Электрическое поле

Принципы работы электроизмерительных приборов, электрических полей различной конфигурации, действие электрического поля на пучок электронов в электронно-лучевой трубке осциллографа. Свойства системы двух проводников и диэлектриков накапливать заряды.

Рубрика Физика и энергетика
Вид методичка
Язык русский
Дата добавления 16.09.2011
Размер файла 202,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методические указания

к выполнению лабораторных работ

Электрическое поле

Йошкар-Ола 2001

Введение

Методические указания включают в себя работы из лабораторного практикума по разделу «Электричество» и соответствуют учебному плану.

Цель практикума заключается в том, чтобы позволить студенту самому воспроизвести основные физические явления, научить его обращаться с основными электроизмерительными приборами, познакомить с важнейшими методами измерений.

При выполнении работ студенты знакомятся с принципами работы электроизмерительных приборов, электрическими полями различной конфигурации, действием электрического поля на пучок электронов в электронно-лучевой трубке осциллографа; изучают свойства системы двух проводников накапливать заряды, свойства диэлектрика влиять на электростатическое поле; исследуют зависимость сопротивления проводника от температуры, зависимость диэлектрической проницаемости сегнетоэлектриков от величины напряженности внешнего электрического поля; овладевают методами расчета погрешности электрических величин, моделирования при изучении электростатического поля, измерения емкости с помощью баллистического гальванометра, сложения двух взаимно перпендикулярных колебания для измерения скорости звука.

Не менее существенно закрепить навыки ведения лабораторной тетради, построения графиков и оценки полученных результатов.

Описания к работам начинаются с теоретических введений. Они составлены так, чтобы ясное представление об изучаемых явлениях могли себе составить как студенты, которые уже прослушали этот материал на лекциях, так и те, кто только приступает к изучению соответствующего раздела физики.

После теоретических введений приводятся описания измерительной аппаратуры и применяемого метода измерений. Затем следуют задания, регламентирующие последовательность работы студентов при проведении измерений и обработки полученных результатов. Задания определяют только тот необходимый минимум, без выполнения которого работа не может считаться выполненной.

Методические указания предназначены для студентов 1 - 2 курсов всех специальностей.

поле электрический осциллограф проводник

1. Знакомство с электроизмерительными приборами

Цель работы: знакомство с принципом работы электроизмерительных приборов и их условными обозначениями. Определение погрешности электрических измерений.

Принадлежности: набор электроизмерительных приборов разных систем, таблицы принятых обозначений.

1.1 Теоретические сведения

В соответствии с ГОСТ 232117-78 для электроизмерительных приборов с непосредственным отсчетом установлены следующие условные обозначения, наносимые на них:

А. Основные единицы измерения (по роду измеряемой величины), либо их кратные или дольные значения:

A

- Ампер

mA

- миллиампер

мA

- микроампер

V

- Вольт

kV

- киловольт

mV

- милливольт

W

- Ватт

kW

- киловатт

MW

- мегаватт

Щ

- Ом

- килоом

- мегаом

Hz

- Герц

kHz

- килогерц

MHz

- мегагерц

Б. Род тока: постоянный, обозначается знаком -, переменный ~, постоянный и переменный , трехфазный .

В. Безопасность: внутри пятиконечной звездочки указывается напряжение в киловольтах, при котором проверена изоляция прибора.

Например:

- испытательное напряжение 2 кВ;

- испытание изоляции не предусмотрено;

- испытательное напряжение 500 В.

Г. Используемое положение:

- вертикальное положение шкалы;

- горизонтальное положение шкалы;

- прибор применять при наклонном (под углом?? к горизонту) положении.

Д. Класс точности: указывается на приборе соответствующей цифрой, например, 0.5; 1.0; 1.5; и т.д. или ,.

Е. Общие условные обозначения принципа действия электроизмери-тельных приборов:

- прибор магнитоэлектрической системы с подвижной рамкой;

- прибор электромагнитный;

- прибор электродинамический;

- прибор электростатический

З. Обозначения зажимов:

- отрицательный зажим;

- положительный зажим;

- общий зажим (для многопредельных приборов переменного тока и

комбинированных приборов);

- зажим, соединенный с корпусом;

- зажим для заземления

При необходимости значение того или иного символа следует уточнить в справочнике или таблице, которая имеется в лаборатории.

Все внешние части средств измерений, находящиеся под напряжением, превышающим 32 В по отношению к корпусу, должны быть защищены от случайных прикосновений к ним, т.е. иметь защитные кожухи, утопленные гнезда, клеммы с изоляционными головками и т.д.

