Звуковые волны

Изучение устройства и действия органа слуха как предмета физиологической акустики. Анализ особенностей распространения звука в помещениях, влияния на звук размеров и формы помещений. Обзор свойств и скорости распространения звука, резонанса в акустике.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 02.03.2012
Размер файла 23,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат по физике

на тему: " Звуковые волны "

Сергиев Посад 2012

Введение

Мир, окружающий нас, можно назвать миром звуков. Звучат вокруг нас голоса людей и музыка, шум ветра и щебет птиц, рокот моторов и шелест листвы. С помощью речи люди общаются, с помощью слуха получают информацию об окружающем мире. Не меньшее значение звук имеет для животных. С точки зрения физики, звук - это механические колебания, которые распространяются в упругой среде: воздухе, воде, твёрдом теле и т.п.

Способность человека воспринимать упругие колебания, слушать их отразились в названии учения о звуке - акустика (от греческого akustikos - слуховой, слышимый). Вообще человеческое ухо слышит звук только тогда, когда на слуховой аппарат уха действуют механические колебания с частотой не ниже 16 Гц но не выше 20 000 Гц. Колебания же с более низкими или с более высокими частотами для человеческого уха неслышимы.

Вопросы, которыми занимается акустика, очень разнообразны. Некоторые из них связаны со свойствами и особенностями нашего слуха.

Предметом физиологической акустики и является сам орган слуха, его устройство и действие.

Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки, и т.д. При этом опять имеется в виду слуховое восприятие звука.

Музыкальная акустика исследует музыкальные инструменты и условия их наилучшего звучания.

Физическая акустика занимается изучением самих звуковых колебаний, а за последнее время охватила и колебания, лежащие за пределами слышимости (ультраакустика). Она широко использует разнообразные методы для превращения механических колебаний в электрические и обратно (электроакустика).

Применительно к звуковым колебаниям в число задач физической акустики входит и выяснение физических явлений, обусловливающих те или иные качества звука, различаемые на слух.

Основные понятия акустики

Звуковые частоты

Колебания упругой пластинки, зажатой в тисках, имеют тем более высокую частоту, чем короче свободный колеблющийся конец пластинки. Когда частота колебаний делается выше чем 16 Гц, мы начинаем слышать колебания этой пластинки.

Таким образом, звук обусловливается механическими колебаниями в упругих средах и телах (твёрдых, жидких и газообразных), но не в вакууме.

То, что воздух - проводник звука, было доказано поставленным опытом Роберта Бойля в 1660 году. Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания из под него воздуха - звук будет делаться слабее, и наконец, когда под колоколом весь воздух кончится, то звук прекратится.

При своих колебаниях тело попеременно то сжимает слой воздуха, прилегающий к его поверхности, то, наоборот, создаёт разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.

Звуковые явления

При распространении звуковой волны происходит затухание звука, связанное с различными необратимыми процессами. Часть энергии, которая переносится звуковыми волнами, поглощается средой.

Величина, равная отношению поглощённой звуковой энергии к звуковой энергии, поступающей в среду, называется коэффициентом поглощения. Коэффициент поглощения зависит от внутреннего трения (вязкости) поглощающей среды и от её теплопроводности. Он так же зависит от скорости распространения звука в этой среде, от плотности среды и частоты звуковой волны.

Звуковая волна, распространяясь в некоторой среде, когда-нибудь доходит до границы этой среды, за которой начинается другая среда, состоящая из других частиц, в которой и скорость звука другая. На такой границе происходит явление отражения звуковой волны. При этом сгущение частиц превращается в разрежение, а разрежение - в сгущение.

Происходит это потому, что колебания, принесённые волной к границе, передаются частицами второй среды и они сами становятся источником новой звуковой волны. Эта вторичная волна распространяется не только во второй среде, но и в первой, откуда пришла первичная волна. Это и есть отраженная волна.

На границе двух сред происходит частичное поглощение и прохождение звука в другую среду. Доля отражённой энергии звуковой волны зависит в основном от соотношения плотностей этих сред и состояния поверхности раздела. Отражение звука, распространяющегося в воздухе, от твёрдого тела или жидкой поверхности происходит практически полностью. Звук, распространяющийся в плотной среде, также практически полностью отражается на границе раздела с воздухом.

