнейшем развитии международного сотрудничества, путем усиления и расширения экономической и технической помощи развивающимся странам со стороны развитых.

Современное общество зависит от электроэнергии, являющейся главным видом доступной энергии, а большая часть электроэнергии производится с использованием невозобновляемых ресурсов. Электричество используется в быту и на производстве для освещения и отопления, а также в технологических процессах. Энергетические ресурсы - это любые источники механической, химической и физической энергии. Их можно классифицировать по источникам и местоположению, скорости исчерпания, возможности самовосстановления и другим признакам. [2]

Мировое потребление энергии неуклонно растет. За период с 1970 по 1990 гг. использование энергии в величинах нефтяного эквивалента возросло с 5 до 8,8 млрд т. По прогнозам Мировой энергетической конференции, спрос на энергию к 2020 г. может увеличиться еще на 75%. Доминирующим источником энергии по-прежнему остается ископаемое топливо.

Доступные запасы нефти и газа примерно на два порядка превышают их современное годовое извлечение, запасы угля - на три порядка. Другими словами, сравнивая цифры, относящиеся к оценке разведанных запасов наиболее доступных видов топлива (второй столбец цифр), с цифрами их современного потребления (третий столбец), можно назвать максимальное время, на которое этих запасов может хватить. Для подвижной нефти - это 65 лет, для газа - 44 года, для угля - 320 лет. Учитывая, что потребление продолжает расти, реальные значения должны быть заметно меньше. [8]

Для решения энергетической проблемы техническими средствами специалисты предлагают два противоположных сценария: развитие новой техники производства энергии и развитие техники экономии энергии. [2]

Устойчивое развитие экономики зависит от сокращения отходов производств и жизнедеятельности. По оценкам специалистов, их можно легко уменьшить - в промышленности более, чем на 1/3 за счет перестройки производственных процессов. [2]

Политика энергосбережения является выгодной и с экономической, и с природоохранной точек зрения. Ведь чем меньше сжигается топлива, тем меньше загрязнение среды. К тому же экономия, полученная при отказе от строительства новых электростанций, облегчит финансирование установки скрубберов и других очистных сооружений на уже действующих объектах.

Существует ряд предложений, призванных экономить энергию:

· Аккумулирование энергии. Более широкое применение могло бы найти использование мощности базового режима электростанции для накачки сжатого воздуха в подземные полости. Турбины, работающие на сжатом воздухе, позволили бы экономить первичные энергоресурсы в периоды повышенной нагрузки.

· Передача электроэнергии. Большие энергетические потери связаны с передачей электроэнергии. Для их снижения расширяется использование линий передачи и распределительных сетей с повышенным уровнем напряжения. Альтернативное направление - сверхпроводящие линии электропередачи. Электросопротивление некоторых металлов падает до нуля при охлаждении до температур, близких к абсолютному нулю. По сверхпроводящим кабелям можно было бы передавать мощности до 10000 МВт, так что для обеспечения электроэнергией всего Нью-Йорка было бы достаточно одного кабеля диаметром 60 см.

· Водород как теплоноситель. Водород - это легкий газ, но он превращается в жидкость при -253° C. Теплотворная способность жидкого водорода в 2,75 раза больше, чем природного газа. У водорода имеется и экологическое преимущество перед природным газом: при сжигании в воздухе он дает в основном лишь пары воды.