Средства измерений с питанием от сети должны иметь сетевую индикацию включения сетевого выключателя. В цепи питания прибора должен быть плавкий предохранитель с указанием силы тока.

Рис.1.1

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии подвижной катушки с током с полем постоянного магнита. На рис. 1.1 схематически показано устройство такого прибора. В нем магнитное поле создается постоянным магнитом 1 подковообразной формы. Полюсные наконечники 3 обращены друг к другу вогнутыми цилиндрическими поверхностями одинаковых радиусов. Между полюсами укреплен железный цилиндр 2 меньшего радиуса. В зазоре, где магнитное поле радиально, плотность магнитного потока равномерная, а магнитная индукция

Постоянная, расположена легкая рамка 4, состоящая из нескольких витков провода, концы которого присоединены к спиральным пружинам 5 и 6. Через эти пружины в рамку подается измеряемый ток. При прохождении тока через рамку на нее действует вращательный момент, рамка поворачивается вокруг оси 7, пружины 5 и 6 закручиваются, и создается противодействующий момент. При равновесии моментов рамка устанавливается неподвижно, а соединенная с рамкой стрелка 8 указывает угол поворота. Значение этого угла пропорционально силе измеряемого тока, поэтому шкала прибора равномерная.

По указанному принципу изготовляется большинство лабораторных и технических приборов постоянного тока. Их можно использовать, например, в качестве амперметров, включая параллельно рамке шунт, или в качестве вольтметров, включая последовательно с рамкой большое добавочное сопротивление.

Принцип действия приборов электромагнитной системы основан на взаимодействии ферромагнитного сердечника с магнитным полем катушки с током. Амперметр такой системы схематически показан на рис. 1.2, где К - катушка, по которой течет измеряемый ток; a - железный стержень, подвешен-ный на пружине П. Катушка с током I создает неоднородное магнитное поле с индукцией В, при этом на стержень a действует сила F ~ М (В/z), где М - намагниченность стержня, z - ось катушки и стержня. Эта сила втягивает.

Рис. 1.2

стержень в катушку и уравновешивается силой упругости пружины П. Со стержнем связана стрелка. Каждому значению силы тока I соответствует определенное положение стрелки прибора.

Между F и J нет линейной зависимости, поэтому шкала прибора оказывается неравно-мерной. Приборы электромагнитной системы просты, недороги, они могут использоваться как в цепях постоянного тока, так и в цепях переменного тока промышленной частоты. Однако точность их невысока.

В приборах электродинамической системы используется взаимодействие двух катушек с токами. Одна из них неподвижна. Магнитное поле B1, создаваемое этой катушкой, пропорционально силе тока I1. Вторая, подвижная катушка, состоит из большого числа витков тонкой проволоки. На оси этой катушки закреплены стрелка прибора и легкие спиральные пружины, противодействующие повороту катушки.

Рис. 1.3

На рис. 1.3 показана схема, поясняющая принцип работы электродинамического прибора. Подвижная катушка изображена в виде рамки с током I2. Плоскости витков неподвижной катушки параллельны пло-скости OXZ (сама неподвижная катушка на рисунке не показана), при этом магнитное поле B1 направлено вдоль оси OY. При прохождении через подвижную катушку из-меряемого тока I2 на последнюю действует момент сил, пропорциональный силе тока I2 и магнитному полю B1. Этот момент уравновешивается моментом сил упругости пружины. Угол поворота стрелки оказывается при этом пропорциональным

Электродинамическими приборами можно измерять электрический ток, напряжение и мощность в цепи как постоянного, так и переменного тока.

В настоящее время широкое распространение получили цифровые измерительные приборы (ЦИП), которые автоматически вырабатывают дискретные сигналы измерительной информации и представляют показания в цифровой форме. Среди ЦИП есть приборы, показывающие мгновенное значение измеряемой величины, и приборы, фиксирующие среднее значение величины за определенный промежуток времени ?t, т.е. интегрирующие.

Пусть x - измеряемая величина (сила тока, напряжение, сопротивление и т.п.). Шкала прибора разбивается на то или иное число делений и служит для отсчета x. Возле делений ставят цифры, которые обозначают либо число делений, либо непосредственно значение x.

Значение xн (номинальное значение x), приводящее к отклонению стрелки на всю шкалу, соответствует пределу измерений. Прибор может иметь либо один, либо несколько пределов измерений (или поддиапазонов).

Чувствительностью прибора называют величину, равную отношению изменения сигнала на выходе измерительного прибора к вызывающему его изменению измеряемой величины:

S = ?l / ?x,

где ?x - изменение измеряемой величины,

?l - изменение сигнала на выходе.

