Термодинамические свойства макросистем и законы термодинамики

Изучение термодинамических свойств макросистем и общее понятие о термодинамике как разделе физики. Исследование соотношений и превращений тепла с другими формами энергии. Общая характеристика термодинамических свойств макросистем и начала термодинамики.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 13.12.2011
Размер файла 19,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

6

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«МАТИ - Российский государственный технологический университет

Имени Циолковского»

(МАТИ)

РЕФЕРАТ

Термодинамические свойства макросистем и законы термодинамики

Ф.И.О студента:

Пронина Карина Андреевна

Группа: БУХ-1ДБ-230

Преподаватель:

Лигачева Е.А

Москва 2008

Содержание

Содержание

Ведение

1. Основные понятия

1.1 Понятие макросистемы

1.2 Понятие термодинамики

2. Общие положения

2.1 Термодинамические свойства макросистем

3. Начала термодинамики

3.1 Нулевое начало термодинамики

3.2 Первое начало термодинамики

3.3 Второе начало термодинамики

3.4 Третье начало термодинамики

Вывод

Использованная литература

Введение

В разделе физическая термодинамика рассматриваются методы описания физических систем, состоящих из очень большого числа частиц. Как правило, это макросистемы, состоящие из микрочастиц. Макросистема - система, имеющая массу, сравнимую с массой предметов и тел, окружающих нас. Микрочастица - частица, имеющая массу, сравнимую с массой атомов. Например, в одном литре воды содержится 3,3*1025 молекул, в одном кубометре атмосферного воздуха - 2,5*1025 молекул. Количество частиц в других окружающих нас макросистемах по порядку величины близко к указанным значениям, и поэтому для их описания необходимо применять методы, учитывающие очень большое число составляющих их микрочастиц.

Для описания макросистем могут быть использованы три метода: на основе применения законов механики, с использованием законов статистической физики и основанных на началах термодинамики.

При применении законов классической механики для описания динамики большого числа взаимодействующих микрочастиц возникает несколько проблем. Во-первых, такое описание требует составления и решения большого числа дифференциальных уравнений описывающих движение каждой микрочастицы. При этом необходимо точное знание характера взаимодействия частиц, что зачастую достаточно сложно установить, так как это требует соответствующих экспериментальных измерений силы взаимодействия отдельных микрочастиц. Во-вторых, даже в случае построения указанных уравнений, движение всех частиц может быть описано только в том случае, если известны все их начальные координаты и скорости. В-третьих, как показывают исследования, даже в системе из трёх частиц, при их нелинейном взаимодействии возникают так называемые точки бифуркации, при прохождении которых дальнейшие движения частиц становятся непредсказуемыми. В частности, наличие точек бифуркации и неопределённости начального положения, приводит к возникновению необратимости, характерной для макросистем, несмотря на полную обратимость уравнений механики. Дополнительные ограничения вводит неопределенность, связанная с запретом квантовой механики на одновременное точное определение координаты и импульса микрочастицы. Указанные обстоятельства делают использование первого метода описания достаточно затруднительным, и его применение обычно ограничивается модельными задачами для ограниченного числа частиц.

Статистический метод описания основывается на применении законов теории вероятностей, а в качестве основной применяемой функции выступает функция распределения. При этом не требуется знания характера соударения микрочастиц, их начальных условий движения и точного решения уравнений динамики всех микрочастиц. В этом случае обычно ограничиваются нахождением функции распределения одной микрочастицы и считают, что функции распределения всех микрочастиц идентичны. Все наблюдаемые параметры макросистемы определяются путем нахождения средних значений динамических переменных микрочастиц. Например, скорость течения газа можно найти как среднее значение скоростей всех его молекул. Если функция распределения макросистемы не зависит от времени, то описанием такого состояния занимается статистическая физика равновесных состояний.

Статистический метод позволяет получить описание не только равновесных состояний макросистемы, но и найти характер её изменения с течением времени. Для этого применяется кинетическое и гидродинамическое описания макросистем.

