Парадоксы специальной теории относительности
Постулаты и парадоксы специальной теории относительности (СТО), сформулированные Эйнштейном в 1905 году. Теория Максвелла, ее значение. Эйнштейновское определение процедуры синхронизации часов. Относительность промежутков времени и расстояний.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.07.2011 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
45
Курсовая работа
Парадоксы специальной теории относительности
Содержание
Введение
1. Постулаты специальной теории относительности (СТО)
2. Относительность промежутков времени
3. Относительность расстояний
4. Преобразования Лоренца
5. Парадоксы СТО
5.1 Парадокс эйнштейновского поезда
5.2 Парадокс часов
5.3 Парадокс транспорта
5.4 Парадокс колеса
5.5 Парадокс шеста и сарая
5.6 Тонкий человек на решетке
Заключение
Литература
Введение
Парадоксы, т. е. неожиданные следствия или выводы теории, противоречащие сложившимся ранее представлениям, играют особую роль в процессе развития науки. При разрешении того или иного теоретического парадокса приходится обращаться к наиболее принципиальным положениям теории и иногда пересматривать или уточнять связанные с ней представления. Таким образом, теоретические парадоксы в процессе их разрешения представляют некоторую внутреннюю причину развития теории, способствующую ее логическому совершенствованию, а иногда даже выяснению границ применимости и путей дальнейшего обобщения.
Конечно, основным для развития всякой теории являются факты, получаемые из экспериментов и наблюдений. Однако одни только факты не могут сами по себе подтвердить, уточнить или изменить теорию, если они не приводят к подтверждению и уточнению или пересмотру логической структуры теории. Поэтому для развития теории имеет большое значение раскрытие внутренних противоречий и их разрешение. Противоречия же в теории отчетливее всего обнаруживаются, когда они возникают в форме тех или иных парадоксов. Таким образом, анализ теоретических парадоксов не является самоцелью, а представляет лишь средство для выяснения истинного содержания теории, уточнения отдельных ее положений и отыскания путей ее дальнейшего развития. Многие противоречия возникают в теории относительности из-за стандартного способа ее изложения по тому классическому образцу, который был дан еще Эйнштейном. Со времени первой работы Эйнштейна теория относительности пополнилась большим количеством новых представлений. В результате многочисленных приложений выяснилось главное содержание теории. Выяснилось, что некоторые представления, считавшиеся основными в период зарождения теории, оказались в действительности лишь вспомогательными средствами, использованными для построения теории. Оказалось, также, что теория может быть построена на базе различных постулатов. Выяснилось, иначе говоря, что постулаты Эйнштейна не могут отождествляться с самим содержанием теории относительности.
Глубокий анализ содержания теории относительности важен именно сейчас, когда намечается новый этап крутой ломки теоретических представлений в связи с проникновением внутрь самих элементарных частиц и открытием принципиально новых физических процессов в космосе, протекающих в радиогалактиках и сверхзвездах или квазарах.
Мы увидим, что анализ вопроса о предельности скорости сигналов в теории относительности приведет нас к пересмотру содержания, так называемого принципа причинности и к общему выводу о принципиальной возможности существования частиц, имеющих отрицательные и даже мнимые собственные массы. Но если такие частицы действительно существуют в природе, то их открытие приведет к радикальной перестройке всей существующей физической картины мира. А это в свою очередь приведет к новым открытиям, умножающим власть человека над природой.
1. Постулаты специальной теории относительности (СТО)
Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (х << c). В нерелятивистской физике принималось как очевидный факт существование единого мирового времени t, одинакового во всех системах отсчета. В основе классической механики лежит механический принцип относительности (или принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K'). В частном случае, когда система K' движется со скоростью х вдоль положительного направления оси x системы K (рис. 1.1), преобразования Галилея имеют вид:
x=x'+хt, y=y', z=z', t=t'.
Предполагается, что в начальный момент оси координат обеих систем совпадают.
Рисунок 1.1 Две инерциальные системы отсчета K и K'
Из преобразований Галилея следует классический закон преобразования скоростей при переходе от одной системы отсчета к другой:
ux=u'x+х, uy=u'y, uz=u'z.
Ускорения тела во всех инерциальных системах оказываются одинаковыми:
Следовательно, уравнение движения классической механики (второй закон Ньютона) не меняет своего вида при переходе от одной инерциальной системы к другой.