Порог чувствительности - это изменение измеряемой величины, вызывающее наименьшее перемещение указателя прибора, которое еще можно заметить при нормальном для прибора способе отсчета.

Чувствительность цифрового прибора определяется как значение измеряемой величины, приходящееся на единицу дискретности (на единицу наименьшего разряда поддиапазона).

Рис. 1.4

Ценой деления называют величину С = xк/n, где n - число делений шкалы. Для отсчета x по шкале надо, очевидно, цену деления умножить на число отсчитанных от начала шкалы делений. Пусть, например, шкала прибора имеет 20 делений (рис. 1.4), а предел измерений - 10 В. При отклонении стрелки на 10 делений получим для напряжения:

U = (xк/n) 10 = (10/20) 10 = 5 (В)

1.2 Оценка погрешностей электрических измерений

Разность между показаниями прибора хп и действительным значением хд называют абсолютной погрешностью измерительного прибора:

?x = хп - хд.

Таким образом, если хп - показание прибора, то можно лишь утверждать, что

хд = хп ± ?x.

По значению абсолютной погрешности нельзя судить о точности измерений. Так, например, если ?x = 1 А при х = 100 А считать высокой точностью, то вряд ли можно считать ее таковой при х = 1 А. Поэтому вводят понятие относительной погрешности д - отношение абсолютной погрешности к действительному значению измеряемой величины:

д = ?x/хд или д = (?x/хд)•100%.

Но данная характеристика непригодна для нормирования погрешности прибора, так как д = ? при х = 0. Для этих целей используют приведенную погрешность:

дпр = ?x/хк,

где хк - соответствует пределу измерений.

Точность ряда приборов можно сравнивать только по приведенным (нормированным) погрешностям.

На практике вместо истинного значения хд используют хп (показание прибора). Способ определения ?x должен быть известен заранее. Для этого на каждом приборе указывается класс точности в виде числа, например, 4; 2.5; 1.5; 1.0; 0.5; 0.1 и т.д.

Класс точности прибора показывает, сколько процентов составляет абсолютная ошибка ?х от предела измерений хк. Таким образом, класс точности равен (?х/хк)•100%, откуда легко найти ?х.

Рассмотрим пример. Пусть предел измерений амперметра - 20 А (Iк= 20 А), на приборе указан класс точности - 1,5. Значит

(?I/Iк)•100 = 1,5 и ?I = 1,5•20/100 = 0,3 (А)

Таким образом, при любом (!) показании амперметра Iп для действительного значения силы тока имеем:

I = (Iп ± 0,3) А,

Например: если Iп = 3 А, то I = (3 ± 0,3) А; если Iп = 12 А, то I = (12 ± 0,3) А.

В том случае, когда прибор многопредельный, класс точности, указанный на приборе, относится к каждому пределу. Пусть, например, вольтметр имеет два предела измерения - 1 В и 10 В, а класс точности его - 2,5. Тогда при измерениях на первом пределе ?U = 0,025 В, а при измерениях на втором пределе ?U = 0,25 В.

Так как относительная ошибка измерений д = ?x/xп, ясно, что при наличии нескольких пределов измерений выбирать надо наименьший, при котором стрелка прибора еще «не зашкаливает».

Если указываемый прибором класс точности обведено кружком, например , то это означает, что абсолютная погрешность составляет 1.5% от данного показания прибора, а не от конечного значения шкалы хк.

Приборы класса точности до 0,5 включительно применяются для точных измерений и называются прецизионными.

Для цифровых измерительных приборов относительная погрешность д

определяется по формуле

д = [c + d(|хкп| - 1)],

где с и d - постоянные числа, %;

хк - конечное значение величины в данном поддиапазоне;

хп - показание прибора.

Значения с и d указываются в паспорте прибора для каждого поддиапазона. Так, например, если с = 0.02, d = 0.01, хк= 1.000 В, хп= 0.500 В, то д= [0.02 + 0.01 (|1.000/0.500| - 1)] = ± 0.03. д = ± 0.03%.

1.3 Порядок выполнения работы

Дать краткое описание одного стрелочного прибора (многопредельного) в соответствии с обозначениями и символами, указанными на шкале.

Определить цену деления и максимальную абсолютную ошибку для каждого предела измерений, привести три примера отсчета измеряемой величины при различных положениях стрелки.

Определить относительную ошибку цифрового прибора для одного из поддиапазонов при двух значениях измеряемой величины (по указанным значениям с, d и хк).

