Законы сохранения в природе

Универсальность законов сохранения. Симметрия как одно из фундаментальных свойств гармонии объектов природы, а также творчества человека. Закон сохранения и превращения энергии, сохранения массы вещества, сохранения импульса и электрического заряда.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 18.01.2012
Размер файла 24,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Законы сохранения в природе

1. Универсальность законов сохранения

Законы сохранения занимают среди всех законов природы особое место. Общность и универсальность законов сохранения определяют их большое научное, методологическое и философское значение. Они являются основой важнейших расчетов физики и ее технических приложений, позволяют в ряде случаев предсказывать эффекты и явления при исследовании разнообразных физико-химических систем и процессов.

С законами сохранения связано введение в современную физику идей, имеющих принципиальное значение. Законы сохранения служат пробным камнем любой общей физической теории. Непротиворечивость теории этим законам служит убедительным аргументом в ее пользу и является важнейшим критерием ее истинности. Поэтому в современных физических теориях далеко не последнюю роль играет идея сохранения специфических для данной теории величин, причем зачастую поиски таких величин являются важнейшей целью теории. В законах сохранения находят свое отображение важнейший диалектико-материалистический принцип неуничтожимости материи и движения, взаимосвязь между различными формами движущейся материи и специфика превращения одной формы движения в другую. Научное и методологическое значение законов сохранения в достаточно полной мере выявляется на фоне исторического развития общей идеи сохранения. Открытие и обобщение законов сохранения происходило вместе с развитием всей физики, от первых робких догадок античных натурфилософов через классическую механику и электродинамику, до теории относительности, квантовой механики и физики элементарных частиц.

Законы сохранения охватывают практически все области науки. Имеющийся опыт развития естествознания показывает, что эти законы не теряют своего смысла при замене одной системы фундаментальных законов другой.

Поэтому уже эта небольшая экскурсия в мир законов сохранения наталкивает на мысль о том, что у Природы существуют некие общие «ценности», которые она старательно сохраняет и что между всеми известными законами сохранения существует более глубокая причинно-следственная связь, что существует единый закон сохранения. Все остальные законы сохранения являются его следствием.

Ответ на естественный вопрос о том, почему справедливы законы сохранения в физике был найден сравнительно недавно. Оказалось, что законы сохранения возникают в системах при наличии у них определенных элементов симметрии. Элементом симметрии системы, с точки зрения математики, называется любое преобразование, переводящие систему в себя, т.е. не изменяющее ее. Глобальные законы сохранения связаны с существованием таких преобразований, которые оставляют неизменными любую систему. К ним относятся:

· закон сохранения энергии, являющийся следствием симметрии относительно сдвига во времени (однородности времени);

· закон сохранения импульса, являющийся следствием симметрии относительно параллельного переноса в пространстве (однородности пространства);

· закон сохранения момента импульса, являющийся следствием симметрии относительно поворотов в пространстве (изотропности пространства);

· закон сохранения заряда, являющийся следствием симметрии относительно замены описывающих систему комплексных параметров на их комплексно сопряженные значения;

· закон сохранения четности, являющийся следствием симметрии относительно операции инверсии («отражения в зеркале», меняющего «право» на «лево»);

· закон сохранения энтропии, являющийся следствием симметрии относительно обращения времени.

Закон сохранения и превращения энергии, закон сохранения импульса, закон сохранения момента количества движения и закон сохранения электрического заряда, также как и закон сохранения массы, можно считать законами сохранения, имеющими силу как в области макромира, так и в области микромира. Это законы сохранения, имеющие максимальную степень общности.

Но все-таки абсолютными оказываются не законы сохранения, а сама идея сохранения. Можно сказать, что абсолютен не тот или иной конкретный закон сохранения, а абсолютна идея сохранения: ни одна область природы не может не содержать устойчивых, сохраняющихся вещей, свойств или отношений, и соответственно ни одна физическая теория не может быть построена без тех или иных сохраняющихся величин.

Многие законы сохранения взаимосвязаны и являются следствием еще более общей симметрии пространства и времени. Связь законов сохранения со свойствами симметрии была открыта на всех структурных уровнях материи, начиная с макротел и кончая элементарными частицами. В микромире симметрия оказалась вездесущей. Эта связь законов сохранения с принципами симметрии является настолько фундаментальной, что ее можно считать наиболее полным выражением идеи сохранения, как в макромире, так и в микромире. Другой важной особенностью законов сохранения, особенно в философском плане, является их тесная связь с принципом причинности. Именно законы сохранения образуют тот фундамент, на котором зиждется причинно-следственная связь закономерностей природы. Они являются той внутренней цепью, которая обеспечивает логически закономерную связь между причиной и следствием.