К концу XIX века начали накапливаться опытные факты, которые вступали в противоречие с законами классической механики. Большие затруднения возникли при попытках применить механику Ньютона к объяснению распространения света. Предположение о том, что свет распространяется в особой среде - эфире, было опровергнуто многочисленными экспериментами. Американский физик А. Майкельсон сначала самостоятельно в 1881 году, а затем совместно с Э. Морли (тоже американец) в 1887 году пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью интерференционного опыта. Упрощенная схема опыта Майкельсона-Морли представлена на рис. 1.2.
Рисунок 1.2 Упрощенная схема интерференционного опыта Майкельсона-Морли. - орбитальная скорость Земли
В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли (х=30 км/с). Затем прибор поворачивался на 90°, и второе плечо оказывалось ориентированным по направлению орбитальной скорости. Расчеты показывали, что если бы неподвижный эфир существовал, то при повороте прибора интерференционные полосы должны были сместиться на расстояние, пропорциональное (х/c)2. Опыт Майкельсона-Морли, неоднократно повторенный впоследствии с все более возрастающей точностью, дал отрицательный результат. Анализ результатов опыта Майкельсона-Морли и ряда других экспериментов позволил сделать вывод о том, что представления об эфире как среде, в которой распространяются световые волны, ошибочно. Следовательно, для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не влияет на оптические явления на Земле.
Исключительную роль в развитии представлений о пространстве и времени сыграла теория Максвелла. К началу XX века эта теория стала общепризнанной. Предсказанные теорией Максвелла электромагнитные волны, распространяющиеся с конечной скоростью, уже нашли практическое применение - в 1895 году А. С. Поповым было изобретено радио. Но из теории Максвелла следует, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета имеет одно и то же значение, равное скорости света в вакууме. Это значит, что уравнения, описывающие распространение электромагнитных волн, не инвариантны относительно преобразований Галилея. Если электромагнитная волна (в частности, свет) распространяется в системе отсчета K' (рис. 1.1) в положительном направлении оси x', то в системе K свет должен, согласно галилеевской кинематике распространяться со скоростью c+х, а не c.
Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. Выход был найден Эйнштейном ценой отказа от классических представлений о пространстве и времени. Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными. Многие понятия и величины, которые в нерелятивистской физике считались абсолютными, т. е. не зависящими от системы отсчета, в эйнштейновской теории относительности переведены в разряд относительных.
Так как все физические явления происходят в пространстве и во времени, новая концепция пространственно-временных закономерностей не могла не затронуть в итоге всю физику.
В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г.
Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.
Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.
Эти принципы следует рассматривать как обобщение всей совокупности опытных фактов. Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.
Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени t=0, когда координатные оси двух инерциальных систем K и K' совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние хt, а сферический волновой фронт в каждой системе будет иметь радиус ct (рис.1. 3), так как системы равноправны и в каждой из них скорость света равна c.
Рисунок 1.3 Кажущееся противоречие постулатов СТО
С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K' он будет находиться в точке O'. Следовательно, центр сферического фронта одновременно находится в двух разных точках.
Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: t=t'. Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую - так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивистские эффекты, а при малых скоростях (х << c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия [2].
2. Относительность промежутков времени
При выполнении любых физических измерений исключительную роль играют пространственно-временные соотношения между событиями. В СТО событие определяется как физическое явление, происходящее в какой-либо точке пространства в некоторый момент времени в избранной системе отсчета. Таким образом, чтобы полностью охарактеризовать событие, требуется не только выяснить его физическое содержание, но и определить его место и время. Для этого необходимо использовать процедуры измерения расстояний и промежутков времени. Эйнштейн показал, что эти процедуры нуждаются в строгом определении.
Для того чтобы в выбранной системе отсчета выполнять измерения промежутка времени между двумя событиями (например, началом и концом какого-либо процесса), происходящими в одной и той же точке пространства, достаточно иметь эталонные часы. Наибольшей точностью в настоящее время обладают часы, основанные на использовании собственных колебаний молекул аммиака (молекулярные часы) или атомов цезия (атомные часы). Измерение промежутка времени опирается на понятие одновременности: длительность какого-либо процесса определяется путем сравнения с промежутком времени, отделяющим показание часов, одновременное с концом процесса, от показания тех же часов, одновременного с началом процесса. Если же оба события происходят в разных точках системы отсчета, то для измерения промежутков времени между ними в этих точках необходимо иметь синхронизованные часы.