2. Изучение электростатического поля

Цель работы: экспериментальное исследование электростатического поля методом электростатической ванны и описание его при помощи силовых линий и поверхностей равного потенциала.

Принадлежности: специальная установка, набор сменных электродов

2.1 Теоретические сведения

2.1.1 Закон Кулона. Напряженность электрического поля

Взаимодействие точечных зарядов q1и q2 описывает экспериментальный закон Кулона:

, (2.1)

где - сила, действующая на q1 со стороны q2;

r12 - расстояние между зарядами;

- единичный вектор направленный от q2 к q1;

eо - диэлектрическая постоянная, определяемая из опыта;

e - диэлектрическая проницаемость среды (для вакуума??=1, для диэлектриков?e>1).

Опыт показывает, что при наличии зарядов q1, q2, q3,…, результирующая сила, действующая со стороны поля на заряд q1, равна векторной сумме сил , приложенных к нему со стороны каждого из зарядов qi:

, (2.2)

где ,… определяются по закону Кулона (2.1).

Напряженность электрического поля в данной точке есть векторная величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

, (2.3)

где - сила, действующая на пробный заряд qо, помещенный в рассматриваемую точку пространства. В частности, напряженность поля точечного заряда q определяется в соответствии с законом Кулона (2.1) по формуле:

, (2.4)

где - вектор, проведенный от точечного заряда q в данную точку.

Поле, создаваемое неподвижными относительно выбранной системы отсчета зарядами, называется электростатическим.

Если поле создается точечными зарядами q1, q2,…, то согласно выражению (2.2) имеет место принцип суперпозиции полей:

, (2.5)

где,… - напряженность полей, создаваемых в данной точке каждым из зарядов q1, q2,… в отдельности, а Е - суммарная напряженность результирующего поля.

2.1.2 Работа в электростатическом поле. Потенциал

На заряд qо в электростатическом поле Е действует сила F = qоЕ, и, следовательно, при его перемещении совершается работа. Рассмотрим электростатическое поле, создаваемое точечным зарядом q, и найдем работу, совершаемую (силами поля) при перемещении заряда qо из точки 1 в точку 2 (рис. 2.1). Для определенности возьмем заряды q и qо одного знака. На элементарном участке пути dl совершается работа

Рис. 2.1

и

, (2.6)

где потенциал ц в точке электростатического поля определяется точечным зарядом q и расстоянием r от него до точки:

(2.7)

Таким образом, работа по перемещению заряда qо в поле неподвижного точечного заряда q не зависит от выбора траектории и определяется только его начальным и конечным положением. В частности, работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому контуру L, равна нулю, т.е.

Так как qо ? 0, то

. (2.8)

Величину называют циркуляцией вектора Е по замкнутому контуру L. Согласно формуле (2.8) для электростатического (!) поля точечного заряда характерным является то, что в нем циркуляция Е по любому замкнутому контуру равна нулю (электростатическое поле потенциальное, а электростатические силы консервативные).

Как известно, работа консервативных сил совершается за счет убыли потенциальной энергии. Поэтому работу А12 можно представить как разность потенциальных энергий, которыми обладает заряд qо в начальной и конечной точках поля заряда q:

А12 = W1 - W2. (2.9)

Принято говорить просто об энергии заряда qо в электростатическом поле. Сравнивая выражения (2.9) и (2.6), получаем

ц(r) = W/qо. (2.10)

В силу принципа суперпозиции формулы (2.8) - (2.10) остаются справедливыми и в случае, когда электростатическое поле создается зарядами q1, q2,…. При этом Е = E1+ E2+… и ц =ц1+ ц2+… в каждой точке.

Величину ц называют потенциалом поля в данной точке. Согласно выражению (2.10) потенциал в точке электростатического поля равен потенциальной энергии, которую имел бы единичный положительный заряд, помещенный в эту точку. В частности, потенциал поля точечного заряда определяется формулой (2.7). Из выражения (2.10) получаем единицу потенциала: 1В = 1Дж /1Кл. Для разности потенциалов в точках 1 и 2 имеем:

(2.11)

Таким образом, разность потенциалов в двух точках равна работе, совершаемой полем при перемещении единичного положительного заряда из начальной точки в конечную.

Работа сил поля при перемещении заряда qо из точки 1 в точку 2 может быть записана также в виде

(2.12)

Из формул (2.11) и (2.12) вытекает выражение для разности потенциалов:

, (2.13)

где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки.

