Исследование температурной зависимости электрического сопротивления металлов и полупроводников
Классический метод измерения сопротивления при помощи резистивного моста. Вычисление удельного сопротивления, температурного коэффициента сопротивления металла. Определение энергии активации примесей в полупроводнике. Закон Ома и формула Друде-Лоренца.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 03.10.2011 |
Размер файла | 98,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Лабораторная работа № 5
Исследование температурной зависимости электрического сопротивления металлов и полупроводников
Введение
Цель работы: ознакомление с классическим методом измерения сопротивления при помощи резистивного моста; вычисление удельного сопротивления, температурного коэффициента сопротивления металла; определение энергии активации примесей в полупроводнике.
Оборудование: мост постоянного тока, нагреватель, измеритель температуры, медный провод, полупроводник.
Краткие теоретические сведения
Закон Ома
В 1826 г. немецкий физик Георг Симон Ом экспериментально установил закон, согласно которому сила тока I, протекающего по однородному проводнику, пропорциональна напряжению U на его концах:
, (5.1)
где R электрическое сопротивление проводника.
Это соотношение не является универсальным законом, так как электрическое сопротивление R не является константой материала. Оно зависит от формы и размеров электрического проводника. Однако можно выделить в сопротивлении R константу материала удельное сопротивление .
Наиболее просто это сделать для проводников правильной формы. Так, для однородного проводника цилиндрической формы сопротивление R выражается через удельное сопротивление с следующим образом:
(5.2)
где - длина проводника; S площадь его поперечного сечения.
Чтобы понять, какие физические величины определяют удельное сопротивление, его необходимо выразить через другие константы материала, как это делается в классической электронной теории (КЭТ).
Вывод закона Ома на основе КЭТ
КЭТ металлов основана на следующих представлениях. Атом можно представлять как совокупность двух систем электронов. Одна из систем сильно связана с ядром и образует так называемый остов. Другая система, система валентных электронов, у некоторых атомов, например, у атомов щелочных элементов, слабо связана с ядром. При объединении таких атомов в твердое тело, каждый остов занимает вполне определенное место - узел, а совокупность узлов образует кристаллическую решетку. Валентные электроны уже не принадлежат тому или иному остову, а образуют "электронный газ", газ свободных электронов, принадлежащий всему твердому телу в целом. Электронному газу приписываются свойства идеального одноатомного газа. Свободные электроны непрерывно хаотически движутся, причем средняя кинетическая энергия их движения
, (5.3)
где m масса электрона; средняя скорость теплового движения; k- постоянная Больцмана; T термодинамическая температура.
Под действием внешнего электрического поля свободные электроны приобретают дополнительную скорость, направленную противоположно направлению поля. Это медленное (по сравнению с тепловым движением) направленное движение электронов называется дрейфом, а дополнительная скорость - скоростью дрейфа , или дрейфовой скоростью. Максимальная величина дрейфовой скорости определяется частотой соударений электронов с тем или иным остовом. Каждый остов совершает колебательные движения, амплитуда колебаний определяется температурой твердого тела. При повышении температуры возрастает амплитуда колебаний ионов и, следовательно, увеличивается вероятность столкновения электронов с ионами. В результате скорость дрейфа электронов уменьшается, соответственно уменьшается и ток I. При неизменной разности потенциалов на концах проводника уменьшение тока означает по закону Ома (5.1) рост сопротивления проводника R. С уменьшением же температуры остовы колеблются все менее интенсивно, все реже соударения электронов с ионами. Поэтому сопротивление проводника убывает с уменьшением температуры.
На основе этих представлений КЭТ найдем связь удельного сопротивления с другими константами материала.
В промежутке между двумя следующими друг за другом соударениями электроны под действием кулоновской силы F = eE двигаются с ускорением
, (5.4)
где e заряд; m масса электрона; E напряженность электрического поля.
Скорость дрейфа и время между двумя последующими соударениями являются случайными величинами. Можно предполагать, что эти величины распределены в интервале от нуля до некоторых максимальных значений. Если среднее время между двумя последующими соударениями, или среднее время свободного пробега электронов, то максимальная дрейфовая скорость, которую электрон приобретает перед соударением, равна
(5.5)
Средняя скорость дрейфа электронов равна, очевидно, половине максимальной, так как сразу же после соударения скорость дрейфа равна нулю, а затем растет со временем линейно. Используя это соображение и заменяя в (5.5) ускорение его значением из (5.4), получим:
(5.6)
Здесь величина
(5.7)
называется подвижностью электронов, имеет размерность м2/В с и численно равна средней дрейфовой скорости в единичном поле.