Кинетическое описание макросистемы дает возможность на основе уравнений динамики микрочастиц получить кинетические уравнения, описывающие эволюцию с течением времени функции распределения. Применение кинетических уравнений позволяет достаточно точно решать целый ряд практически важных задач при исследовании кинетических процессов в газе, плазме и различных конденсированных средах. При этом уравнения физической кинетики применимы для описания необратимых процессов.

При гидродинамическом описании составляются уравнения для средних значений динамических параметров среды (скорости течения, температуры, плотности и т.д.). В указанные уравнения входят кинетические коэффициенты (коэффициенты переноса), такие, как коэффициенты вязкости, теплопроводности, диффузии и т.д. Отличительной особенностью кинетических коэффициентов от динамических параметров среды является отсутствие у них микроскопического аналога. Действительно, если для температуры таким микроскопическим аналогом является средняя кинетическая энергия микрочастицы, то коэффициент теплопроводности полностью теряет какой-либо физический смысл при переходе к описанию одной микрочастицы. Гидродинамическое описание является более грубым, чем кинетическое, но его проведение существенно проще, что определяет сферу применения уравнений гидродинамики.

Наиболее общим методом описания макросистем является термодинамический метод, при котором удаётся получить законы, применение которых возможно для любых макросистем, независимо от конкретной физической природы микрочастиц.

Термодинамический метод заключается в описании поведения систем с помощью основных постулатов, которые называются началами термодинамики. Эти начала являются обобщением накопленного экспериментального материала. Справедливость их подтверждается только опытным путем, при сравнении предсказаний термодинамики и экспериментальных данных. В этом отношении термодинамика использует те же методы, что и классическая механика Ньютона. В классической механике вводятся основные постулаты (законы Ньютона), которые являются теоретическим обобщением экспериментальных данных и из которых затем формулируются следствия. Причем справедливость этих следствий основана на справедливости основных постулатов.

В силу того, что основные законы сформулированы на основе экспериментов, выполненных в условиях определенных ограничений, как по точности измерений, так и по перечню исследованных систем, область их применения также ограничена. Пока эта область удовлетворяет потребностям развития науки и техники, соответствующий раздел физики развивается в рамках тех основных законов, которые были сформулированы. Когда это условие нарушается, появляются новые законы, которые применимы в новой области, но при этом они не должны противоречить уже имеющимся.

Термодинамика описывает макросистемы, находящиеся в состояниях, близких к состоянию равновесия, и переходы между ними, протекающие почти равновесно. Такая равновесная термодинамика была в основном разработана в XIX веке. Однако в ХХ столетии начали бурно развиваться методы неравновесной термодинамики, или термодинамики необратимых процессов, описывающей системы в состояниях, заметно отличающихся от состояния равновесия. Аналогичный процесс наблюдался и в механике. Когда область применения классической механики Ньютона (область малых скоростей и энергий) перестала удовлетворять потребностям развития науки и техники, появился новый раздел механики - релятивистская механика, описывающая тела, движущиеся со скоростями, сравнимыми со скоростью света. Схема построения релятивистской механики аналогична схеме построения классической механики - изменяются только основные постулаты и, соответственно, их следствия. Подобным же образом предпринимаются попытки осуществить переход от равновесной к неравновесной термодинамике. Наибольшие достижения на этом пути получены при разработке термодинамики линейных необратимых процессов.

закон термодинамика свойство макросистема

1. Основные понятия

1.1 Понятие макросистемы

Атомы и молекулы, взаимодействуя друг с другом, образуют разнообразные вещества. Если число частиц невелико (десятки, сотни), то мы имеем микросистему.

Однако большинство физических тел состоит из огромного числа частиц (миллионы, миллиарды и более), в физике подобные системы называют макросистемами. Физические величины, характеризующие поведение микросистем, называются микропараметрами, а макросистем -- макропараметрами. Макросистемы можно описывать на языке или классических, или квантовых представлений, однако при этом возникают трудности двух типов.

Во-первых, в моле любого вещества содержится 6•1023 частиц (число Авогадро), которое служит своеобразным «эталоном» больших чисел в мире макросистем.