2.1.3 Связь между напряженностью Е и? потенциалом j

Рассмотрим произвольное направление (рис. 2.2). Из выражения (2.13)

Рис.2.2

при условии, что точки 1 и 2 рас- j положены бесконечно близко друг к другу, имеем:

j1-j2 = - (j2-j1) = - dj = Еdlcosa = Еldl

или

(2.14)

Отсюда часто используемая единица измерения - В/м.

В частности,

Вектор с проекциями на оси x, y, z соответственно называют градиентом скалярной функции ? (x, y, z) и обозначают grad?.

Таким образом,

(2.15)

Пусть точка О - любая (фиксированная) точка поля, а М - произвольная точка сферы бесконечно малого радиуса с с центром в точке О (рис. 2.3). По определению разности потенциалов,

Рис.2.3

ц(O) - ц(M) ? Е(O)с cosб. (2.16)

Эта разность, очевидно, максимальна при б1= 0, то есть при перемещении из точки О вдоль вектора напряженности Е, и минимальна при б2= р, то есть при перемещении из точки О вдоль вектора - Е = grad ц.

Таким образом, gradц направлен в сторону максимального роста, а вектор напряженности Е

- в сторону максимального убывания потенциала ц (x, y, z).

Для графического изображения полей пользуются силовыми линиями. Силовая линия проводится так, что касательная к ней в каждой точке совпадает с прямой, вдоль которой направлен вектор напряженности Е в этой точке. Этим линиям приписывают направление, совпадающее с направлением вектора напряженности Е.

Плотность силовых линий, то есть число силовых линий, пронизывающих площадку в 1 м2, расположенную перпендикулярно к ним, выбирают равной величине Е. Таким образом, с помощью силовых линий можно графически изобразить и величину, и направление вектора напряженности Е.

Эквипотенциальной называют поверхность, все точки которой имеют одинаковый потенциал ц (x, y, z) = const. Очевидно, в каждой точке такой поверхности вектор Е перпендикулярен к этой поверхности (рис. 2.4), следовательно, силовые линии ортогональны к эквипотенциальным поверхностям.

Эквипотенциальные поверхности обычно строят так, чтобы разности потенциалов между любыми двумя соседними поверхностями были одинаковыми (рис. 2.5). Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности расположены гуще, напряженность поля больше.

Рис. 2.4

Рис. 2.5

Зная расположение эквипотенциальных поверхностей, можно построить силовые линии и найти значения напряженности поля.

2.2 Описание установки и метод измерения

Исследование электростатического поля заключается в нахождении вектора напряженности Е в каждой его точке. Аналитический расчет полей возможен лишь для заряженных тел простой формы (сфера, цилиндр и т.п.).

Рис. 2.6

сложных поверхностях тел (электродов) такой расчет затруднителен, и тогда электростатическое поле исследуют экспериментально. Для этого сначала определяют положение и форму эквипотенциальных поверхностей, а затем (перпендикулярно к ним) проводят силовые линии.

Построение эквипотенциальных поверхностей в полях различной конфигурации производится в данной работе с помощью установки для исследования межэлектродных статистических полей типа ФН9, схематически изображенной на рис. 2.6 (упрощенная схема).

В прямоугольную электролитическую ванну А, заполненную раствором слабого электролита, помещаются металлические электроды Э1 и Э2, поле которых изучается. На зажимы электродов подается переменное напряжение от силового трансформатора Тр.

Между электродами возникает упорядоченное движение зарядов (ионов). При этом плотность тока, согласно закону Ома в дифференциальной форме, в каждой точке электролита пропорциональна вектору напряженности Е в данной точке:

(2.17)

где с - удельное сопротивление электролита.

Таким образом, картина линий тока в электролите будет аналогична картине силовых линий Е.

Указанный метод исследования поля называется моделированием. На практике вместо постоянного тока используется переменный ток небольшой частоты, чтобы исключить искажения поля за счет поляризации среды, возникающей в результате электролиза раствора солей.

В измерительную схему входят зонд Z, делитель напряжения R, нулевой гальванометр G с добавочным сопротивлением R9 и тумблером K2.

Зонд Z представляет собой тонкий металлический стержень, хорошо изолированный по всей длине, кроме конца. Измерительная схема работает по следующему принципу: перемещением движка Д на делителе напряжения можно придавать различные значения потенциала (в пределах полной разности потенциалов) этому движку относительно электродов, погруженный в ванну. В какой-нибудь точке поля устанавливается зонд Z. Если зонд находится в такой точке поля, потенциал которой равен потенциалу движка делителя, то не будет тока в цепях зонда и, следовательно, гальванометра. Геометрическое место точек поля, для которых стрелка гальванометра займет нулевое положение при данном положении движка делителя, будет соответствовать одной из эквипотенциальных поверхностей исследуемого поля. Из-за малой глубины ванны в опыте получается не поверхность, а её горизонтальное сечение - линия.