Для однородного проводника цилиндрической формы с площадью поперечного сечения S силу тока I можно выразить через скорость дрейфа . За время t электроны проходят вдоль проводника расстояние
Пусть в единице объема имеется n электронов проводимости. Число электронов, пересекающих сечение S проводника за время t, составляет nSL. Заряд Q, проходящий через это сечение, равен
Так как сила тока I равна Q/t, тогда
, (5.8)
где n концентрация электронов.
Подставляя в (5.8) значение дрейфовой скорости из (5.6) и учитывая, что
,
где длина проводника, получим
(5.9)
Из сравнения полученного выражения с законом Ома (5.1) получим, что
(5.10)
Сопоставляя выражения (5.10) и (5.2), можно легко получить искомую связь материальной константы с фундаментальными константами (заряд и масса электрона) и другими материальными константами (концентрация и среднее время свободного пробега электронов):
(5.11)
Формула Друде-Лоренца
Преобразуя (5.11) с учетом (5.7), удельное сопротивление можно выразить через подвижность электронов:
(5.12)
Величина, обратная удельному сопротивлению (, называется удельной проводимостью (. Используя понятие удельной проводимости, выражение (5.12) можно записать в виде.
Как видно из (5.13), удельная проводимость пропорциональна концентрации электронов проводимости n и их подвижности (.
Соотношение (5.13) носит универсальный характер, является справедливым как для твердых тел (металлов, полупроводников, диэлектриков), так и для жидкостей и газов и известно под названием формула Друде-Лоренца.
температурная зависимость электрическое сопротивление металл
Зависимость сопротивления R от температуры
Найдем температурную зависимость удельного сопротивления, используя основные положения КЭТ. Для этого в формуле (5.11) представим среднее время свободного пробега электронов в виде отношения средней длины свободного пробега к средней тепловой скорости:
(5.14)
Величину средней тепловой скорости можно найти из выражения (5.3). Она совпадает со средней тепловой скоростью идеального одноатомного газа:
(5.15)
Подставляя (5.15) в (5.14), а затем (5.14) в (5.11), получаем температурную зависимость удельного сопротивления (T):
(5.16)
Длина свободного пробега <> обратно пропорциональна давлению электронного газа P, а, следовательно, температуре T, так как для идеального газа основное уравнение молекулярно-кинетической теории записывается как P=nkT. Поэтому из формулы (5.16) следует, что КЭТ предсказывает нелинейную зависимость удельного сопротивления от температуры . Из опыта известно, что в широкой области температур удельное сопротивление металлов , а удельное сопротивление полупроводников , где A константа. Несоответствие экспериментальной и предсказываемой КЭТ температурных зависимостей удельного сопротивления металлов и полупроводников является следствием того, что в КЭТ электроны рассматриваются как классические частицы, а совокупность их электронный газ как идеальный классический газ, описываемый распределением Максвелла-Больцмана.
Многие проблемы, в том числе и электросопротивление твердых тел, в настоящее время в основном решены с помощью квантовой физики, где показывается, что в металлах энергия свободных электронов, ответственных за электропроводность, намного превышает тепловую даже при температурах, близких к температуре плавления. Поэтому температурно-зависимой величиной в (5.14) будет только средняя длина свободного пробега, которая, как было показано выше, обратно пропорциональна температуре. Следовательно, удельное сопротивление в соответствии с (5.11) будет пропорционально температуре.
Как видно из формулы Друде-Лоренца, электропроводность определяется концентрацией и подвижностью носителей заряда. Важным выводом из расчетов электропроводности в рамках квантовой физики является то обстоятельство, что для металлов концентрация носителей заряда, ответственных за проводимость, не зависит от температуры. Температурная зависимость электропроводности металлов определяется температурной зависимостью подвижности. Противоположная ситуация имеет место в полупроводниках. Температурная зависимость электропроводности полупроводников определяется, как правило, в основном сильной (экспоненциальной) температурной зависимостью концентрации носителей заряда, температурная же зависимость подвижности в полупроводниках хотя и имеет место, но в электропроводности проявляется весьма незначительно. В инженерной практике оказывается удобным использовать следующую форму записи для температурной зависимости удельного сопротивления металлов:
, (5.17)
о удельное сопротивление металла при 0 оС; t температура в градусах Цельсия; ( коэффициент. Легко показать, исходя из пропорциональности удельного сопротивления термодинамической температуре, что ( = 1/273 K-1. Из опыта могут получаться несколько иные значения, что связано с приближенным характером выражения (5.17).
