Полупроводниковые диоды
Типы полупроводников c примесями n-типа и p-типа. Структура полупроводникового диода. Граница раздела двух областей с различной проводимостью. Включение диода в простейшую электрическую цепь. Вольт-амперная характеристика диода. Выпрямительные диоды.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 11.12.2011 |
Размер файла | 259,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Полупроводниковые диоды
1. Принцип работы диода
Основой современных полупроводниковых приборов является кремний или германий. Чтобы полупроводниковый элемент был пригоден для создания электронного устройства, в него необходимо добавить примесь. Существует два типа полупроводников c примесями: n-типа и p-типа. Для получения полупроводника n-типа в него добавляют донорную примесь (например, мышьяк, сурьма), которая обеспечивает появление в межатомном пространстве свободных электронов, а в кристаллической решетке появляется такое же количество неподвижных положительных ионов донора. Для получения полупроводника р-типа в него добавляют акцепторную примесь (например, индий, галлий), которая обеспечивает появление в межатомном пространстве свободных дырок, а в кристаллической решетке появляется такое же количество неподвижных отрицательных ионов акцептора. Дырка - это место в кристаллической решетке полупроводника, где недостает электрона. Положительный ион - это атом, потерявший электрон, а отрицательный ион - это атом, получивший электрон. В твердых телах атомы неподвижны, т.к. закреплены в узлах кристаллической решетки.
В полупроводниках n-типа ток переносят отрицательно заряженные частицы - электроны, а в полупроводниках p-типа - положительно заряженные частицы - дырки. Перемещение дырок - это перемещение мест с отсутствующими электронами в результате движения электронов.
Основой полупроводникового диода является двухслойная структура, созданная на основе кристалла полупроводника, имеющего две области. В одну область кристалла вводится донорная примесь (n - область), а в другую - акцепторная (p - область). Структура полупроводникового диода имеет вид, показанный на рис. 1.
Граница раздела двух областей с различной проводимостью называется. p-n переходом. Из-за встречной диффузии через p-n переход дырок (из р- в n - область) и электронов (из n- в р - область) в тонком слое вблизи p-n перехода происходит рекомбинация (взаимная компенсация) дырок и электронов (дырки заполняются электронами). В результате между р- и n - областями образуется так называемый обедненный слой, который имеет очень мало свободных носителей заряда. Как только электроны покидают n - область, в ней начинает действовать суммарный заряд лишних положительных ионов, который будет тянуть свободные электроны обратно и препятствовать их движению в сторону р-n перехода. Точно также, когда дырки покидают p - область, в ней начинает действовать суммарный заряд лишних отрицательных ионов, который будет тянуть свободные дырки обратно и препятствовать их движению в сторону р-n перехода. Заряды неподвижных ионов примесей оказываются не скомпенсированы и создадут по обе стороны p-n перехода область объемного заряда - рис. 1. Этот объемный заряд образует потенциальный барьер. Энергия носителей зарядов оказывается недостаточной, чтобы преодолеть этот барьер, поэтому их диффузия прекращается.
Если к полупроводниковому диоду приложить внешнее напряжение так, чтобы его положительный потенциал присоединен к p-слою, то дырки и электроны будут как бы отталкиваются источником внешнего напряжения в сторону р-n перехода. Потенциальный барьер уменьшается, переход зарядов через границу и их взаимная компенсация возрастают, следовательно, через диод будет протекать ток. Источник будет поставлять в n-слой новые электроны, а в p-слое создавать новые дырки.
При противоположном знаке напряжения электроны притягиваются к положительному потенциалу источника, а дырки к отрицательному, потенциальный барьер в области p-n перехода увеличивается, переход зарядов через границу и, следовательно, ток через диод может прекратиться.
Полупроводниковый диод - это своеобразный конденсатор: области n и p можно рассматривать как обкладки конденсатора, а p-n переход - как изолятор между обкладками. Различают диффузионную (при прямом приложенном напряжении) и барьерную (при обратном напряжении) емкости диода. Емкость полупроводникового диода - это бесплатное приложение к его основному свойству - к односторонней проводимости. Во многих случаях это свойство является вредным, т.к. ухудшает работу диода на высоких частотах, в импульсных режимах и обуславливает его инерционность.