Эйнштейновское определение процедуры синхронизации часов основано на независимости скорости света в пустоте от направления распространения. Пусть из точки A в момент времени по часам A отправляется короткий световой импульс (рис. 2.1). Пусть время прихода импульса в B и отражения его назад на часах B есть t'. Наконец, пусть отраженный сигнал возвращается в A в момент по часам A. Тогда по определению часы в A и B идут синхронно, если t'=()/2.
Рисунок 2.1 Синхронизация часов в СТО
Существование единого мирового времени, не зависящего от системы отсчета, которое принималось как очевидный факт в классической физике, эквивалентно неявному допущению о возможности синхронизации часов с помощью сигнала, распространяющегося с бесконечно большой скоростью.
Итак, в разных точках выбранной системы отсчета можно расположить синхронизованные часы. Теперь можно дать определение понятия одновременности событий, происходящих в пространственно-разобщенных точках: эти события одновременны, если синхронизованные часы показывают одинаковое время.
Рассмотрим теперь вторую инерциальную систему K', которая движется с некоторой скоростью х в положительном направлении оси x системы K. В разных точках этой новой системы отсчета также можно расположить часы и синхронизировать их между собой, используя описанную выше процедуру. Теперь интервал времени между двумя событиями можно измерять как по часам в системе K, так и по часам в системе K'. Будут ли эти интервалы одинаковы? Ответ на этот вопрос должен находиться в согласии с постулатами СТО.
Пусть оба события в системе K' происходят в одной и той же точке и промежуток времени между ними равен по часам системы K'. Этот промежуток времени называется собственным временем. Каким будет промежуток времени между этими же событиями, если его измерить по часам системы K?
Для ответа на этот вопрос рассмотрим следующий мысленный эксперимент. На одном конце твердого стержня некоторой длины расположена импульсная лампа B, а на другом конце - отражающее зеркало M. Стержень расположен, неподвижно в системе K' и ориентирован параллельно оси y' (рис. 2.2). Событие 1 - вспышка лампы, событие 2 - возвращение короткого светового импульса к лампе.
Рисунок 2.2.
Относительность промежутков времени. Моменты наступлений событий в системе K' фиксируются по одним и тем же часам C, а в системе K - по двум синхронизованным пространственно-разнесенным часам и . Система K' движется со скоростью х в положительном направлении оси x системы K
В системе K' оба рассматриваемых события происходят в одной и той же точке. Промежуток времени между ними (собственное время) равен . С точки зрения наблюдателя, находящегося в системе K, световой импульс движется между зеркалами зигзагообразно и проходит путь 2L, равный
где ф - промежуток времени между отправлением светового импульса и его возвращением, измеренный по синхронизованным часам и , расположенными в разных точках системы K. Но согласно второму постулату СТО, световой импульс двигался в системе K с той же скоростью c, что и в системе K'. Следовательно, ф=2L/c.
Из этих соотношений можно найти связь между ф и :
где в=х/c.
Таким образом, промежуток времени между двумя событиями зависит от системы отсчета, т. е. является относительным. Собственное время всегда меньше, чем промежуток времени между этими же событиями, измеренный в любой другой системе отсчета. Этот эффект называют релятивистским замедлением времени. Замедление времени является следствием инвариантности скорости света.
Эффект замедления времени является взаимным, в согласии с постулатом о равноправии инерциальных систем K и K': для любого наблюдателя в K или K' медленнее идут часы, связанные с системой, движущейся по отношению к наблюдателю. Этот вывод СТО находит непосредственное опытное подтверждение. Например, при исследовании космических лучей в их составе обнаружены м-мезоны - элементарные частицы с массой, примерно в 200 раз превышающей массу электрона. Эти частицы нестабильны, их среднее собственное время жизни равно . Но в космических лучах м-мезоны движутся со скоростью, близкой к скорости света. Без учета релятивистского эффекта замедления времени они в среднем пролетали бы в атмосфере путь, равный c ?660 м. На самом деле, как показывает опыт, мезоны за время жизни успевают пролетать без распада гораздо большие расстояния. Согласно СТО, среднее время жизни мезонов по часам земного наблюдателя равно
>>
Так как близко к единице. Поэтому средний путь проходимый мезоном системе, оказывается значительно больше 660 м.
С релятивистским эффектом замедления времени связан так называемый «парадокс близнецов». Предполагается, что один из близнецов остается на Земле, а второй отправляется в длительное космическое путешествие с субсветовой скоростью. С точки зрения земного наблюдателя, время в космическом корабле течет медленнее, и когда астронавт возвратится на Землю, он окажется гораздо моложе своего брата-близнеца, оставшегося на Земле. Парадокс заключается в том, что подобное заключение может сделать и второй из близнецов, отправляющийся в космическое путешествие. Для него медленнее течет время на Земле, и он может ожидать, что по возвращению после длительного путешествия на Землю он обнаружит, что его брат-близнец, оставшийся на Земле, гораздо моложе его.
