Электрическое поле Земли

Понятие атмосферного электричества - совокупности электрических явлений в атмосфере, а также раздела физики атмосферы, изучающего эти явления. Объяснение происхождения молнии. Методика измерения электрического поля Земли. Магнитогидродинамические волны.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 16.01.2012
Размер файла 14,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Электрическое поле Земли

Электрическое поле, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической индукцией). Напряженность электрического поля у поверхности Земли > 130 В/м, наиболее сильными крупномасштабными электрическими полями обладают пульсары (~1012 В/м). Напряженность внутрикристаллического электрического поля ~1010 В/м. Искровой разряд в воздухе (например, молния) вызывается электрическим полем с напряженностью около 3 млн. В/м. Электрическое поле используется во всех электротехнических, радиотехнических и электрофизических устройствах (электроизмерительных приборах, радиоприемниках, ускорителях заряженных частиц и т.д.).

Электрическое поле атмосферы

Атмосфемрное электримчество -- совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.

Молния

Начало атмосферному электричеству как науке было положено в XVIII веке американским учёным Бенджамином Франклином, экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым -- автором первой гипотезы, объясняющей электризацию грозовых облаков. В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60--100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.

Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, -- поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

Электрическое поле Земли

Естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. обусловлено сложным комплексом геофизических явлений. Распределение потенциала поля несёт в себе определённую информацию о строении Земли, о процессах, протекающих в нижних слоях атмосферы, в ионосфере, магнитосфере, а также в ближнем межпланетном пространстве и на Солнце.

Методика измерения Э. п. 3. определяется той средой, в которой наблюдается поле. Наиболее универсальный способ -- определение разности потенциалов при помощи разнесённых в пространстве электродов. Этот способ применяется при регистрации земных токов, при измерении с летательных аппаратов электрического поля атмосферы, а с космических аппаратов -- магнитосферы и космического пространства (при этом расстояние между электродами должно превышать Дебаевский радиус экранирования в космической плазме, т. е. составлять сотни метров).

Существование электрического поля в атмосфере Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т. д. Многие атмосферные процессы: конвекция образование облаков, осадки и другие -- приводят к частичному разделению разноимённых зарядов и возникновению атмосферных электрических полей (см. Атмосферное электричество). Относительно атмосферы поверхность Земли заряжена отрицательно.

Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический «конденсатор» атмосфера -- Земля. В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1--1,4 раза больше, чем отрицательных. Утечка зарядов из атмосферы восполняется также за счёт токов, связанных с молниями и отеканием зарядов с остроконечных предметов (острий). Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км2 за год, можно характеризовать следующими данными:

Ток проводимости + 60 к/(км2·год)

Токи осадков + 20 »

Разряды молний - 20 »

Токи с остриёв - 100 »

Всего - 40 к/(км2·год)

На значительной части земной поверхности -- над океанами -- токи с остриёв исключаются, и здесь будет положительный баланс. Существование статического отрицательного заряда на поверхности Земли (около 5,7105 к) говорит о том, что эти токи в среднем сбалансированы.

Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушный масс, ветры, турбулентность -- всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо (см. Земной магнетизм) Примером может служить солнечно-суточная электрическая токовая система, которая вызывает на поверхности Земли суточные вариации магнитного поля. Величина напряжённости электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков мв/м, а в высокоширотной ионосфере достигает ста и более мв/м. При этом сила тока доходит до сотен тысяч ампер. Из-за высокой электропроводности плазмы ионосферы и магнитосферы вдоль силовых линий магнитного поля Земли электрического поля ионосферы переносятся в магнитосферу, а магнитосферные поля в ионосферу.

Одним из непосредственных источников электрического поля в магнитосфере является Солнечный ветер. При обтекании магнитосферы солнечным ветром возникает

электрический молния атмосфера земля

Е = v?b?,

где b? -- нормальная компонента магнитного поля на поверхности магнитосферы, v -- средняя скорость частиц солнечного ветра.