Если преграда представляет собой более плотную среду, то при отражении происходит потеря полуволны. В большом помещении после каждого звука возникает гул, который является результатом наложения звуковых волн, отраженных от различных преград в этом помещении. Например от стен, потолка, колонны и т.п.. Это явление называется реверберацией. Если в помещении много отражающих поверхностей, особенно мягких, сильно поглощающих звук, то реверберация отсутствует. Явление реверберации учитывают в архитектуре, при проектировании больших залов, добиваясь определённой окраски звука, который приобретает мягкость и объёмность.

С явлением отражения звука связано такое известное явление, как эхо. Оно состоит в том, что звук от источника доходит до какого-то препятствия, которое и является границей двух сред, отражается от него, и возвращается к месту, где эта звуковая волна возникла. И если первичный звук и звук отражённый доходят до слушателя не одновременно, то он слышит звук дважды. Звук может испытать и несколько отражений. Тогда можно услышать звук много раз. Например раскаты грома.

При отражении звуковой волны от менее плотной среды, например лёгкие газы, звуковая волна, распространяющаяся в воздухе, проходит через неё, вовлекая частицы этой среды в волновое движение и частично отражаясь.

Величина, равная отношению отражённого потока звуковой энергии к падающему потоку звуковой энергии, называется коэффициентом отражения. Величина, равная отношению проходящего потока звуковой энергии к падающему потоку звуковой энергии, называется коэффициентом пропускания.

Для звуковых волн выполняются законы отражения и преломления, аналогичные законам отражения и преломления света.

Свойства звука

звук акустика резонанс слух

Ощущение звука вызывается звуковыми волнами, достигающими органа слуха - уха. Важнейшая часть этого органа - барабанная перепонка. Пришедшая к ней звуковая волна вызывает вынужденные колебания барабанной перепонки с частотой колебаний в волне. Они воспринимаются мозгом как звук.

Звуки бывают разные. Мы легко различаем свист и дробь барабана, мужской голос (бас) от женского (сопрано).

Об одних звуках говорят, что они низкого тона, другие мы называем звуками высокого тона. Ухо их легко различает. Звук, создаваемый большим барабаном, это звук низкого тона, свист - звук высокого тона. Простые измерения (развертка колебаний) показывают, что звуки низких тонов - это колебания малой частоты в звуковой волне. Звуку высокого тона соответствует большая частота колебаний. Частота колебаний в звуковой волне определяет тон звука.

Существуют особые источники звука, испускающие единственную частоту, так называемый чистый тон. Это камертоны различных размеров - простые устройства, представляющие собой изогнутые металлические стержни на ножках. Чем больше размеры камертона, тем ниже звук, который он испускает при ударе по нему.

Если взять несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по размеру: самый большой камертон даёт низкий звук, а маленький - наиболее высокий.

Звуки даже одного тона могут быть разной громкости. Громкость звука связана с энергией колебаний в источнике и в волне. Энергия же колебаний определяется амплитудой колебаний. Громкость, следовательно, зависит от амплитуды колебаний. Но связь между громкостью звука и амплитудой колебаний не простая.

Самый слабый ещё слышимый звук, дошедший до барабанной перепонки, приносит в 1 секунду энергию, равную примерно 10-16 Дж, а самый громкий звук (звук реактивного ракетного двигателя в нескольких метрах от него) - около 10-4 Дж. Следовательно, по мощности самый громкий звук примерно в тысячу миллиардов раз превосходит самый слабый.

Интенсивности звука при слуховом восприятии соответствует ощущение громкости звука. При определенной минимальной интенсивности человеческое ухо не воспринимает звука. Эта минимальная интенсивность называется порогом слышимости. Порог слышимости имеет различные значения для различных частот. При больших интенсивностях ухо испытывает болевое ощущение. Наибольшая интенсивность при болевом восприятии звука называется порогом болевого ощущения.

Уровень интенсивности звука определяется в децибелах (дБ). Например, громкость звука, шороха листьев оценивается в 10 дБ, шёпота - 20 дБ, уличного шума - 70 дБ. Шум громкостью 130 дБ ощущается кожей и вызывает ощущение боли.

Количество децибел равно десятичному логарифму отношения интенсивностей, умноженному на 10, т.е. 10 lg.(I/I0).

Обычно в акустике за I0 принимается интенсивность равная 1 пДж(м Ч?с), приблизительно равная интенсивности на пороге слышимости при 1000 Гц.

Простейшие наблюдения показывают, что громкость тона какой-либо данной высоты определяется амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. с уменьшением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной, и вообще со всяким другим источником звука.