Изображение диода на электрической схеме показано на рис. 2. Вывод p-слоя называется анодом (А). Вывод n-слоя называется катодом (К).
Включение диода в простейшую электрическую цепь показано на рис. 3, 4. На рис. 3 диод является проводником, поэтому в цепи должен быть элемент, ограничивающий ток. Таким элементом является резистор Rн. Ток через него равен: I=(U Uпр)/Rн.Uпр0, поэтому I=U/Rн; URн=IRн=U.
При обратном включении диода через него протекает незначительный обратный ток. Для диодов на малые токи обратный ток может составлять десятки нА, у больших диодов десятки mА. Схема при обратном включении диода представлена на рис. 4. Для нее U=URн+Uобр, URн=IобрRн0, т.к. Iобр 0, поэтому U=Uобр.
Часто диод включен в схему, где приложенное напряжение является переменным. Виды этих напряжений:
1. Синусоидальное, показано на рис. 5.
2. Прямоугольное, показано на рис. 6
3. Треугольное.
4. Экспоненциальное.
2. Вольт-амперная характеристика диода
Свойства диода определяются его вольт-амперной характеристикой (ВАХ). Вольт-амперная характеристика диода показана на рис. 7. Приближенно она может быть описана уравнением:
I=IO(e U/mт -1),
где IO - ток насыщения обратносмещенного перехода (обратный тепловой ток); U - напряжение на p-n переходе; т = kT/q - тепловой потенциал, равный контактной разности потенциалов к на границе p-n перехода при отсутствии внешнего напряжения; k =1,3810-23 Дж/К - постоянная Больцмана; Т - абсолютная температура; q =1,610-19 кулон - заряд электрона; m - поправочный коэффициент, учитывающий отклонение от теории. При комнатной температуре Т=300К, т = 0,026В.
На ВАХ различают две ветви: прямая ветвь, которая находится в первом квадрате и обратная ветвь в третьем квадрате. Уравнение (1) хорошо описывает характеристику реального диода в прямом направлении и для небольших токов, В соответствии с (1) сопротивление диода является нелинейным. В случае линейного сопротивления ВАХ была бы прямая линия.
На прямой ветви реальной ВАХ имеется резкий загиб, который характеризуется напряжением включения. Для германиевых диодов напряжение включения равно примерно 0,3В, для кремниевых - примерно 0,6В.
Значение обратного тока на обратной ветви примерно постоянно в широком диапазоне напряжения. При превышении определенного значения обратного напряжения, называемого напряжением пробоя Uпроб, начинается лавинообразный процесс нарастания обратного тока, соответствующий электрическому пробою p-n перехода. Если в этот момент ток не ограничить, то электрический пробой перейдет в тепловой. Тепловой пробой обусловлен ростом числа носителей в p-n переходе. При этом мощность, выделяющаяся в диоде UобрIобр, не успевает отводиться от перехода, его температура растет, растет обратный ток и, следовательно, продолжает расти мощность. Тепловой пробой необратим, т.к. разрушает p-n переход.
У любого диода оговаривается несколько основных параметров:
номинальный прямой ток;
максимальное обратное напряжение;
прямое падение напряжения;
постоянный обратный ток;
максимальный прямой ток (для него оговаривается режим работы, например, время проводимости).
Преобладают кремниевые диоды, так как имеют более высокую предельную рабочую температуру (150оС против 75оС для германиевых), допускают большую плотность прямого тока (60…80 А/см2 по сравнению с 20…30 А/см2), обладают меньшими обратными токами (примерно на порядок) и большими допустимыми обратными напряжениями (1500…2800В по сравнению с 600…800В). Однако кремниевые диоды имеют большее прямое падение напряжения. Прямое падение напряжения при прямом номинальном токе обозначается Uпр. Uпр=0,3…0,4В для германиевых диодов, Uпр=0,6…1,2В для кремниевых диодов.
Работоспособность диода определяется выделяемой на нем мощностью P=UI. U и I относятся к определенной точке ВАХ. Мощность определяет нагрев. Рабочий участок диода на ВАХ рис. 7 отмечен жирной линией. Если диод начинает работать на не рабочих участках ВАХ, он выходит из строя. На не рабочих участках мощность превышает допустимую, нагрев превышает допустимый. При нагреве, превышающем допустимый, диод разрушается.