2. Симметрия и законы сохранения

Одним из фундаментальным свойств гармонии объектов природы и творчества человека является симметрия. Симметрия окружает нас повсюду и находит свое проявление практически во всех областях жизнедеятельности человека, начиная от простых бытовых вещей, закачивания фундаментальными вопросами познания окружающего мира и его свойств.

Изначально определение о геометрической симметрии как о гармонии пропорций (simmetria в переводе с греческого означает соразмерность) впоследствии приобрело универсальный характер. С античности под понятием симметрии подразумевается всеобщая идея инвариантности (т.е. неизменности) относительно некоторых преобразований. Другими словами физическое явление или геометрический объект принято считать симметричными в том случае, если с ними можно проводить такие манипуляции, после которых они останутся неизменными. В современной интерпретации симметрия - есть общенаучная философская категория, которая характеризует структуру организации систем любого уровня.

Одним из основных свойств симметрии является сохранение определенных признаков по отношению к определенным преобразованиям. Для изучения симметрии в настоящее время используется теория групп и теория инвариантов.

Симметрия - это категория, обозначающая процесс существования и становления тождественных объектов, в определенных условиях и в определенных отношениях между различными и противоположными состояниями явлений мира.

Это определение накладывает методологические требования: при изучении явления, события, состояния движущейся материи, прежде всего необходимо установить свойственные им различия и противоположности, затем уже раскрыть, что в нем есть тождественного и при каких условиях и в каких отношениях это тождественное возникает, существует и исчезает. Отсюда общие правила формирования гипотез: если установлено существование какого-то явления, состояния или каких-то их свойств и параметров, то необходимо предполагать и существование противоположных явлений, противоположных свойств и параметров; в свою очередь, необходимо далее постулировать, что между противоположными условиями в каких-то отношениях и условиях возникают и существуют тождественные моменты. В этих двух правилах выражается применение понятия симметрии в конкретных исследованиях.

Асимметрия - категория, обозначающая существование и становление в определенных условиях и отношениях различий и противоположностей внутри единства, тождества, цельности явлений мира.

Симметрия и асимметрия дополняют друг друга, и искать их нужно одновременно.

История науки показывает, что симметрия позволяет объяснить многие явления и предсказать существование новых свойств природы.

В естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков.

Свойства симметрии пространства и времени связывают и определяют законы сохранения: с однородностью времени связан закон сохранения энергии; с однородностью пространства - сохранения импульса, с изотропией - сохранения момента импульса.

Количество законов природы велико, но они неравнозначны по сфере применения. Наиболее многочисленны законы, описывающие электрические явления, сформулированные на основе обобщения экспериментальных данных. Часто они носят приближенный характер, и область их применения достаточно узка. Например, закон Гука - для области небольших деформаций, то есть до достижения предела текучести твердого тела, иначе до границы, после которой деформации становятся необратимыми после снятия нагрузки. Закон Гука выражает внешний наблюдаемый эффект. Внутренняя же природа явления в том, что атомы и молекулы состоят из электрически заряженных частиц, силы притяжения и отталкивания в которых уравновешены. Деформация нарушает их внутренние электрическое равновесие, которое после снятия нагрузки восстанавливается. Таким образом, силы упругости по сути электромагнитные силы или по существу чисто электрический эффект; закон валентности при образовании химических соединений определяет создание общих электронных пар, то есть внутренне это тоже электрический эффект. Однако для описания внешнего поведения системы вполне можно не прибегать к сложным уравнениям электродинамики. Аналогично в термодинамике или химических законах не рассматривают квантовые внутренние эффекты, объясняющие поведение термодинамической или химической системы изнутри. Такие законы являются частными.

Если же мы абстрагируемся от внешнего эффекта и раскроем его внутренний механизм, то целый ряд на первый взгляд не связанных явлений объединится в классы или системы. Эти системы явлений можно будет описать единым законом, называемым фундаментальным. В классической механике их четыре: законы Ньютона и всемирного тяготения. Но и они действуют лишь в области макромира. Так, для микрочастиц невозможно указать точно значения ускорений и сил, то есть теряется сам смысл понятий, используемых в формулировке закона.

Другое дело законы сохранения. Они не теряют своего смысла при замене одной системы на другую, то есть базируются на эвристическом принципе, позволяющем независимо от накопленного опыта отбирать более совершенные законы. Они могут и не давать полного описания явлений, а лишь накладывать определенные запреты на их реализацию для построения новых теорий. Тогда их называют принципами. Законы сохранения распространяются на весь диапазон физических явлений: от микро - до макротел.