К таким же заключениям можно прийти, пользуясь не камертонами, а упрощённой сиреной - вращающимся диском с отверстиями, через которые продувается струя воздуха. Повышая напор струи воздуха, мы усиливаем колебания плотности воздуха позади отверстий. При этом звук, сохраняя одну и ту же высоту, делается громче. Ускоряя вращение диска, мы уменьшаем период прерываний воздушной струи. Вместе с тем звук, не меняясь по громкости, повышается. Можно также сделать в диске два или более рядов отверстий с разным количеством отверстий в каждом ряду. Продувание воздуха через каждый из рядов даёт тем более высокий звук, чем больше отверстий в этом ряду, т.е. чем короче период прерываний.

Но, взяв в качестве источника звука сирену, можно получить хотя и периодическое, но уже негармоническое колебание: плотность воздуха в прерывистой струе меняется резкими толчками. На ряду с этим и звук сирены, хотя и является музыкальным, но совсем не похож на тон камертона. Можно подобрать высоту звука сирены такой же, как и у какого-либо из камертонов. При этом и громкость звука можно сделать одинаковой. Тем не менее легко можно отличить звук камертона от звука сирены.

Таким образом, если колебание не является гармоническим, то на слух оно имеет ещё одно качество, кроме высоты и громкости, а именно - специфический оттенок, называемый тембром. По различному тембру мы легко распознаём звук голоса, свист, звучание струны рояля, скрипичной струны, звук флейты, гармони и т.д., хотя все эти звуки имели бы одну и ту же высоту и громкость. По тембру мы можем узнать голоса разных людей.

Исследование вопроса, с чем связан тембр звука, показало, что для нашего уха существенны только частоты и амплитуды тонов, входящих в состав звука, т.е. тембр звука определяется его гармоническим спектром. Сдвиги отдельных тонов по времени, другими словами, изменения фаз тонов, никак не воспринимаются на слух, хотя могут очень сильно менять форму результирующего колебания. Таким образом, один и тот же звук может восприниматься при очень различных формах колебания. Важно только, чтобы сохранялся спектр, т.е. частоты и амплитуды составляющих тонов.

Скорость распространения звука

В том, что распространение звуковых волн происходит не мгновенно, можно увидеть из простейших наблюдений. Если в дали происходит гроза, выстрел, взрыв, свисток паровоза, удар топором и т.п.

Как и всякая волна, звуковая волна характеризуется скоростью распространения колебаний в ней. Скорость распространения фазы волны в упругой среде жидкости или газа зависит от сжимаемости и плотности этой среды. В жидкостях и газах звук распространяется с постоянным давлением и его скорость пропорциональна корню квадратному из абсолютной температуры газа T. В сухом воздухе, содержащим 0,03? углерода, при температуре 0 0C скорость звука равна 331,5 м/с, а с повышением температуры увеличивается

--u---- = ----331,1Ц--aT

где a--=--1/273 - коэффициент расширения газа. В воде звук распространяется примерно в 4,25 раза быстрее, чем в воздухе, а в твёрдых телах - ещё быстрее.

С длиной волны ?и частотой колебаний ?скорость звуковой волны ?связана формулой:

u--------=--------ln.

Скорость звука различна в разных средах. Например в водороде скорость распространения звуковых волн любой длины равна 1284 м/c, в резине - 1800 м/с, а в железе - 5850 м/c.

Музыкальная акустика

Реальный звук является наложением гармонических колебаний с набором частот, который определяет акустический спектр звуковой волны. Различают три вида звуковых колебаний: музыкальные звуки, звуковые удары и шумы. Периодические колебания определённой частоты вызывают простой музыкальный тон. Сложные музыкальные звуки - это сочетания отдельных тонов. Тон, соответствующий наименьшей частоте сложного музыкального звука, называют основным тоном, а остальные тоны - обертонами. Если частота обертона кратна частоте основного тона, то обертон называют гармоническим. При этом основной тон с минимальной частотой n0 называют первой гармоникой, обертон, с частотой 2n?? - второй гармоникой и т.д.

Относительная интенсивность, звуковой волны а так же характер нарастания и спада их амплитуд во время затухания, определяют окраску (или тембр) звука. Различные музыкальные инструменты (рояль, скрипка флейта и т.п.) отличаются тембром издаваемых этими инструментами звуков. Совокупность звуков разной высоты которыми пользуются в музыке, составляет музыкальный строй. Относительный музыкальный строй состоит из звуков, находящихся в определённых соотношениях. Если звуки музыкального строя заданы высотой исходного тона, с которого начинается настройка инструментов, то такой строй называют абсолютным. Исходный (стандартный) тон в европейском абсолютном музыкальном строе равен 440 Гц (звук "ля" первой октавы). Относительное различие в высоте двух тонов, обусловленное соотношением между частотами этих тонов, называют интервалом. Соотношение частот 2 : 1 определяет октаву, 5 : 4 - большую терцию, 4 : 3 - кварту, 3 : 2 - квинту.