Перемещая движок на делителе напряжения, придают движку различные значения потенциала и для каждого такого значения находят соответствующую эквипотенциальную линию (перемещая зонд в ванне). Фиксирование положения и формы эквипотенциальных линий электростатического поля, получаемых с помощью зонда, производится графически с применением пантографа (рис. 2.7).

Рис. 2.7

К концу направляющей линейки 1 пантографа прикрепляется зонд Z, перемещающийся вместе с линейками в горизонтальной плоскости над ванной. Нижний конец зонда помещен в i электролит, а верхний через первичную обмотку трансформатора гальванометра соединен с движком двигателя напряжения R (см. рис. 2.6). Зондом можно обсле-

Для фиксирования эквипотенциальных линий на листе бумаги, закрепленном на подставке, служит правая часть пантографа. К концу направляющей линейки 2 прикреплен карандаш К. Карандаш может перемещаться вместе с линейкой над листом бумаги, не касаясь её. Прикосновение карандаша к бумаге осуществляется при нажиме на него. Система направляющих линеек устроена так, что любому горизонтальному перемещению зонда в ванне автоматически соответствует перемещению карандаша над листом бумаги.

Найденные с помощью зонда точки, принадлежащие исследуемой эквипотенциальной линии, фиксируются с помощью карандаша на листе бумаги и соединяются плавной кривой.

2.3 Порядок выполнение работы

Установить в ванне и закрепить зажимами систему из двух электродов, образующих плоский конденсат.

Вложить лист бумаги в крепление подставки пантографа.

Обвести зондом контуры поверхностей электродов и получить на листе бумаги соответствующие им эквипотенциальные линии.

Тумблер К2 установить в положение «грубо».

Включить питание установки, замыкая ключ К1, и зафиксировать положение движка Д.

Поместить зонд вблизи одного из электродов.

Перемещением движка делителя добиться нулевого положения стрелки гальванометра, только после этого перевести тумблер К2 в положение «точно» (гальванометр при этом приобретает большую чувствительность за счет отключения добавочного сопротивления). Точнее найти положение движка делителя, соответствующее нулевому току гальванометра.

Переместить зонд так, чтобы стрелка гальванометра по-прежнему показывала нуль, На листе бумаги зафиксировать не менее 10 точек, принадлежащих исследуемой эквипотенциальной линии.

Соединить плавной кривой найденные точки и получить эквипотенциальную линию.

Построить четыре эквипотенциальных линии, пользуясь указаниями пунктов 7…9 и помещая зонд на другие точки поля так, чтобы разности потенциалов между двумя соседними линиями были одинаковыми (ц2 - ц1= ц3 - ц2= ц4 - ц3).

Установить в ванне новые системы электродов и повторить операции, указанные в пунктах 2…10.

Каждое поле построить на отдельном листе, изображая как эквипотенциальные линии, так и построенные ортогонально им силовые линии.

На оси симметрии системы электродов (в области поля, где Еx ? 0, Еy=0, Еz=0) определить поведение напряженности. Для этого оценить величину напряженности Еx= ?ц/?x (В/мм) электрического поля, определив ?ц - разность потенциалов между соседними эквипотенциальными линиями, ?x - расстояние между этими линиями вдоль оси симметрии.

Оценить точность выполнения измерений.

3. Определение ёмкости конденсатора с помощью баллистического гальванометра

Цель работы: ознакомление с одним из методов измерения емкости конденсатора; экспериментальная проверка формул для определения емкости системы двух конденсаторов, соединенных параллельно и последовательно.

Приборы и принадлежности: баллистический гальванометр, осветитель со шкалой, вольтметр, источник постоянного тока, потенциометр, соединительные провода.

3.1 Теоретические сведения

Заряд q уединенного проводника и его потенциал?? пропорциональны друг другу:

q = Сц. (3.1)

Коэффициент С называют емкостью проводника. Единицей измерения емкости в СИ является Фарад: 1 Ф = 1 Кл/1 В.

При наличии вблизи рассматриваемого проводника А другого про - водника В емкость первого возрастает, так как на В под действием поля проводника А происходит перераспределение зарядов: заряды противоположного знака располагаются ближе к А и в целом происходит уменьшение модуля ца. Этот факт используется в специальных устройствах-конденсаторах. Конденсаторы делают в виде двух проводников, расположенных близко друг к другу и называемых обкладками. Обкладкам придают такую форму, чтобы поле, создаваемое находящимися на них зарядами, было сосредоточено внутри конденсатора, при этом внешние тела не влияют на его емкость. Такому условию удовлетворяют две параллельные пластины, два коаксиальных цилиндра, две концентрические сферы. Соответственно бывают плоские, сферические и цилиндрические конденсаторы.