Сопротивление примесных полупроводников определяется формулой где Ro ( константа (включающая подвижность), слабо зависящая от температуры; E ( энергия активации, или ионизации примесей, та энергия, которую необходимо затратить, чтобы электрон примесного атома стал свободным и принимал участие в электрическом токе; k ( постоянная Больцмана. Для определения энергии активации удобно прологарифмировать выражение для R(T) и умножить и разделить на 103 второе слагаемое:
, (5.18)
Где
.
Из измеренных зависимостей R(T) для металла и полупроводника и формул (5.17) и (5.18) в данной лабораторной работе определяют удельное сопротивление металла (20 0С), температурный коэффициент сопротивления металла , энергию активации примесей для полупроводника E. Удельное сопротивление металла определяют при 20 0C, потому что именно при этом значении температуры принято сопоставлять различные металлы по величине сопротивления.
Описание экспериментальной установки
Одним из наиболее точных методов измерения сопротивления является метод, использующий так называемый мост резисторов. Схема его приведена на рис. 5.1. Такой мост называется мостом Уинстона (Winston).
Рис. 5.1
Медная проволока, сопротивление которой и измеряется в данной работе, намотана в виде катушки и обозначена на схеме как резистор Rх. Резистор R на схеме обозначен стрелкой его величину можно изменять дискретно в широких пределах. Такое устройство называется магазином резисторов, или магазином сопротивлений. Участок цепи AB представляет собой однородную по сечению проволоку с большим удельным сопротивлением. Обычно такая проволока изготавливается из сплава никеля и хрома (нихрома). Удельное сопротивление нихрома примерно на два порядка превышает удельное сопротивление меди и составляет 106 Омм. По проволоке AB можно перемещать подвижной контакт D. Такое устройство называется реохордом. Между точками C и D включен чувствительный гальванометр G. Резисторы Rх, R, R1, R2 называются плечами моста. При замыкании ключа K по ветвям ACB и ADB потечет ток. По участку цепи CD тоже будет течь ток, направление которого зависит от соотношения потенциалов точек C и D. Очевидно, потенциал С в точке C имеет промежуточное значение между А и В. Поэтому на участке AB можно найти точку D, потенциал которой равен потенциалу точки C. В этом случае ток через гальванометр равен нулю. Говорят, что мост сбалансирован. В этом случае между плечами моста имеется определенная функциональная зависимость:
(5.19)
Проще всего получить эту зависимость, записав правила Кирхгофа для узлов C и D, контуров ACDA и CBDC:
,
,
,
,
где RG и JG соответственно сопротивление гальванометра и ток через него. При условии баланса моста (JG = 0) эти уравнения упрощаются, откуда непосредственно следует выражение (5.19). Так как проволока AB является однородной, то
где * удельное сопротивление нихрома; S, площадь поперечного сечения и длина нихромовой проволоки. С учетом этого обстоятельства, используя (5.19) расчетную формулу для вычисления Rx можно записать в виде:
(5.20)
Порядок выполнения работы
1. Собрать электрическую цепь согласно рис. 5.1. Вставить исследуемое сопротивление (металл или полупроводник) в нагреватель.
2. Поставить ползунок D на середину реохорда. С помощью магазина резисторов подобрать такое значение сопротивления R, при котором ток через гальванометр близок к нулю.
3. Перемещением ползунка реохорда добиться исчезновения тока через гальванометр сбалансировать мост.
4. Измерить значения 1,2, t, R и записать их в табл. 5.1, также записать в таблицу вычисленное по формуле (5.20) сопротивление Rx.
5. Включить нагреватель. По мере нагревания исследуемое сопротивление изменится, мост разбалансируется и через гальванометр потечет ток. Перемещая ползунок реохорда, вновь добиться исчезновения тока через гальванометр. Балансировку моста желательно производить через каждые пять градусов. Соответствующие значения 1,2 , t записать в таблицу 5.1. Нагревание производить примерно до 80 C .
Вычислить значения Rх (t) и записать в табл. 5.1.
Измерение Rх(t) металла
1. Для металла построить график зависимости Rх(t). Из углового коэффициента прямой определить температурный коэффициент сопротивления . Полученное значение занести в табл. 5.2.
2. Из графика определить Rх при 20 0C и из полученного сопротивления вычислить удельное сопротивление. Длина медного провода и его площадь поперечного сечения указаны на стенде. Полученное значение (20 0C) занести в табл. 5.2.
Измерение Rх(t) полупроводника
При измерении сопротивления полупроводника в зависимости от температуры значения температуры в градусах Цельсия и в градусах Кельвина и соответствующие им значения сопротивления полупроводника заносятся в табл. 5.3.