Если длина струны гитары равна L, то возникшая волна должна пройти путь 2L, чтобы вернуться в исходное положение, имея исходное направление движения и исходную форму после двух отражений от обоих концов. Если ??- скорость волны, то расстояние 2L волна будет пробегать ???раз в секунду, причём

------------u--

n--=------

2L

Частота n--???это высота тона струны. Если прижать пальцем струну к грифу гитары, положив палец на лад, который ускорит свободную часть струны в 2 раза, то и высота тона удвоится. Нота повысится на октаву, что соответствует удвоению частоты.

Отношение высот полутонов равно корню двенадцатой степени из двух. Этим и определяется расположение ладов на грифе гитары. Отношение расстояний L1 и L2 от подставки на деке до любых двух соседних тонов на грифе гитары равно

L2--------------------------12--_

--------=--Ц--2--=--_,_5946

L1

В принятой европейской музыкальной практике октава делится на 12 равных интервалов, которые составляют равномерно темперированный строй. Отношение частот последовательных полутонов.

Кроме темперированного строя различают два точных строя - пифагорейский и чистый, в основе которых лежат интервалы, частотные коэффициенты которых представляют собой отношения первых соседних чисел натурального ряда. Пифагорейский строй основан на октаве и чистой квинте с частотным коэффициентом 3 : 2, а чистый строй - на октаве, квинте и большой терции с частотным коэффициентом 5 : 4. Пифагорейский строй более выразительно передаёт мелодию, а чистый лучше соответствует аккордовой музыке. Для исполнения сложной музыки используют компромиссно темперированные строи и равномерно-темперированный 12-ступенчатый музыкальный строй.

Музыка других, неевропейских народов отличается другими интервальными соотношениями и другим числом звуков в октаве.

Резонанс в акустике

Звуковые колебания, приносимые звуковой волной, могут служить вынуждающей, периодически изменяющейся силой для колебательных систем и вызывать в этих системах явление резонанса, т.е. заставить их звучать. Такой резонанс называется акустическим резонансом. Резонансные явления можно наблюдать на механических колебаниях любой частоты. Т.к. камертон сам по себе даёт очень слабый звук, потому, что площадь поверхности колеблющихся ветвей камертона, соприкасающихся с воздухом, очень мала и в колебательное движение приходит слишком мало частиц воздуха, то камертон обычно укрепляют на деревянном ящике, подобранном так чтобы частота его собственных колебаний была равна частоте звука, создаваемого камертоном. Ящики усиливают звук, вследствие резонанса между камертоном и столбом воздуха, заключённого в ящике. Этот ящик с камертоном называется резонатором или резонансным ящиком.

Пример акустического резонанса можно наблюдать в следующем опыте. Роль ящиков в этом опыте чисто вспомогательная.

Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.

Возьмём два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов не будет откликаться на звук другого камертона.

Этот результат объясняется тем, что колебания одного камертона действуют через воздух с некоторой силой на второй камертон, заставляя его совершать вынужденные колебания. Так как первый камертон совершает гармоническое колебание, то и сила, действующая на второй камертон, будет меняться по закону гармонического колебания с частотой первого камертона. Если частота силы та же, что и собственная сила второго камертона, то второй камертон начинает сильно раскачиваться. Это явление называется акустическим резонансом. Если же частота силы другая, то вынужденные колебания второго камертона будут настолько слабыми, что их будет невозможно услышать.

Так как камертоны обладают очень небольшим затуханием, то у них резонанс будет очень сильно выражен (острый резонанс). Поэтому уже небольшая разность между частотами камертонов приводит к тому, что один камертон перестаёт откликаться на колебания другого. Достаточно, например, приклеить к ветвям одного из двух камертонов кусочки пластилина или воска, и камертоны уже будут расстроены, резонанса не будет.