Следовательно, механические состояния частиц, содержащихся в одном моле вещества, характеризуются 3·(6•1023) координатами и 3·(6•1023) проекциями скоростей.

Даже если пытаться с помощью законов Ньютона и современной вычислительной техники решать 36•1023 уравнений, то для этого понадобится столько же значений координат и скоростей всех частиц в начальный момент времени, а взять эти данные «неоткуда».

Во-вторых, даже если рассчитать все координаты и импульсы частиц в какой-то момент времени, то эта работа окажется «бесполезной», поскольку из полученных данных еще необходимо вывести те параметры системы, которые можно измерить на практике.

Таким образом, перечисленные трудности делают невозможным описание макроскопических систем с помощью уравнений механики.

1.2 Понятие термодинамики

ТЕРМОДИНАМИКА - наука о наиболее общих тепловых свойствах макроскопических тел. Термодинамический подход не требует привлечения упрощённых моделей рассматриваемых явлений, поэтому выводы термодинамики имеют универсальный характер.

Основные понятия термодинамики.

В термодинамике изучают макроскопические системы, т. е. системы, состоящие из большого числа частиц, причём исследуют наиб. общие свойства таких систем, для описания которых не требуется привлечения микроскопических характеристик системы. Термодинамический подход оказывается тем точнее, чем больше частиц в системе. Замкнутой системой называется система, изолированная от внешнего воздействия, такую систему всегда можно разбить на составляющие её подсистемы, слабо взаимодействующие между собой. Телом в термодинамике называют макроскопическую систему, заключённую в определенный объём.

2. Общие положения

2.1 Термодинамические свойства макросистем

Термодинамика представляет собой науку о тепловых явлениях, в которой не учитывается молекулярное строение тел. В термодинамике тепловые явления описываются с помощью величин, регистрируемых приборами, не реагирующими на воздействие отдельных молекул (термометр, манометр и др.). Все законы термодинамики относятся к телам, число молекул которых огромно. Такие тела называют макроскопическими. Они образуют макросистемы. Газ в баллоне, вода в стакане, песчинка, камень, стальной стержень и т.п. - все это примеры макросистем .

Основа термодинамического метода - определение состояния термодинамической системы, представляющей собой совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Состояние системы задается термодинамическими параметрами (параметрами системы), характеризующими ее свойства. Обычно в качестве термодинамических параметров состояния выбирают температуру, давление и удельный объем (объем единицы массы).

3. Начала термодинамики

3.1 Нулевое начало термодинамики

Нулевое начало термодинамики сформулированное всего около 50 лет назад, по существу представляет собой полученное «задним числом» логическое оправдание для введения понятия температуры физических тел . Температура - одно из самых глубоких понятий термодинамики . Температура играет столь же важную роль в термодинамике , как , например процессы. Впервые центральное место в физике занял совершенно абстрактное понятие ; оно пришло на смену введенному еще во времена Ньютона ( 17 век) понятию силы - на первый взгляд более конкретному и «осязаемому» и к тому же успешно « математезированному» Ньютоном.

3.2 Первое начало термодинамики

Первое начало термодинамики устанавливает внутренняя энергия системы является однозначная функция ее состояния и изменяется только под влиянием внешних воздействий.

В термодинамике рассматриваются два типа внешних взаимодействий: воздействие , связанное с изменением внешних параметров системы ( система совершает работу W ), и воздействие не связанные с изменением внешних параметров и обусловленные изменением внутренних параметров или температуры ( системе сообщается некоторое количество теплоты Q ).

Поэтому, согласно первому началу , изменение внутренней энергии U2-U1 системы при ее переходе под влиянием этих воздействий из первого состояния во второе равно алгебраической сумме Q и W , что для конечного процесса запишется в виде уравнения

U2 - U1 = Q - W или Q = U2 - U1 + W

Первое начало формируется как постулат и является обобщением большого количества опытных данных .