Чтобы разрешить «парадокс близнецов», следует принять во внимание неравноправие систем отсчета, в которых находятся оба брата-близнеца. Первый из них, оставшийся на Земле, все время находится в инерциальной системе отсчета, тогда как система отсчета, связанная с космическим кораблем, принципиально неинерциальная. Космический корабль испытывает ускорения при разгоне во время старта, при изменении направления движения в дальней точке траектории и при торможении перед посадкой на Землю. Поэтому заключение брата-астронавта неверно. СТО предсказывает, что при возвращении на Землю он действительно окажется моложе своего брата, оставшегося на Земле.
Эффекты замедления времени пренебрежимо малы, если скорость космического корабля гораздо меньше скорости света c. Тем не менее, удалось получить прямое подтверждение этого эффекта в экспериментах с макроскопическими часами. Наиболее точные часы - атомные работающие на пучке атомов цезия. Эти часы «тикают» 9192631770 раз в секунду. Американские физики в 1971 году провели сравнение двух таких часов, причем одни из них находились в полете вокруг Земли на обычном реактивном лайнере, а другие оставались на Земле в военно-морской обсерватории США. В соответствии с предсказаниями СТО, путешествующие на лайнерах часы должны были отстать от находящихся на Земле часов на (184±23)·10-9 с. Наблюдаемое отставание составило (203±10)·10-9 с, т. е. в пределах ошибок измерений. Через несколько лет эксперимент был повторен и дал результат, согласующийся со СТО с точностью 1 %.
В настоящее время уже необходимо принимать во внимание релятивистский эффект замедления хода часов при транспортировке атомных часов на большие расстояния.
3. Относительность расстояний
Пусть твердый стержень покоится в системе отсчета K', движущейся со скоростью х относительно системы отсчета K (рис. 3.1). Стержень ориентирован параллельно оси x'. Его длина, измеренная с помощью эталонной линейки в системе K', равна . Ее называют собственной длиной. Какой будет длина этого стержня, измеренная наблюдателем в системе K? Для ответа на этот вопрос необходимо дать определение процедуры измерения длины движущегося стержня.
Под длиной стержня в системе K, относительно которой стержень движется, понимают расстояние между координатами концов стержня, зафиксированными одновременно по часам этой системы. Если известна скорость системы K' относительно K, то измерение длины движущегося стержня можно свести к измерению времени: длина движущегося со скоростью х стержня равна произведению , где - интервал времени по часам в системе K между прохождением начала стержня и его конца мимо какой-нибудь неподвижной точки (например, точки A) в системе K (рис. 3.1). Поскольку в системе K оба события (прохождение начала и конца стержня мимо фиксированной точки A) происходят в одной точке, то промежуток времени в системе K является собственным временем. Итак, длина движущегося стержня равна
Рисунок 3.1 Измерение длины движущегося стержня
Найдем теперь связь между и . С точки зрения наблюдателя в системе K', точка A, принадлежащая системе K, движется вдоль неподвижного стержня налево со скоростью х, поэтому можно записать =хф,
где ф есть промежуток времени между моментами прохождения точки A мимо концов стержня, измеренный по синхронизованным часам в K'. Используя связь между промежутками времени ф и
,
найдем
Таким образом, длина стержня зависит от системы отсчета, в которой она измеряется, т. е. является относительной величиной. Длина стержня оказывается наибольшей в той системе отсчета, в которой стержень покоится. Движущиеся относительно наблюдателя тела сокращаются в направлении своего движения. Этот релятивистский эффект носит название лоренцево сокращения длины.
Расстояние не является абсолютной величиной, оно зависит от скорости движения тела относительно данной системы отсчета. Сокращение длины не связанно с какими-либо процессами, происходящими в самих телах. Лоренцево сокращение характеризует изменение размера движущегося тела в направлении его движения. Если стержень на рис. 3.1 расположить перпендикулярно оси x, вдоль которой движется система K', то длина стержня оказывается одинаковой для наблюдателей в обеих системах K и K'. Это утверждение находится в соответствии с постулатом о равноправии всех инерциальных систем. Для доказательства можно рассмотреть следующий мысленный эксперимент. Расположим в системах K и K' вдоль осей y и y' два жестких стержня. Стержни имеют одинаковые собственные длины , измеренные неподвижными по отношению к каждому из стержней наблюдателями в K и K', и один из концов каждого стержня совпадает с началом координат O или O'. В некоторый момент стержни оказываются рядом, и представляется возможность сравнить их непосредственно: конец каждого стержня может сделать метку на другом стержне. Если бы эти метки не совпали с концами стержней, то один из них оказался бы длиннее другого с точки зрения обеих систем отсчета. Это противоречило бы принципу относительности.