Закон - внутренняя, существенная и устойчивая связь явлений, обусловливающая их упорядоченное изменение.

Закономерность - совокупность взаимосвязанных законов, обеспечивающих устойчивую тенденцию или направленность в изменениях системы.

Законы сохранения - физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем.

3. Закон сохранения энергии

Закон сохранения и превращения энергии иногда называют первым началом термодинамики.

Приращение потенциальной энергии брошенного вверх тела происходит за счет убыли его кинетической энергии; при падении тела, приращение кинетической энергии происходит за счет убыли потенциальной энергии, так что полная механическая энергия тела не меняется. Аналогично, если на тело действует сжатая пружина, то она может сообщить телу некоторую скорость, т.е. кинетическую энергию, но при этом пружина будет распрямляться и ее потенциальная энергия сбудет соответственно уменьшаться; сумма потенциальной и кинетической энергий останется постоянной. Если на тело, кроме пружины, действует еще и сила тяжести, то хотя при движении тела энергия каждого вида будет изменяться, но сумма потенциальной энергии тяготения, потенциальной энергии пружины и кинетической энергии тела опять-таки будет оставаться постоянной.

Энергия может переходить из одного вида в другой, может переходить от одного тела к другому, но общий запас механической энергии остаётся неизменным.

Опыты и теоретические расчеты показывают, что при отсутствии сил трения и при воздействии только сил упругости и тяготения суммарная потенциальная и кинетическая энергия тела или системы тел остается во всех случаях постоянной. В этом и заключается закон сохранения механической энергии.

Проиллюстрируем закон сохранения энергии на следующем опыте. Стальной шарик, упавший с некоторой высоты на стальную или стеклянную плиту и ударившийся об неё, подскакивает почти на ту же высоту, с которой упал. Во время движения шарика происходит целый ряд превращений энергии.

При падении потенциальная энергия переходит в кинетическую энергию шарика. Когда шарик прикоснется к плите, и он и плита начинают деформироваться. Кинетическая энергия превращается в потенциальную энергию упругой деформации шарика и плиты, причем этот процесс продолжается до тех пор, пока шарик не остановится, т.е. пока вся его кинетическая энергия не перейдет в потенциальную энергию упругой деформации. Затем под действием сил упругости деформированной плиты шарик приобретает скорость, направленную вверх: энергия упругой деформации плиты и шарика превращается в кинетическую энергию шарика. При дальнейшем движении вверх скорость шарика под действием силы тяжести уменьшается и кинетическая энергия превращается в потенциальную энергию тяготения. В наивысшей точке шарик обладает снова только потенциальной энергией тяготения.

Поскольку можно считать, что шарик поднялся на ту же высоту, с которой он начал падать, потенциальная энергия шарика в начале и в конце описанного процесса одна и та же. Более, того, в любой момент времени при всех превращениях энергии сумма потенциальной энергии тяготения, потенциальной энергии упругой деформации и кинетической энергии все время остается одной и той же. Для процесса превращения потенциальной энергии, обусловленной силой тяжести, в кинетическую и обратно при падении и подъеме шарика это было показано простым расчетом.

Можно было бы убедиться, что и при превращении кинетической энергии в потенциальную энергию упругой деформации плиты и шарика и затем при обратном процессе превращения этой энергии в кинетическую энергию отскакивающего шарика, сумма потенциальной энергии тяготения, энергии упругой деформации и кинетической энергии также остается неизменной, т.е. закон сохранения механической энергии выполнен.

4. Закон сохранения массы

Впервые закон сохранения массы вещества сформулировал М.В. Ломоносов в 1748 г., а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756 г. Современная формулировка этого закона такова: «Масса веществ, вступивших в химическую реакцию, равна массе веществ, образующихся в результате реакции».

Независимо от Ломоносова этот закон был установлен в 1789 г. Французским химиком Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.

С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка. Закон сохранения массы веществ является основным законом химии, все расчёты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновением современной химии как точной науки.

Несмотря на то, что М.В. Ломоносов сформулировал, по существу, единый закон сохранения массы и энергии, до начала XX в. закон сохранения массы и закон сохранения энергии обычно рассматривались независимо друг от друга. Химия имела дело в основном с первым законом, а физика - со вторым. В 1905 г. основоположник современной физики А. Эйнштейн показал, что между массой и энергией существует взаимосвязь.

С законом сохранения массы веществ тесно связан закон сохранения энергии: энергия не возникает из ничего и не исчезает бесследно, но одни её виды могут превращаться в другие в строго эквивалентных количествах.