Эта эдс вызывает электрические токи, замыкающиеся обратными токами, текущими поперёк хвоста магнитосферы (см. Земля). Последние порождаются положительными пространственными зарядами на утренней стороне хвоста магнитосферы и отрицательными -- на его вечерней стороне. Величина напряженности электрического поля поперёк хвоста магнитосферы достигает 1 мв/м. Разность потенциалов поперёк полярной шапки составляет 20--100 кв.

Ещё один механизм возбуждения эдс в магнитосфере связан с коллапсом противоположно направленных силовых линий магнитного поля в хвостовой части магнитосферы; освобождающаяся при этом энергия вызывает бурное перемещение магнитосферной плазмы к Земле. При этом электроны дрейфуют вокруг Земли к утренней стороне, протоны -- к вечерней. Разность потенциалов между центрами эквивалентных объемных зарядов достигает десятков киловольт. Это поле противоположно по направлению полю хвостовой части магнитосферы.

С дрейфом частиц непосредственно связано существование магнитосферного кольцевого тока вокруг Земли. В периоды магнитных бурь и полярных сияний электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения.

Магнитогидродинамические волны, генерируемые в магнитосфере, распространяются по естественным волноводным каналам вдоль силовых линии магнитного поля Земли. Попадая в ионосферу, они преобразуются в электромагнитные волны, которые частично доходят до поверхности Земли, а частично распространяются в ионосферном волноводе и затухают, На поверхности Земли эти волны регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10-2--10 гц), либо как очень низкочастотные волны (колебания с частотой 102--104 гц).

Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряжённость электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах

Размещено на Allbest.ru


Подобные документы

  • Магнитное поле Земли и его характеристики. Понятие геомагнитных возмущений и их краткая характеристика. Механизм возмущения магнитного поля Земли. Влияние ядерных взрывов на магнитное поле. Механизм влияния различных факторов на геомагнитное поле Земли.

    контрольная работа [30,6 K], добавлен 07.12.2011

  • Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.

    шпаргалка [619,6 K], добавлен 04.05.2015

  • Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

    реферат [56,7 K], добавлен 15.02.2008

  • Исследование электрического поля методом зонда. Температурная зависимость сопротивления проводников и полупроводников. Определение удельного заряда электрона. Магнитное поле кругового тока и измерение горизонтальной составляющей магнитного поля Земли.

    учебное пособие [4,6 M], добавлен 24.11.2012

  • Ознакомление с особенностями физического электрического поля. Расчет силы, с которой электрическое поле действует в данной точке на положительный единичный заряд (напряженности в данной точке), а также потенциала, создаваемого системой точечных зарядов.

    курсовая работа [1,6 M], добавлен 04.01.2015

  • Геомагнитное поле земли. Причины возникновения магнитных аномалий. Направление вектора напряженности земли. Техногенные и антропогенные поля. Распределение магнитного поля вблизи воздушных ЛЭП. Влияние магнитных полей на растительный и животный мир.

    курсовая работа [326,4 K], добавлен 19.09.2012

  • Природа молнии и методы ее измерения. Возникновение статического электричества при накоплении неподвижных зарядов. Шаровая молния как сферический газовый разряд, возникающий при ударе обычной молнии. Проявление электрических явлений в живой природе.

    реферат [15,0 K], добавлен 20.10.2009

  • Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.

    презентация [12,0 M], добавлен 28.06.2015

  • Процентное соотношение газов в атмосфере Земли. Вес атмосферы по подсчетам Паскаля. Опыт, доказывающий существование атмосферного давления, и история открытия учёными этого явления. Нормальное атмосферное давление и его изменение в зависимости от высоты.

    презентация [323,6 K], добавлен 14.05.2014

  • Физические свойства и процесс формирования молнии. Стадии процесса развития наземной и внутриоблачные молнии. Взаимодействие молнии с поверхностью земли и расположенными на ней объектами. Последствия поражения человека молнией. Интересные факты о молнии.

    доклад [22,9 K], добавлен 12.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.