Следует обратить внимание, что при малых скоростях движения (х << c) формулы СТО переходят в классические соотношения: и . Таким образом, классические представления, лежащие в основе механики Ньютона и сформировавшиеся на основе многовекового опыта наблюдения над медленными движениями, в специальной теории относительности соответствуют предельному переходу при в=х/c>0. В этом проявляется принцип соответствия.
4. Преобразования Лоренца
Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x', y', z') и моментом времени t' этого же события, наблюдаемого в системе отсчета K'.
Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью х вдоль оси x, преобразования Лоренца имеют вид:
Из преобразований Лоренца вытекает целый ряд следствий. В частности, из них следует релятивистский эффект замедления времени и лоренцево сокращение длины. Пусть, например, в некоторой точке x' системы K' происходит процесс длительностью (собственное время), где и - показания часов в системе K' в начале и конце процесса. Длительность ф этого процесса в системе K будет равна
Аналогичным образом, можно показать, что из преобразований Лоренца вытекает релятивистское сокращение длины. Одним из важнейших следствий из преобразований Лоренца является вывод об относительности одновременности. Пусть, например, в двух разных точках системы отсчета K' () одновременно с точки зрения наблюдателя в K' () происходят два события. Согласно преобразованиям Лоренца, наблюдатель в системе K будет иметь
Следовательно, в системе K эти события, оставаясь пространственно разобщенными, оказываются неодновременными. Более того, знак разности определяется знаком выражения , поэтому в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Этот вывод СТО не относится к событиям, связанным причинно-следственными связями, когда одно из событий является физическим следствием другого. Можно показать, что в СТО не нарушается принцип причинности, и порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.
Относительность одновременности пространственно-разобщенных событий можно проиллюстрировать на следующем примере.
Пусть в системе отсчета K' вдоль оси x' неподвижно расположен длинный жесткий стержень. В центре стержня находится импульсная лампа B, а на его концах установлены двое синхронизованных часов (рис. 4.1(a)), система K' движется вдоль оси x системы K со скоростью х. В некоторый момент времени лампа посылает короткие световые импульсы в направлении концов стержня. В силу равноправия обоих направлений свет в системе K' дойдет до концов стержня одновременно, и часы, закрепленные на концах стержня, покажут одно и то же время t'. Относительно системы K концы стержня движутся со скоростью х так, что один конец движется навстречу световому импульсу, а другой конец свету приходится догонять. Так как скорости распространения световых импульсов в обоих направлениях одинаковы и равны c, то, с точки зрения наблюдателя в системе K, свет раньше дойдет до левого конца стержня, чем до правого (рис. 4.1(b)).
Рисунок 4.1.
Относительность одновременности. Световой импульс достигает концов твердого стержня одновременно в системе отсчета K' (a) и не одновременно в системе отсчета K (b)
Преобразования Лоренца выражают относительный характер промежутков времени и расстояний. Однако в СТО наряду с утверждением относительного характера пространства и времени важную роль играет установление инвариантных физических величин, которые не изменяются при переходе от одной системы отсчета к другой. Одной из таких величин является скорость света в вакууме c, которая в СТО приобретает абсолютный характер. Другой важной инвариантной величиной, отражающей абсолютный характер пространственно-временных связей, является интервал между событиями.
Пространственно-временной интервал определяется в СТО следующим соотношением:
где - промежуток времени между событиями в некоторой системе отсчета, а - расстояние между точками, в которых происходят рассматриваемые события, в той же системе отсчета. В частном случае, когда одно из событий происходит в начале координат системы отсчета в момент времени , а второе - в точке с координатами x, y, z в момент времени t, пространственно-временной интервал между этими событиями записывается в виде
С помощью преобразований Лоренца можно доказать, что пространственно-временной интервал между двумя событиями не изменяется при переходе из одной инерциальной системы в другую. Инвариантность интервала означает, что, несмотря на относительность расстояний, и промежутков времени, протекание физических процессов носит объективный характер и не зависит от системы отсчета.