Рассмотрим плоский конденсатор. Пусть q1 и q2 - заряды пластин: q1= - q2; S - площадь каждой пластины; d - расстояние между пластинами. Напряженность поля между обкладками

(3.2)

где ео - электрическая постоянная;

е - диэлектрическая проницаемость среды, заполняющей пространство между пластинами;

у = q/S - поверхностная плотность зарядов на пластинах.

Разность потенциалов между обкладками (с учетом знаков)

, (3.3)

где d - расстояние между пластинами.

Таким образом, электрическая емкость плоского конденсатора

(3.4)

Формула (3.4) емкости плоского конденсатора справедлива только при малых значениях расстояния d между пластинами, когда можно пренебречь нарушениями однородности электростатического поля у краев пластин.

Энергию конденсатора определим следующим образом. Для простоты рассмотрим плоский конденсатор, считая е =1. На каждую пластину действует сила F = q•Е = q (у / 2ео), где q - заряд одной пластины, Е - поле, созданное другой пластиной. При изменении расстояния от 0 до d над конденсатором совершается работа

Таким образом, заряженный конденсатор обладает энергией:

, (3.5)

, (3.6)

где V = Sd - объем, ограниченный конденсатором.

С другой стороны, результатом изменения расстояния между пластинками являются то, что теперь в объеме V = Sd имеется электрическое поле Е. Разумно, поэтому поставить вопрос: где локализована энергия конденсатора - на его пластинах или в пространстве между пластинами (т.е. там, где Е ? 0)? Оставаясь в рамках электростатики, ответить на этот вопрос невозможно. Однако исследования переменных полей убедительно показывают, что с электрическим полем действительно связана энергия. При этом в расчете на единицу объема она составит в соответствии с формулой (3.6) величину

(3.7)

На рис. 3.1 и 3.2 показано параллельное и последовательное соединения конденсаторов, соответственно.

При параллельном соединении напряжение на конденсаторе одинаково: U1 = U2 = U = ц1 - ц2. Общий заряд q = q1 + q2 = C1U + C2U = = (C1 + C2) U = CU. Таким образом, при параллельном соединении общая емкость системы

Рис. 3.1 Рис. 3.2

С = C1 + C2. (3.8)

При последовательном соединении конденсаторы имеют одинаковый заряд q = q1 = q2. В этом случае очевидно , откуда

и

(3.9)

В данной лабораторной работе в основу измерения емкости конденсатора положено соотношение

(3.10)

Для измерения q применяется баллистический гальванометр, схематически показанный на рис. 3.3.

Для увеличения периода колебаний рамки специально увеличивают ее момент инерции J относительно нити подвеса Б. Время прохождения тока равно в данном случае времени разряда конденсатора через измерительную катушку. Оно сравнимо с величиной ф = RC, где R - сопротивление катушки, С - емкость. Обычно ф не превышает сотых долей секунды. Например, при R = 1000 Ом и С = 1 мкФ величина ф = RС = 10-3 с.

Рис. 3.3

Между полюсами постоянного магнита на бронзовой ленточке Б подвешена рамка К, на которую плотно уложены витки измерительной катушки из тонкой проволоки. Бронзовая лента Б одновременно служит токопроводником. Вторым токопроводом является пружина П, свитая из бронзовой ленточки. На нити Б укреплено зеркало М. При прохождении тока через катушку возникает момент сил Ампера, поворачивающий рамку в магнитном поле.

Уравнение движения рамки запишется следующим образом:

(3.11)

где d2б/dt2 - угловое ускорение, б - угол поворота рамки, n - число витков, В-индукция магнитного поля в воздушном промежутке между полюсами магнита, S - площадь витка, I - сила протекающего по витку тока. Благодаря большому моменту инерции рамка за время разряда конденсатора t практически не успевает выйти из положения равновесия. Поэтому из уравнения движения рамки (3.11) выведем

(3.12)

где dб /dt - угловая скорость; k = nBS - коэффициент, зависящий от конструктивных особенностей прибора; Q - заряд, прошедший через рамку. Приобретенная рамкой в момент прохождения тока кинетическая энергия расходуется на работу упругих сил

(3.13)

где b - постоянная прибора, бмакс - предельный угол отклонения стрелки гальванометра (угол первого отклонения).