· Магнитогидродинамика (МГД). Это метод, позволяющий более эффективно использовать ископаемые энергоносители. Идея состоит в том, чтобы заменить медные токовые обмотки обычного машинного электрогенератора потоком ионизованного (проводящего) газа. Наибольший экономический эффект МГД-генераторы могут давать, вероятно, при сжигании угля. Поскольку в них нет движущихся механических частей, они могут работать при очень высоких температурах, а это обеспечивает высокий КПД. [4]

Здесь попытаюсь рассказать об альтернативных видах получения энергии. Я считаю, что проблема стоит не только в получении энергии, но в рациональном его использовании. Необходимо разрабатывать и внедрять технологии с низким потреблением электричества. Но, как и всегда проблема состоит в деньгах, а точнее в их отсутствии. Решение этой проблемы не решит главную проблему - получения «безопасного» источника. Слово безопасного я взял кавычки потому, что абсолютно чистого источника не существует. Разве что вечный двигатель, но его ещё не изобрели. Необходимо также усовершенствовать уже существующие электростанции. От них вряд ли откажутся в ближайшее время. Да пока создадут и внедрят чистый способ получения энергии, его же надо откуда-то получать. А все это время оно будет воздействовать на окружающую среду и человека.

Рассмотрим некоторые пути и способы использования, позволяющие существенно уменьшать отрицательное воздействие на среду. Эти способы базируются в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов. В их числе можно назвать следующие:

1. Использование и совершенствование очистных устройств. В настоящее время на многих ТЭС улавливаются в основном твердые выбросы с помощью различного вида фильтров. Наиболее агрессивный загрязнитель - сернистый ангидрид на многих ТЭС не улавливается или улавливается в ограниченном количестве. В то же время имеются ТЭС (США, Япония), на которых производится практически полная очистка от данного загрязнителя, а также от окислов азота и других вредных полютантов. Для этого используются специальные десульфурационные (для улавливания диоксида и триоксида серы) и денитрификационные (для улавливания окислов азота) установки. Наиболее широко улавливание окислов серы и азота осуществляется посредством пропускания дымовых газов через раствор аммиака. Конечными продуктами такого процесса являются аммиачная селитра, используемая как минеральное удобрение, или раствор сульфита натрия (сырье для химической промышленности). Такими установками улавливается до 96% окислов серы и более 80% оксидов азота. Существуют и другие методы очистки от названных газов.

2. Уменьшение поступления соединений серы в атмосферу посредством предварительного обессеривания (десульфурации) углей и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами. Этими методами удается извлечь из топлива от 50 до 70% серы до момента его сжигания.

3. Большие и реальные возможности уменьшения или стабилизации поступления загрязнений в среду связаны с экономией электроэнергии. Особенно велики такие возможности для России за счет снижения энергоемкости получаемых изделий. Например, в США на единицу получаемой продукции расходовалось в среднем в 2 раза меньше энергии, чем в бывшем СССР. В Японии такой расход был меньшим в три раза. Не менее реальна экономия энергии за счет уменьшения металлоемкости продукции, повышения ее качества и увеличения продолжительности жизни изделий. Перспективно энергосбережение за счет перехода на наукоемкие технологии, связанные с использованием компьютерных и других устройств.

4. Не менее значимы возможности экономии энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Реальную экономию энергии дает замена ламп накаливания с КПД около 5% флуоресцентными, КПД которых в несколько раз выше.

Крайне расточительно использование электрической энергии для получения тепла. Важно иметь в виду, что получение электрической энергии на ТЭС связано с потерей примерно 60-65% тепловой энергии, а на АЭС - не менее 70% энергии. Энергия теряется также при передаче ее по проводам на расстояние. Поэтому прямое сжигание топлива для получения тепла, особенно газа, намного рациональнее, чем через превращение его в электричество, а затем вновь в тепло.

5. Заметно повышается также КПД топлива при его использовании вместо ТЭС на ТЭЦ. В последнем случае объекты получения энергии приближаются к местам ее потребления и тем самым уменьшаются потери, связанные с передачей на расстояние. Наряду с электроэнергией на ТЭЦ используется тепло, которое улавливается охлаждающими агентами. При этом заметно сокращается вероятность теплового загрязнения водной среды. Наиболее экономично получение энергии на небольших установках типа ТЭЦ (иогенирование) непосредственно в зданиях. В этом случае потери тепловой и электрической энергии снижаются до минимума. Такие способы в отдельных странах находят все большее применение.