Если одно из событий представляет собой вспышку света в начале координат системы отсчета при t=0, а второе - приход светового фронта в точку с координатами x, y, z в момент времени t (рис. 1.3), то
и, следовательно, интервал для этой пары событий s=0. В другой системе отсчета координаты и время второго события будут другими, но и в этой системе пространственно-временной интервал s' окажется равным нулю, так как
Для любых двух событий, связанных между собой световым сигналом, интервал равен нулю.
Из преобразований Лоренца для координат и времени можно получить релятивистский закон сложения скоростей. Пусть, например, в системе отсчета K' вдоль оси x' движется частица со скоростью
Составляющие скорости частицы u'x и u'z равны нулю. Скорость этой частицы в системе K будет равна
С помощью операции дифференцирования из формул преобразований Лоренца можно найти:
Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K'.
При х << c релятивистские формулы переходят в формулы классической механики: ux=u'x+х, uy=0, uz=0.
Если в системе K' вдоль оси x' со скоростью u'x=c распространяется световой импульс, то для скорости ux импульса в системе K получим
Таким образом, в системе отсчета K световой импульс также распространяется вдоль оси x со скоростью c, что согласуется с постулатом об инвариантности скорости света [1].
5. Парадоксы СТО
5.1 Парадокс эйнштейновского поезда
Пусть на поезде, движущемся со скоростью , близкой к единице, едут три человека (А, О и В). А едет в голове поезда, О в середине, а В -- в хвосте (рис. 1).
Рисунок 1. Кто подал сигнал первым - путешественник А или путешественник В?
На земле около железнодорожного пути стоит четвертый человек, О'. В тот самый момент, когда О проезжает мимо О', сигналы ламп вспышек от А и В достигают О и О'. Кто первым послал сигнал? Пользуясь только тем фактом, что скорость света конечна и не зависит от скорости движения его источника.
Наблюдатели А и В покоятся относительно наблюдателя О. К тому же они находятся на равных расстояниях от О, что последний может не спеша проверить, пользуясь своей линейкой. Следовательно, сигналам от А и от В требуется одно и то же время, чтобы достигнуть О. Эти сигналы принимаются наблюдателем О одновременно. Поэтому наблюдатель О заключает, что наблюдатели Аи В послали свои сигналы в один и тот же момент: .
Наблюдатель О', стоящий рядом с железнодорожными путями, делает совершенно иные выводы. Его рассуждения таковы: «Две вспышки пришли ко мне, когда середина поезда проходила мимо меня. Значит, обе эти вспышки должны быть испущены до того, как середина поезда поравнялась со мной. А до этого момента наблюдатель А был ко мне ближе, чем наблюдатель В. Поэтому свет от В должен был пройти до меня более длинный путь и затратить на это большее время, чем свет от А. Но оба сигнала поступили ко мне одновременно. Следовательно, наблюдатель В должен был послать свой сигнал раньше, чем наблюдатель А» (<0). Итак, наблюдатель О', стоящий рядом с железнодорожными путями, делает заключение, что сначала послал свои сигнал В, а потом уже А, тогда как едущий на поезде наблюдатель О заключает, что оба наблюдателя, А и В, послали сигналы в одно и то же время.
Чему равен промежуток времени между посылкой сигналов наблюдателями А и В? В нештрихованной системе отсчета (поезд) эти сигналы были отправлены одновременно, так что . Расстояние между точками посылки сигналов равно , где L -- длина поезда. Поэтому в штрихованной системе отсчета (движущейся вправо по отношению к нештрихованной системе, то есть поезду, как это бывает обычно при использовании штрихованных и нештрихованных обозначений) промежуток времени между посылкой сигналов А и В можно найти по формулам преобразования Лоренца:
,
.
Знак «минус» показывает, что наблюдатель В, находящийся на положительной части оси x/, отправил свой сигнал раньше по «ракетному» времени (более отрицательное время!), чем наблюдатель А [4].
5.2 Парадокс часов
Пусть часы А находятся в точке I в неподвижной инерциальной системе отсчета , а одинаковые
Рисунок 2
с ними часы В, находившиеся в начальный момент также в точке I, движутся к точке II со скоростью v. Затем, пройдя путь I до точки II, часы В замедляются и, приобретая противоположную скорость -- . возвращаются в точку I (рис. 2).