Так при разложении воды, кислот, щелочей или солей посредством электрического тока электрическая энергия превращается в химическую. То же наблюдается при зарядке аккумулятора. Обратный процесс превращение химической энергии в электрическую происходит при разрядке аккумулятора.

Альберт Эйнштейн показал, что между массой тела и его энергией существует связь. Он доказал, что если масса системы изменяется, то происходит изменение, и её энергии, и наоборот: изменение внутренней энергии системы всегда сопровождается изменением массы. Вследствие химических реакций всегда выделяется или поглощается энергия. Поэтому, строго говоря, масса веществ, участвующих в этих реакциях, должна изменяться: при выделении теплоты уменьшаться, а при поглощении увеличиваться. Однако вследствие очень большой величины множителя изменения массы при химических реакциях настолько малы, что определить их существующими методами невозможно. Поэтому закон сохранения массы веществ соблюдается практически при всех химических реакциях.

Из закона взаимосвязи массы и энергии нельзя заключить, что масса превращается в энергию. Масса и энергия неотделимы от материи, но они не эквивалентны между собой и не превращаются друг в друга: масса является одним из свойств материи, мерой ее инерции, энергия же мера ее движения.

5. Закон сохранения импульса

Данный закон представляет собой результат симметрии относительно параллельного переноса исследуемого объекта в пространстве, суть - однородность пространства. Так, в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В случае системы материальных точек, их полный импульс определяется как векторная сумма всех импульсов, составляющих систему материальных точек.

Системы, на которые не действуют внешние силы, называют замкнутыми. Основная масса законов сформулирована именно для таких систем.

6. Закон сохранения момента импульса

Он являет собой пример симметрии относительно поворота в пространстве (изотропность пространства). Этот закон есть следствие неизменности мира по отношению к его поворотам в пространстве. Это свойство используется, в частности, в гироскопах и других навигационных системах.

Все эти законы сохранения не только фундаментальны, но и универсальны в пределах микро-, макро- и мегамиров.

7. Закон сохранения электрического заряда

Не все явления в природе можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества и термодинамики. Достаточно обратить внимание на тот факт, что ни механика, ни молекулярно-кинетическая теория, ни термодинамика ничего не говорят о природе сил, которые связывают отдельные атомы в молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенных расстояниях друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представления о том, что в природе существуют электрические заряды.

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, - это электризация тел при соприкосновении.

Проведем опыт: отрежем от тетрадного листа полоску бумаги шириной 1 см, положив полоску на тетрадь, проведем по ней несколько раз пластмассовой ручкой с легким нажимом. Затем возьмем полоску в одну руку, а ручку в другую и будем их сближать. Бумажная полоска изгибается в сторону ручки, т.е. между ними возникают силы притяжения.

Положим две бумажные полоски рядом на тетрадь, проведем по ним ручкой несколько раз с легким нажимом. Взяв полоски в руки, будем сближать их. Опыт показывает, что при сближении полоски изгибаются в противоположные стороны, обнаруживая существование сил отталкивания.

Взаимодействие тел, обнаруженное в этих опытах, называется электромагнитным взаимодействием. Физическая величина, определяющая электромагнитное взаимодействие, называется электрическим зарядом.

Способность электрических зарядов, как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда назвали положительным, а другой - отрицательным.

Очевидно, что при соприкосновении с пластмассовой ручкой на двух одинаковых полосках бумаги появляются электрические заряды одного знака. Эти полоски отталкиваются - следовательно, между электрическими зарядами одного знака действуют силы отталкивания. Между электрическими зарядами разного знака действуют силы притяжения.

Аналогичные опыты, выполненные с различными телами и с применением самых точных приборов для измерения электрических зарядов, показали, что в результате электризации при соприкосновении на телах всегда возникают электрические заряды, равные по модулю и противоположные по знаку.

Электрические заряды могут появляться на телах не только в результате электризации при соприкосновении тел, но и при других взаимодействиях, например под действием света. Однако в замкнутой системе, в которую не входят извне электрические заряды и из которой не выходят заряды, при любых взаимодействиях тел алгебраическая сумма электрических зарядов всех тел остается постоянной.

Этот экспериментально установленный факт называется законом сохранения электрического заряда.

Нигде и никогда в природе не возникает и не исчезает электрический заряд одного знака.

Появление положительного электрического заряда всегда сопровождается появлением равного по абсолютному значению отрицательного электрического заряда. Ни положительный, ни отрицательный заряд не могут исчезнуть в отдельности один от другого, они могут лишь взаимно нейтрализовать друг друга, если равны по абсолютному значению.

Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц - электронов - от одних тел к другим. Как известно, в состав любого атома входят положительно заряженное ядро и отрицательно заряженные электроны. В нейтральном атоме суммарный заряд электронов в точности равен заряду атомного ядра. Тело, состоящее из нейтральных атомов и молекул, имеет суммарный электрический заряд, равный нулю.

Если в результате какого-либо взаимодействия часть электронов переходит от одного тела к другому, то одно тело получает отрицательный электрический заряд, а второе - равный по модулю положительный электрический заряд.

При соприкосновении двух разноименно заряженных тел обычно электрические заряды не исчезают бесследно, а избыточное число электронов переходит с отрицательно заряженного тела к телу, у которого часть атомов имела не полный комплект электронов на своих оболочках.

Особый случай представляет встреча заряженных античастиц, например электрона и позитрона. В этом случае положительный и отрицательный электрические заряды действительно исчезают, но в полном соответствии с законом сохранения электрического заряда, так как алгебраическая сумма зарядов электрона и позитрона равна нулю.

Список литературы

закон сохранение симметрия энергия

1. Вейль Г. Симметрия. - М.: Наука, 1975.

2. Горохов В.Г. Концепции современного естествознания. - М: Инфра-М, 2000.

3. Горелов А.А. Концепции современного естествознания. - М.: Центр, 1997.

4. Друянов Л.А. Законы природы и их назначение. - Просвещение, 1982.

5. Дубнищева Т.Я. Концепции современного естествознания. - Новосибирск: ЮКЭА, 1997.

6. Карпенко С. X. Основные концепции естествознания. - М.: Культура и спорт, 1998.

7. Князева Е.Н., Курдюмов С.П. Законы эволюции и самоорганизации сложных систем. - М.: Наука, 1994.

8. Компанеец А.С. Симметрия в микро- и макромире. - М.: Наука, 1978.

9. Савельев И.В. Курс общей физики. - М.: Наука, 1982 -3 т.

Размещено на Allbest.ru


Подобные документы

  • Фундаментальные законы сохранения физических величин. Свойства симметрии физических систем. Связь законов сохранения с симметрией пространства и времени. Принципы симметрии в физике. Симметрия как основа описания объектов и процессов в микромире.

    реферат [327,5 K], добавлен 17.10.2008

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Изучение сути законов сохранения (вещества, импульса) - фундаментальных физических законов, согласно которым при определенных условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

    контрольная работа [374,1 K], добавлен 26.08.2011

  • Законы сохранения в механике. Проверка закона сохранения механической энергии с помощью машины Атвуда. Применение закона сохранения энергии для определения коэффициента трения. Законы сохранения импульса и энергии.

    творческая работа [74,1 K], добавлен 25.07.2007

  • Понятие механической системы; сохраняющиеся величины. Закон сохранения импульса. Взаимосвязь энергии и работы; влияние консервативной и результирующей силы на кинетическую энергию частицы. Момент импульса материальной точки; закон сохранения энергии.

    курсовая работа [111,6 K], добавлен 06.12.2014

  • Кинетическая энергия, работа и мощность. Консервативные силы и системы. Понятие потенциальной энергии. Закон сохранения механической энергии. Условие равновесия механических систем. Применение законов сохранения. Движение тел с переменной массой.

    презентация [15,3 M], добавлен 13.02.2016

  • Исследование механизма упругих и неупругих столкновений, изучение законов сохранения импульса и энергии. Расчет кинетической энергии при абсолютно неупругом ударе и описание механизма её превращения во внутреннюю энергию, параметры сохранения импульса.

    лабораторная работа [129,6 K], добавлен 20.05.2013

  • Движение несвободной частицы. Силы реакции и динамика частиц. Движение центра масс, закон сохранения импульса системы. Закон сохранения кинетического момента системы. Закон сохранения и превращения механической энергии системы частиц. Теорема Кёнига.

    доклад [32,7 K], добавлен 30.04.2009

  • Анализ механической работы силы над точкой, телом или системой. Характеристика кинетической и потенциальной энергии. Изучение явлений превращения одного вида энергии в другой. Исследование закона сохранения и превращения энергии в механических процессах.

    презентация [136,8 K], добавлен 25.11.2015

  • Измерение силы тока, проходящего через резистор. Закон сохранения импульса. Трение в природе и технике. Закон сохранения механической энергии. Модели строения газов, жидкостей и твердых тел. Связь температуры со скоростью хаотического движения частиц.

    шпаргалка [126,6 K], добавлен 06.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.