Для элементарного процесса уравнение первого начала такого :

Q = dU + W

Q и W не являются полным дифференциалом, так как зависят от пути следования.

Зависимость Q и W от пути видна на простейшем примере расширение газа. Работа совершенная системой при переходе ее из состояния 1 в 2 ( рис. 1) по пути а изображается площадью, ограниченной контуром А1а2ВА :

Wа = p(V,T) dV ;

а работа при переходе по пути в - площадью ограниченную контуром А1в2ВА:

Wb = p(V,T) dV.

Поскольку давление зависит не только от объема, но и от температуры, то при различных изменениях температуры на пути а и в при переходе одного и того же начального состояния (p1,V1) в одно и тоже конечное (p2,V2) работа получается разной. Отсюда видно , что при замкнутом процессе (цикле) 1а2в1 система совершает работу не равную нулю. На этом основана работа всех тепловых двигателей.

Из первого начала термодинамики следует, что работа может совершаться или за счет изменения внутренней энергии , или за счет сообщения системе количества теплоты . В случае если процесс круговой , начальное и конечное состояние совпадают U2- U1 = 0 и W = Q , то есть работа при круговом процессе может совершаться только за счет получения системой теплоты от внешних тел .

Первое начало можно сформулировать в нескольких видах :

1. Невозможно возникновение и уничтожение энергии .

2. Любая форма движения способна и должна превращаться в любую другую форму движения .

3. Внутренняя энергия является однозначной формой состояния .

4. Вечный двигатель первого рода невозможен .

5. Бесконечно малое изменение внутренней энергии является полным дифференциалом.

6. Сумма количества теплоты и работы не зависит от пути процесса.

Первый закон термодинамики ,постулируя закон сохранения энергии для термодинамической системы. не указывает направление происходящих в природе процессов. Направление термодинамических процессов устанавливает второе начало термодинамики.

3.3 Второе начало термодинамики

Второе начало термодинамики устанавливает наличие в природе фундаментальной асимметрии, т.е. однонаправленности всех происходящих в ней самопроизвольных процессов.

Второй основной постулат термодинамики связан так же с другими свойствами термодинамического равновесия как особого вида теплового движения. Опыт показывает, что если две равновесные системы А и В привести в тепловой контакт, то независимо от различия или равенства у них внешних параметров они или остаются по прежнему в состоянии термодинамического равновесия, или равновесие у них нарушается и спустя некоторое время в процессе теплообмена ( обмена энергией ) обе системы приходят в другое равновесное состояние. Кроме того, если имеются три равновесные системы А,В и С и если системы А и В порознь находятся в равновесии с системой С, то системы А и В находятся в термодинамическом равновесии и между собой (свойства транзитивности термодинамического равновесия ).

Пусть имеются две системы . Для того , чтобы убедится в том , что они находятся в состоянии термодинамического равновесия надо измерить независимо все внутренние параметры этих систем и убедиться в том , что они постоянны во времени. Эта задача чрезвычайно трудная.

Оказывается однако, что имеется такая физическая величина , которая позволяет сравнить термодинамические состояния двух систем и двух частей одной системы без подробного исследования и внутренних параметров. Эта величина, выражающая состояние внутреннего движения равновесной системы, имеющая одно и то же значение у всех частей сложной равновесной системы независимо от числа частиц в них и определяемое внешними параметрами и энергией называется температурой. Температура является интенсивным параметром и служит мерой интенсивности теплового движения молекул. Изложенное положение о существовании температуры как особой функции состояния равновесной системы представляет второй постулат термодинамики. Иначе говоря, состояние термодинамического равновесия определяется совокупностью внешних параметров и температуры. Р.Фаулер и Э.Гуггенгейм назвали его нулевым началом, так как оно подобно первому и второму началу определяющим существование некоторых функций состояния , устанавливает существование температуры у равновесных систем.

Итак, все внутренние параметры равновесной системы являются функциями внешних параметров и температур. (Второй постулат термодинамики).

Выражая температуру через внешние параметры и энергию , второй постулат можно сформулировать в таком виде : при термодинамическом равновесии все внутренние параметры являются функциями внешних параметров и энергии.