Зависимость ВАХ от температуры показана на рис. 10.
При рассмотрении режимов работы схем с диодами их часто представляют в виде идеализированных приборов, которые являются идеальными проводниками в прямом направлении и идеальными изоляторами в обратном направлении. Идеализированная ВАХ представлена на рис. 9.
По назначению различают следующие типы диодов:
1. Выпрямительные.
2. Импульсные.
3. Высокочастотные.
4. Стабилитроны и стабисторы.
Диоды различают также по мощности и по частотным свойствам.
полупроводник диод проводимость выпрямительный
3. Выпрямительные диоды
Предназначены для работы при напряжениях частоты до нескольких кГц и при некрутых фронтах питающего напряжения. Не предназначены для прямоугольного питающего напряжения. Для выпрямительных диодов оговариваются два основных параметра:
1. Ток прямой номинальный (среднее значение).
2. Напряжение обратное максимальное (мгновенное).
Диоды выпускаются на ток 10 мА…1000А. Обратное напряжение находится в пределах от 10В до нескольких кВ. Для мощных диодов (ток 10А) обратное напряжение определяют классом диода. Класс диода - это 100В, умноженное на цифру класса. Цифра класса от 1 до 20. Например: Д50-12, здесь 50 ток прямой номинальный в А; 12 класс. Класс это параметр, используемый для мощных диодов и характеризующий обратное напряжение. У мощных диодов номинальный прямой ток допустим только при установке диода на радиатор и при принудительном охлаждении со скоростью воздуха 12 м/с. Без принудительного охлаждения воздухом (имеется только радиатор) допустимый ток составляет около 30% от номинального. У современных диодов распространены следующие обозначения: ДXXXY или КДXXXY, где КД кремниевый диод, XXX цифры, Y буква. Первая цифра говорит о виде диода (выпрямительные 1,2). Буква определяет обратное напряжение.
Второстепенные параметры:
1. Максимальный обратный ток Iобр.макс (от десятков нА до десятков мА).
2. Прямое падение напряжения Uпр (0,3…1,2В).
3. Максимальная рабочая частота, до которой обеспечиваются заданные токи, напряжения и мощность.
4. Время восстановления запирающих свойств диода.
Диод не проводит (или запирается) при приложении обратного напряжения. Запирание переход от проводящего состояния к непроводящему. При приложении прямоугольного обратного напряжения диод ведет себя как показано на рис. 11. Интервал I время рассасывания носителей, интервал II бросок обратного тока. Он связан с наличием барьерной емкости диода. Интервал tв - время восстановления, т.е. время перехода от проводящего состояния до момента установления обратного тока на ВАХ. Из-за не идеальности диода ограничивается предельная частота его работы. При очень высокой частоте диод перестает выполнять свои функции.
4. Высокочастотные диоды
Для них оговариваются те же параметры (основные и второстепенные), но они могут работать при высокой частоте и обладают малым временем восстановления (по сравнению с выпрямительными). Для них приводится график прямого тока в зависимости от частоты. График представлен на рис. 12.
5. Импульсные диоды
Оговариваются те же основные параметры, что и для рассмотренных выше диодов, и приводится еще важный второстепенный параметр - импульсный ток за оговоренное время.
6. Стабилитроны и стабисторы
Рабочей частью ВАХ у стабилитронов является обратная ветвь. Прямая ветвь такая же как у диодов, она также может использоваться.
ВАХ стабилитрона представлена на рис. 13. Для стабилитронов указывается два основных параметра:
Uст - напряжение стабилизации стабилитрона;
Iст.н - номинальный ток стабилитрона.
Uст=3,3…170В. Для Uст указывается разброс в процентах или в вольтах, а также изменение Uст при изменении температуры. У маломощных стабилитронов Iст.min=1…3 mА, Iст. max=30 mA. Iст.н у мощных стабилитронов составляет несколько сот mA.
Стабисторы - это стабилитроны, у которых используется прямая ветвь ВАХ. ВАХ стабистора показана на рис. 14. Такая ВАХ создается технологически. Стабистор-диод с большим падением напряжения, которое постоянно при изменении тока. Стабилитроны и стабисторы могут соединяться последовательно, но не параллельно. Они используются в стабилизаторах и ограничителях напряжения.