Если звук представляет собой ноту, т.е. периодическое колебание, но не является тоном (гармоническим колебанием), то это означает, что он состоит из суммы двух тонов: основного, наиболее низкого и обертонов. На такой звук камертон должен резонировать всякий раз, когда частота камертона совпадает с частотой какой-либо одной из собственных частот колебательной системы. Опыт можно произвести с упрощенной сиреной и камертоном, при этом поставив отверстие резонатора камертона против прерывистой воздушной струи сирены. Если частота камертона равна 300 Гц, то, можно легко убедиться, что он будет откликаться на звук сирены не только при 300 прерываниях в секунду (резонанс на основной тон сирены), но и при 150 прерываниях - резонанс на первый обертон сирены, и при 100 прерываниях - резонанс на второй обертон сирены, и т.д..

Если у пианино нажать на педаль и сильно крикнуть на него, то от него можно будет услышать отзвук, который будет слышится некоторое время, с тоном (частотой) очень похожим на первоначальный звук.

Эффект Доплера в акустике

Частота звуковых колебаний, которые слышит неподвижный наблюдатель в случае, если источник звука приближается или удаляется от него, отлична от частоты звука, воспринимаемой наблюдателем, который движется вместе с этим источником звука, или и наблюдатель и источник звука стоят на месте. Изменение частоты звуковых колебаний (высоты звука), связанное с относительным движением источника и наблюдателя называется акустическим эффектом Доплера. Когда источник и приемник звука сближаются, то высота звука повышается, а если они удаляются. то высота звука понижается. Это связано с тем, что при движении источника звука относительно среды, в которой распространяются звуковые волны, скорость такого движения векторно складывается со скоростью распространения звука.

Например, если машина с включенной сиреной приближается, а затем, проехав мимо, удаляется, то сначала слышен звук высокого тона, а затем низкого.

Размещено на Allbest.ru


Подобные документы

  • Свойства звука и его характеристики. Шум. Музыка. Речь. Законы распространения звука. Инфразвук, ультразвук, гиперзвук. Звук - это распространяющиеся в упругих средах - газах, жидкостях и твёрдых телах - механические колебания, воспринимаемые органами слу

    реферат [13,8 K], добавлен 29.05.2003

  • Звук как источник информации. Причина и источники звука. Амплитуда колебаний в звуковой волне. Необходимые условия распространения звуковых волн. Длительность звучания камертона на резонаторе и без него. Использование в технике эхолокации и ультразвука.

    презентация [3,7 M], добавлен 15.02.2011

  • Анализ скорости звука в металлах методом их соударения, измерения времен соприкосновения и распространения волны. Измерения при соударении стержней одинаковых по размерам и материалу, из одинакового материала и одинакового сечения, но разной длины.

    лабораторная работа [203,1 K], добавлен 06.08.2013

  • Что такое звук. Распространение механических колебаний среды в пространстве. Высота и тембр звука. Сжатие и разрежение воздуха. Распространение звука, звуковые волны. Отражение звука, эхо. Восприимчивость человека к звукам. Влияние звуков на человека.

    реферат [32,6 K], добавлен 13.05.2015

  • Природа звука и его источники. Основы генерации компьютерного звука. Устройства ввода-вывода звуковых сигналов. Интенсивность звука как энергетическая характеристика звуковых колебаний. Распределение скорости звука. Затухающие звуковые колебания.

    контрольная работа [23,1 K], добавлен 25.09.2010

  • Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.

    реферат [28,2 K], добавлен 04.06.2010

  • Отражение звука от поверхностей и его влияние на качество распространения звуковых волн низкой частоты. Объемно-планировочное решение залов и рассеянное отражение звука от сложного профиля поверхности потолка или стены. Проект драматического театра.

    презентация [1,8 M], добавлен 26.05.2015

  • Распространение звуковых волн в атмосфере. Зависимость скорости звука от температуры и влажности. Восприятие звуковых волн ухом человека, частота и сила звука. Влияние ветра на скорость звука. Особенность инфразвуков, ослабление звука в атмосфере.

    лекция [1,3 M], добавлен 19.11.2010

  • Изучение механизма работы человеческого уха. Определение понятия и физических параметров звука. Распространение звуковых волн в воздушной среде. Формула расчета скорости звука. Рассмотрение числа Маха как характеристики безразмерной скорости течения газа.

    реферат [760,2 K], добавлен 18.04.2012

  • Акустический "прорыв" и "взлом" через стенки канала как важная проблема в инженерной акустике. Основные общие и отличительные признаки в физических процессах между акустическим прорывом/взломом в каналах и передачей звука через строящиеся части.

    реферат [1,3 M], добавлен 10.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.