Если время, требуемое на изменение скорости часов В на обратную, достаточно мало по сравнению с временем прямолинейного и равномерного движения от точки I до точки II, то время , отмеренное часами А, и время , отмеренное часами В, можно вычислить согласно
по формулам
(1)
где -- возможная малая поправка на время ускоренного движения часов В. Следовательно, часы B, вернувшись в точку I, реально отстанут от часов A на время
.(2)
Поскольку расстояние может быть сделано сколь угодно большим, постольку поправка может не приниматься во внимание вообще. Особенность этого кинематического следствия преобразований Лоренца состоит в том, что здесь отставание хода движущихся часов является вполне реальным эффектом.
Реально должны отстать все процессы, связанные с системой , от процессов, идущих в системе . В том числе должны отстать и биологические процессы организмов, находящихся вместе с часами В. Должны замедлиться физиологические процессы в организме человека, путешествующего в системе , в результате чего организм, находившийся в системе , в момент ее возврата в точку I окажется менее постаревшим, чем организм, остававшийся в системе .
Парадоксальным представляется здесь то, что одни из часов реально отстают от других. Ведь это кажется противоречащим самому принципу относительности, так как согласно последнему любую из систем и можно считать неподвижной. Но тогда представляется, что лишь в зависимости от нашего выбора реально отстающими могут стать любые из часов А и В. Но последнее явно абсурдно, так как реально отстают часы В от часов А.
Ошибочность последнего рассуждения состоит в том, что системы и физически не равноправны, так как система все время инерциальная, система же некоторый промежуток времени, когда производится изменение ее скорости на обратную, неинерциальная. Следовательно, вторая из формул (1) для системы неправильна, так как во время ускорения ход удаленных
часов может сильно изменяться за счет инерциального гравитационного поля.
Однако и это совершенно правильное объяснение представляется весьма поразительным. Ведь в течение большого промежутка времени обе системы движутся друг относительно друга прямолинейно и равномерно. Поэтому с точки зрения системы часы А, находящиеся в , отстают (а не уходят вперед) в полном соответствии с формулой (1). И лишь за малый промежуток времени, когда в системе действуют инерциальные силы, часы А быстро уходят вперед на промежуток времени, вдвое больший, чем , ычисляемый по формуле (2). При этом чем большее ускорение испытывает система , тем быстрее бежит время на часах А.
Наглядно суть полученных выводов может быть разъяснена на плоскости Минковского (рис. 3).
Рисунок 3
Отрезок Оb на рис. 3, а изображает покоящиеся часы А, ломаная линия Оаb -- движущиеся часы B. В точке а действуют силы, ускоряющие систему часов В и изменяющие ее скорость на обратную. Точки, расставленные на оси Ob, разделяют единичные промежутки времени в неподвижной системе , связанной с часами А.
Точки на ломаной Оаb отмечают равные единичные промежутки времени, измеряемые часами B, находящимися в системе . Из рисунка видно, что число единичных отрезков, укладывающихся на линии Оb, больше, чем число таких же, но относящихся к системе отрезков, укладывающихся на ломаной Оаb. Следовательно, часы В отстают от часов А.
Согласно рисунку «неподвижные» часы А также отстают от часов В вплоть до момента, изображаемого точкой а. Одновременным с этим моментом является момент , однако до тех пор, пека часы В еще движутся со скоростью . Но через малый промежуток времени, требуемый для замедления часов В и сообщения им скорости -- , на часах В практически останется тот же момент А, но одновременным с ним моментом в системе станет момент , т. е. почти мгновенно время системы как бы перескочит на конечный интервал .
Этот перескок времени не является, однако, реально наблюдаемым эффектом. Действительно, если из системы регулярно, через единичные интервалы посылать в систему световые сигналы, то они совершенно регулярно будут приниматься системой сперва более редко, а затем, после изменения скорости на обратную, более часто. Никакого разрыва в показаниях часов А в системе наблюдаться не будет, как это видно из рис. 3 б,
Таким образом, «парадокс часов» также является лишь непривычным для обычных представлений о пространстве и времени следствием псевдоевклидовой геометрии четырехмерного пространственно-временного многообразия [3].
5.3 Парадокс транспорта
Транспортер представляет собой бесконечную ленту из гибкого материала, которая движется па направляющим с помощью двух шкивов, укрепленных на станине АВ (рис. 4). Приведем этот транспортер в действие с таким расчетом, чтобы скорость движения ленты приблизилась к световой. Тогда длина ее горизонтальных частей уменьшится в К раз, хотя расстояние между центрами шкивов останется без перемен. Если вначале лента свободно провисала, она натянется. А
Рисунок 4
при недостаточном запасе длины материал ленты подвергнется растяжению. При этом в нем возникнут соответствующие напряжения, которые в принципе могли бы быть обнаружены динамометром и даже привести к обрыву. Наоборот, станина АВ под влиянием натяжения ленты подвергается деформации сжатия, которая также может быть обнаружена динамометром.