Литература
1. Скаржепа В.А., Луценко А.Н. Электроника и микросхемотехника. Ч. 1. Электронные устройства информационной информатики. Учебник/ Под ред. А.А. Краснопрошиной. - К.: Вища школа, 1989.
2. Скаржепа В.А., Новицкий А.А., Сенько В.И. Лабораторный практикум по электронике и микросхемотехнике. / Под ред. А.А. Краснопрошиной. - К.: Вища школа, 1989.
3. Скаржепа В.А., Сенько В.И. Сборник задач по электронике и микросхемотехнике. Учебное пособие для ВУЗов. / Под ред. А.А. Краснопрошиной. - К.: Вища школа, 1989.
4. Основы промышленной электроники/ В.В. Герасимов и др. - М.: Высшая школа, 1986.
5. Гусев В.Г., Гусев Ю.Н. Электроника. Учебное пособие для ВУЗов. - М.: Высшая школа, 1982.
6. Ерофеев Ю.Н. Импульсная техника. - М.: Высшая школа, 1984.
7. Микроэлектронные устройства автоматики. Учебное пособие для ВУЗов. / Под ред. Са-занова А.А. и др. - М.: Энергоатомиздат, 1991.
8. Гутников В.С. Интегральная электроника в измерительных приборах. - Л.: Энергия, 1974.
Размещено на Allbest.ru
Подобные документы
Напряжение тока и сопротивление диода. Исследование вольтамперной характеристики для полупроводникового диода. Анализ сопротивления диода. Измерение напряжения и вычисление тока через диод. Нагрузочная характеристика параметрического стабилизатора.
практическая работа [2,0 M], добавлен 31.10.2011Понятие полупроводникового диода. Вольт-амперные характеристики диодов. Расчет схемы измерительного прибора. Параметры используемых диодов. Основные параметры, устройство и конструкция полупроводниковых диодов. Устройство сплавного и точечного диодов.
курсовая работа [1,0 M], добавлен 04.05.2011Понятие диодов как электровакуумных (полупроводниковых) приборов. Устройство диода, его основные свойства. Критерии классификации диодов и их характеристика. Соблюдение правильной полярности при подключении диода в электрическую цепь. Маркировка диодов.
презентация [388,6 K], добавлен 05.10.2015Расчет напряжения на переходе при прямом включении при заданном прямом токе. Влияние температуры на прямое напряжение. Сопротивление диода постоянному току. Вольт-амперная характеристика диода. Параметры стабилизатора напряжения на основе стабилитрона.
контрольная работа [219,8 K], добавлен 14.01.2014Механизм действия полупроводникового диода - нелинейного электронного прибора с двумя выводами. Работа стабилитрона - полупроводникового диода, вольтамперная характеристика которого имеет область зависимости тока от напряжения на ее обратном участке.
презентация [182,4 K], добавлен 13.12.2011Классификация и типы полупроводников, их характеристики и свойства. Контактные явления на границе раздела полупроводников различных типов. Изучение работы соответствующих устройств, резонанс токов и напряжений. Изучение вольтмперной характеристики диода.
дипломная работа [608,0 K], добавлен 03.07.2015Определение величины обратного тока диодной структуры. Расчет вольт-амперной характеристики идеального и реального переходов. Зависимости дифференциального сопротивления, барьерной и диффузионной емкости, толщины обедненного слоя от напряжения диода.
курсовая работа [362,1 K], добавлен 28.02.2016Понятие о полупроводниках, их свойства, область применения. Активные диэлектрики. Рождение полупроводникового диода. Открытие сегнетоэлектриков и пьезоэлектриков. Исследования проводимости различных материалов. Физика полупроводников и нанотехнологии.
курсовая работа [94,4 K], добавлен 14.11.2010Определение эквивалентного сопротивления и напряжения электрической цепи, вычисление расхода энергии. Расчет силы тока в магнитной цепи, потокосцепления и индуктивности обмоток. Построение схемы мостового выпрямителя, выбор типа полупроводникового диода.
контрольная работа [1,3 M], добавлен 28.12.2013Основные понятия и специальные разделы электродинамики. Условия существования электрического тока, расчет его работы и мощности. Закон Ома для постоянного и переменного тока. Вольт-амперная характеристика металлов, электролитов, газов и вакуумного диода.
презентация [8,4 M], добавлен 30.11.2013