Список источников

1. Т.А. Акимова, В.В. Хаскин, А.П. Кузьмин, Экология. Природа-Человек-Техника./под ред. А.П. Кузьмин.-М.: ЮНИТИ-ДАНА, 2005. - 455 с.

2. «Окружающая среда и человек» Д.П. Никитин, Ю.В. Новиков \\ М., Высшая Школа, 1999

3. «Экология и жизнь», №5,11, 2006 г.

4. «Экология, природопользование, охрана окружающей среды»

5. Основы экологии: учебное пособие / В.Н. Киселев. - 2-е изд., перераб. и доп. - Мн.: Універсітэцкае, 2005.

6. Основы экологии и рационального природопользования / А.Ф. Савенок, Е.И. Савенок. - Мн.: Сэр-Вит, 2006.

7. Экология: Учебное пособие / О.В. Чистик. - Мн.: Новое знание, 2006.

8. Основы экологии и экономика природопользования: учебник для студ. экономич. спец. вузов / О.С. Шимова, Н.К. Соколовский. - 2-е изд., перераб. и доп. - Мн.: БГЭУ, 2006.

9. Мещеряков И.В., Арефьев В.И. Возможные направления применения космической техники в решении глобальных экологических проблем // Транспорт: Наука, техника, управление. М.: ВИНИТИ, 2005. С. 21-28.

10. Александрова И.И., Байков Н.М., Бесчинский А.А. и др. Глобальная энергетическая проблема. М.: Мысль, 1999,239 с.

11. Афанасьева Е.И., Тульчин И.К. Снижение расхода электроэнергии в электроустановках зданий. - М.: Энергоатомиздат, 1987. - 224 с.

Размещено на Allbest.ru


Подобные документы

  • Методы экономии электроэнергии и проблемы энергосбережения. Энергетический мониторинг квартиры и гимназии, оценка эффективности внедрения энергосберегающих мероприятий. Измерение электроэнергии и график потребления энергии в квартире и в гимназии.

    творческая работа [648,5 K], добавлен 18.01.2011

  • Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация [911,5 K], добавлен 20.12.2009

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • Тепловое излучение как излучение телом электромагнитных волн за счет его внутренней энергии. Закон Кирхгофа и закон Стефана–Больцмана, их сущность. Понятие энергетической светимости и поглощательной способности тела. Формулы Рэлея–Джинса и Планка.

    презентация [313,1 K], добавлен 29.09.2011

  • Пути уменьшения расходов энергии на отопление жилых домов: теплоизоляция зданий, рекуперация тепла в системах вентиляции. Способы достижения нулевого потребления полезной энергии. Использование альтернативных источников водоснабжения в пассивных домах.

    реферат [351,4 K], добавлен 03.10.2010

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Физическое содержание закона сохранения энергии в механических и тепловых процессах. Необратимость процессов теплопередачи. Формулировка закона сохранения энергии для механических процессов. Передача тепла от тела с низкой температурой к телу с высокой.

    презентация [347,1 K], добавлен 27.05.2014

  • Солнечные электростанции как один из источников преобразования электроэнергии, принципы и закономерности их функционирования, внутреннее устройство и элементы. Порядок преобразования солнечной энергии в электрическую. Оценка энергетической эффективности.

    презентация [540,5 K], добавлен 22.10.2014

  • Цель учета электрической энергии и контроль его достоверности. Коммерческий учет потребления энергии предприятием для денежного расчета за нее. Требования к АСКУЭ. Расчет системы АСКУЭ для части промышленного предприятия. Хранение данных энергоучета.

    курсовая работа [299,7 K], добавлен 15.10.2011

  • География мировых природных ресурсов. Потребление энергии - проблема устойчивого развития. Статистика потребления мировой энергии. Виды нетрадиционных (альтернативных) источников энергии и их характеристика. Хранение отработавшего ядерного топлива.

    презентация [1,2 M], добавлен 28.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.