Второй постулат позволяет определить изменение температуры тела по изменению, какого либо его параметра, на чем основано устройство различных термометров.

3.4 Третье начало термодинамики

Открытие третьего начала термодинамики связано с нахождением химического средства - величины , характеризующих способность различных веществ химически реагировать друг с другом . Эта величина определяется работой W химических сил при реакции . Первое и второе начало термодинамики позволяют вычислить химическое средство W только с точностью до некоторой неопределенной функции . Чтобы определить эту функцию нужны в дополнении к обоим началам термодинамики новые опытные данные о свойствах тел. Поэтому Нернстоном были предприняты широкие экспериментальные исследования поведение веществ при низкой температуре. В результате этих исследований и было сформулировано третье начало термодинамики : по мере приближения температуры к 0 К энтропия всякой равновесной системы при изотермических процессах перестает завесить от каких-либо термодинамических параметров состояния и в пределе ( Т= 0 К) принимает одну и туже для всех систем универсальную постоянную величину , которую можно принять равной нулю .

Общность этого утверждения состоит в том , что , во-первых , оно относится к любой равновесной системе и , во-вторых , что при. Т стремящемуся к 0. К энтропия не зависит от значения любого параметра системы. Таким образом, по третьему началу,

lin [ S (T,X2) - S (T,X1) ] = 0 (1.12)

или

дшь х вЫ.вЧ ъЕ = 0 при Т 0 (1ю13)

где Х - любой термодинамический параметр (аi или Аi).

Предельно значение энтропии, поскольку оно одно и тоже для всех систем, не имеет никакого физического смысла и поэтому полагается равным нулю (постулат Планка). Как показывает статическое рассмотрение этого вопроса, энтропия по своему существу определена с точностью до некоторой постоянной (подобно, например, электростатическому потенциалу системы зарядов в какой либо точке поля). Таким образом , нет смысла вводить некую «абсолютную энтропию», как это делал Планк и некоторые другие ученые.

Вывод

Тезис о развитии как атрибуте материи до недавнего времени трудно было согласовать с данными естествознания, где единственный закон, включающий направленность происходящих изменений, - это второе начало термодинамики, говорящее скорее о тенденции к деградации. Второе начало является одним из естественнонаучных выражений принципа развития, определяющим эволюцию материи.

Поскольку принцип увеличения энтропии отражает необратимость всех реальных процессов и тем самым означает необратимое изменение всех известных форм материи, т.е. их переход в какие-то иные формы, для которых уже будут недействительны существующие законы, то его можно считать естественнонаучным выражением философского принципа развития.

Второе начало имеет тот же статус, что и первое начало (закон сохранения энергии), и его действие не противоречит развитию Вселенной. Напротив, сам принцип развития находит свое естественнонаучное обоснование во втором начале термодинамики. Принцип возрастания энтропии рассматривается как одна из естественнонаучных конкретизаций принципа развития, отражающая образование новых материальных форм и структурных уровней в неорганической природе.

Одной из фундаментальных черт современного естествознания и вместе с тем направлений его диалектизации является все более глубокое и органичное проникновение в систему наук о природе эволюционных идей, которые неразрывно связаны с концепцией иерархии качественно своеобразных структурных уровней материальной организации, выступающих как ступени, этапы эволюции природных объектов.

Если всего лишь несколько десятилетий назад исследования эволюционных процессов в различных областях естествознания были довольно слабо связаны между собой, то сейчас положение изменилось радикальным образом: выявляются контуры единого (в многообразии своих конкретных проявлений) процесса эволюции охваченных исследованиями областей природы.

Список использованной литературы

1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. Пособие для учреждений, обеспечивающих получение общ. сред, образования

2. Карпенко С.Х. Концепции современного естествознания. - М., 1997.

3. Фейнмановские лекции по физике. - М., 1997.

4. Ахундов М.Д. Концепции пространства и времени: истоки, эволюция, перспективы.-1982.