Вычисляются значения lnRx и 103/T и заносятся в табл. 5.3. Строится график зависимости lnRx от 103/T. В соответствии с формулой (5.18) угловой коэффициент этой прямой пропорционален энергии активации примесей и равен 5,80E, эВ. Из полученного значения углового коэффициента определяется величина E и заносится в табл. 5.2.
Таблица 5.1
Температура t, 0C (не менее 10 значений) |
1 , мм |
2 , мм |
R, Ом |
Сопротивление Rx, Ом |
|
Таблица 5.2
Данные |
б, град -1 |
(20 0С), Омм |
Е, эВ |
|
Известные данные |
4,310-3 |
1,67310-8 |
0,0127 (для As в Ge) |
|
Получено студентом |
Таблица 5.3
Температура, К |
Сопротивление Rx, Ом |
Ln, Rx |
10 3/T, K -1 |
|
Контрольные вопросы
1. В чем заключаются основные представления классической теории электросопротивления?
2. Какой физический механизм обуславливает температурную зависимость сопротивления металлов?
3. Какая величина в формуле Друде-Лоренца определяет температурную зависимость проводимости в полупроводниках?
4. В чем заключается физический смысл температурного коэффициента сопротивления?
5. Сформулировать правила Кирхгофа.
6. Записать условие баланса моста Уинтстона.
Библиографический список
1. Курс физики: Учебник для вузов: В 2 т. Т. 1./ ред. В. Н. Лозовский. - СПб.: Лань, 2007. - § 2.28, 2.29.
2. Савельев, И.В. Курс общей физики в 3-х т. Т. 2 / И. В. Савельев. - М.: Наука, 2005. - § 34, 77, 78.
3. Трофимова, Т.И. Курс физики / Т.И. Трофимова. - М.: Высш. шк., 2001. - § 98, 102, 103.
Размещено на Allbest.ru
Подобные документы
Деление твердых тел на диэлектрики, проводники и полупроводники. Собственная и примесная проводимость полупроводниковых материалов. Исследование изменений сопротивления кристаллов германия и кремния при нагревании, определение энергии их активации.
лабораторная работа [120,4 K], добавлен 10.05.2016Основы и содержание зонной теории твердого тела. Энергетические зоны полупроводников, их типы: собственные и примесные. Генерация и рекомбинация носителей заряда. Исследование температурной зависимости электрического сопротивления полупроводников.
курсовая работа [1,8 M], добавлен 09.06.2015Баллистика движения материальной точки в случае нелинейной зависимости силы сопротивления от скорости. Зависимости коэффициента лобового сопротивления от числа Рейнольдса для шара и тонкого круглого диска. Расчет траектории движения и силы сопротивления.
статья [534,5 K], добавлен 12.04.2015Определение зависимости сопротивления сети от скорости потока, расчет сопротивления для определенного значения. Принцип работы и внутреннее устройство насосной установки, определение расхода воды в зависимости от перепада давления на дифманометре.
курсовая работа [75,8 K], добавлен 21.02.2009Создание технических средств метрологического обеспечения контроля качества полупроводниковых материалов. Анализ установки по измерению удельного электрического сопротивления четырехзондовым методом. Измерение сопротивления кремния монокристаллического.
дипломная работа [1,2 M], добавлен 24.07.2012Переносной двухдиапазонный мост с индикатором на светоизлучающих диодах, его предназначение. Измерение сопротивления резисторов. Определение параметров активных и реактивных элементов. Последовательность измерения на определённой частоте прибора.
лабораторная работа [690,7 K], добавлен 18.06.2015Проведение экспериментального исследования по определению зависимости изменения сопротивления медного проводника от повышения температуры. Построение графической зависимости этих величин. Табличные значения термических коэффициентов других проводников.
презентация [257,5 K], добавлен 18.09.2013Магнитоэлектрические измерительные механизмы. Метод косвенного измерения активного сопротивления до 1 Ом и оценка систематической, случайной, составляющей и общей погрешности измерения. Средства измерения неэлектрической физической величины (давления).
курсовая работа [407,8 K], добавлен 29.01.2013Исследование электрического поля методом зонда. Температурная зависимость сопротивления проводников и полупроводников. Определение удельного заряда электрона. Магнитное поле кругового тока и измерение горизонтальной составляющей магнитного поля Земли.
учебное пособие [4,6 M], добавлен 24.11.2012Действие электрического тока на организм человека. Факторы, влияющие на исход поражения током. Нормирование напряжений прикосновения и токов через тело человека. Эквивалентная схема электрического сопротивления различных тканей и жидкостей тела человека.
контрольная работа [69,3 K], добавлен 30.10.2011