Решая совместно уравнения (3.12) и (3.13), получаем

Q = B б макс, (3.14)

где - коэффициент пропорциональности - баллистическая постоянная гальванометра.

При этом угол первого отклонения рамки из положения равновесия прямо пропорционален заряду, прошедшему через катушку.

На зеркало З от осветителя падает луч света. Световой зайчик, отражаясь от зеркала, попадает на горизонтальную шкалу.

Рис.3.4

При небольших б смещение зайчика по шкале и заряд также пропорциональны (рис. 3.4) друг другу

Q = В• n, (3.15)

где n - смещение зайчика в делениях шкалы; В-баллистическая постоянная гальванометра, численно равная заряду, отклоняющему зайчик на 1 деление шкалы.

Взяв известную емкость Сo и определив no при

заданном напряжении Uо, найдем В:

(3.16)

Неизвестную емкость Сx теперь можно определить, задавая U и определяя n:

(3.17)

В частности, при U = Uо, Сx= (n/nо) Со.

3.2 Порядок выполнения работы

Рис. 3.5

Собрать схему, показанную на рис. 3.5. Если же установка не требует допол-нительного монтажа, разобраться в схеме и найти на установке все элементы схемы.

2) Определить баллистическую постоянную гальванометра В. Для этого известную емкость Со зарядить до определенного напряжения Uо (произвольно изменяя значения Uo с помощью потенциометра R), затем отключить её от источника и подключить к концам измерительной

Пункт 2 повторить для 4 значений напряжения Uo. и последовательном включениях СХ1 и СХ2. Определить общую емкость в обоих случаях и сравнить их значения со значениями, полученными по формулам (3.8) и (3.9). Образец таблицы для записи результатов измерений находится на рабочем месте.

Оценить погрешности измерений.

Литература

Савельев И.В. Курс общей физики: Для втузов. М.: Наука, 1973. Т.2: Электричество. 432 с.

Савельев И.В. Курс общей физики: Для втузов. М.: Наука, 1978. Т.2: Электричество и магнетизм. Волны. Оптика. 480 с.

Савельев И.В. Курс общей физики: Для втузов. М.: Наука, 1979. Т.3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. 304 с.

Зисман Т.А., Тодес О.М. Курс общей физики. Т.2. М.: Наука, 1972. 366 с.

Детлаф А.А., Яворский Е.М., Милковская Л.Б. Курс физики: Учебное пособие для втузов. Изд. 4-е, перераб. М.: Высшая школа, 1977. Т.2: Электричество и магнетизм. 375 с.

Трофимова Т.Н, Курс физики: Учебное пособие для вузов. 4-е изд., испр. М.: Высшая школа, 1997. 542 с.

Лабораторные занятия по физике: Учебное пособие / Гольдин Л.Л., Игошин Ф.Ф., Козел С.М. и др.; Под ред. Гольдина Л.Л. М.: Наука. Главная редакция физико-математической литературы, 1983. 704 с.

Размещено на Allbest.ru


Подобные документы

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

  • Исследование электрических полей нестандартных многоцепных высоковольтных линий электропередач. Инструкция по ликвидации аварийных режимов работы на подстанции 110/35/10 кВ. Программа расчета электрических полей трехфазной линии на языке Turbo Pascal.

    дипломная работа [1,6 M], добавлен 29.04.2010

  • Закономерности влияния внешних электрических полей на макроскопические характеристики горения органических топлив. Схемы наложения внешнего электрического поля на пламя. Воздействие организованных внешних полей на процесс горения углеводородных топлив.

    курсовая работа [42,6 K], добавлен 14.03.2008

  • Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.

    курсовая работа [840,5 K], добавлен 12.02.2014

  • Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

    реферат [56,7 K], добавлен 15.02.2008

  • Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.

    шпаргалка [619,6 K], добавлен 04.05.2015

  • Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

    контрольная работа [27,3 K], добавлен 20.12.2012

  • Основы электростатики проводников: макроскопические электродинамические формы электромагнитных полей. Анализ электростатического поля проводников: энергия; проводящий эллипсоид; силы, действующие на проводник в поле; составление средних выравниваний.

    курсовая работа [398,8 K], добавлен 06.05.2011

  • Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.

    реферат [61,6 K], добавлен 08.04.2011

  • Понятие диэлектрических потерь. Нагревание диэлектриков в электрическом поле, рассеивание части энергии поля в виде тепла как его следствие. Ухудшение свойств и ускорение процессов старения диэлектриков. Количественная оценка диэлектрических потерь.

    презентация [794,0 K], добавлен 28.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.