5. Савельев И.В. Курс общей физики. - М., 1977.

6. Фейнман Р. Характер физических законов. - М., 1968

7. Базаров И.П. Термодинамика. - М.: Высшая школа, 1991 г.

8. Гленсдорф П. , Пригожин И. Термодинамическая теория структуры , устойчивости и флуктуаций. - М.: Мир, 1973 г.

9. Карери Д. Порядок и беспорядок в структуре материи. - М.: Мир, 1995 г.

10. Николис Г. , Пригожин И. Самоорганизация в неравновесных системах. - М.: Мир, 1979 г.

11. Николис Г. , Пригожин И. Познание сложного. - М.: Мир, 1990 г.

12. Перовский И.Г. Лекции по теории дифференциальных уравнений. - М.: МГУ, 1980 г.

13. Попов Д.Е. Междисциплинарные связи и синергетика. - КГПУ, 1996 г.

14. Пригожин И. Введение в термодинамику необратимых процессов. - М.: Иностранная литература , 1960 г.

15. Пригожин И. От существующего к возникающему. - М.: Наука, 1985 г.

16. Шелепин Л.А. Вдали от равновесия. - М.: Знание, 1987 г.

17. Эйген М. , Шустер П. Гиперцикл . Принципы самоорганизации макромолекул . - М.: Мир , 1982 г.

Размещено на Allbest.ru


Подобные документы

  • Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.

    реферат [1,7 M], добавлен 01.11.2013

  • История развития термодинамики, ее законы. Свойства термодинамических систем, виды основных процессов. Характеристика первого и второго законов термодинамики. Примеры изменения энтропии в системах, принцип ее возрастания. Энтропия как стрела времени.

    реферат [42,1 K], добавлен 25.02.2012

  • История развития термодинамики. Свойства термодинамических систем, виды процессов. Первый закон термодинамики, коэффициент полезного действия. Содержание второго закона термодинамики. Сущность понятия "энтропия". Особенности принципа возрастания энтропии.

    реферат [21,5 K], добавлен 26.02.2012

  • Основные понятия. Температура. Первый закон термодинамики. Термохимия. Второй закон термодинамики. Равновесие в однокомпонентных гетерогенных системах. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.

    лекция [202,7 K], добавлен 03.12.2003

  • Первое начало термодинамики. Однозначность внутренней энергии как функции термодинамического состояния. Понятие энтропии. Второе начало термодинамики для равновесных систем. Третье начало термодинамики.

    лекция [197,4 K], добавлен 26.06.2007

  • Фундаментальные законы термодинамики. Понятие термодинамической системы и рабочего тела, их термодинамические параметры. Идеальный газ и уравнение его состояния. Формулы и взаимосвязь удельной и молярной теплоемкости, изобарного и изохорного процессов.

    реферат [15,0 K], добавлен 22.01.2012

  • Предмет технической термодинамики. Свойства термодинамической системы. Основные термодинамические процессы: изохорный, изотермический, изобарный и адиабатный. Использование таблиц и диаграмм для термодинамических расчетов. Цикл Ренкина на перегретом паре.

    реферат [231,1 K], добавлен 01.02.2012

  • Фазовое пространство и фазовая плотность вероятности. Первое начало термодинамики с точки зрения статистической физики. Статистическое определение энтропии. Статистическое обоснование третьего начала термодинамики. Теорема о равнораспределении.

    контрольная работа [228,5 K], добавлен 06.02.2016

  • Гиббс Джозайя Уиллард - американский физик-теоретик, один из создателей термодинамики и статистической механики. Теория термодинамических потенциалов. Общее условие равновесия гетерогенных систем. Распределение Гиббса. Понятие адсорбции.

    реферат [89,5 K], добавлен 06.10.2006

  • Передача энергии от одного тела к другому. Внутренняя энергия и механическая работа. Первое начало термодинамики. Формулировки второго закона термодинамики. Определение энтропии. Теоремы Карно и круговые циклы. Процессы, происходящие во Вселенной.

    реферат [136,5 K], добавлен 23.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.