Так будут описываться явления в системе «Станина». Если, однако, систему отсчета связать не со станиной, а с лентой, то покоящейся придется считать ленту, а станину -- движущейся с большой скоростью. Тогда сократиться должна уже не лента, а станина, результатом чего будет уже не тугое натяжение, а свободное провисание ленты.
Но этот вывод явно противоречит принципу относительности: рассуждения, касающиеся одного и того же явления, в двух разных системах отсчета приводят к взаимно исключающим результатам. Произведя соответствующий опыт, можно будет опровергнуть один из них и подтвердить другой. А это позволит определить, который из двух объектов (лента или станина) находится в «истинном», а какой только в «кажущемся» движении.
Таким образом, мы сталкиваемся с парадоксом: в данном конкретном случае применение теории относительности приводит к отрицанию одной из ее собственных основ -- принципа относительности Эйнштейна.
Правда, от этого парадокса можно было бы отмахнуться: ведь скользящие по шкивам участки ленты движутся криволинейно, а частная теория относительности требует, чтобы все системы отсчета были инерциальными.
Но это -- не ответ на парадокс, а только попытка уклониться от его действительного анализа (вроде следующего «объяснения»: «Получить вечный двигатель, соединив электромотор с динамо-машиной ремнем и проводами, разумеется, не удастся, потому что ремень обязательно перетрется»).
Можно, конечно, предположить, что криволинейные участки ленты не укорачиваются, а удлиняются как раз настолько, что компенсируется основной эффект. Но достаточно увеличить расстояние между осями шкивов, например, в 10 раз, чтобы компенсация нарушилась: основной эффект укорочения прямолинейных участков возрастает вдесятеро, тогда как предполагаемый маскирующий эффект криволинейных частей останется тем же самым.
Действительное разъяснение парадокса состоит в невозможности связать инерциальную систему отсчета со всей лентой. А если система связана только с одним из ее участков, она не инерциальная: ведь каждый участок ленты (можно представлять его себе окрашенным в особый цвет) периодически меняет направление своего движения на противоположное.
Можно, конечно, воспользоваться инерциальной системой отсчета, которая все время движется относительно станины в том же направлении и с той же скоростью, что и нижняя часть ленты. В этой системе станина движется со скоростью влево, нижняя часть ленты, естественно, неподвижна, а верхняя движется в ту же сторону, что и станина, но с релятивистски удвоенной скоростью
.
При этом станина укорачивается в К раз, нижняя часть ленты сохраняет натуральную длину, но зато верхняя сокращается значительно сильнее, чем в К раз (приблизительно в раз). В результате общая длина ленты уменьшается настолько, что она, несмотря на укорочение станины, натягивается, а не провисает (количественная сторона дела рассматривается в дополнении Д).
Как и следовало ожидать, рассмотрение в любой действительно инерциальной системе отсчета приводит к одинаковому результату (натяжению ленты). Тем самым парадокс полностью снимается: в данном опыте станина и лента физически неравноправны, так как в отличие от станины лента не может считаться покоящейся ни в одной инерциальной системе (потому что ее части движутся друг относительно друга). По этой именно причине укорачивается лента по сравнению со станиной, а не наоборот.
Рассмотрим еще один довод, который мог бы быть выдвинут в подкрепление парадокса противниками теории относительности. Ровно половина ленты не работающего еще транспортера окрашена в черный цвет. Выберем такой момент времени, когда окрашенная часть ленты находится внизу, а неокрашенная -- вверху (рис. 5).
Рисунок 5
В системе «Станина» обе части ленты, сокращаясь в одинаковое число раз, всегда будут оставаться равными по длине, как это и показано на рис. 5.
В противоположность этому в инерциальной системе «Нижний участок ленты» уменьшение общей длины ленты происходит только за счет ее верхней части, тогда как нижняя часть ленты по сравнению со станиной даже удлиняется в К раз. Поэтому некоторая часть окрашенной «половины» неизбежно перейдет вверх, так что расположение ленты на шкивах будет соответствовать не рис. 5, а рис. 6.
Рисунок 6
Казалось бы, достаточно взглянуть на работающий транспортер, чтобы установить, который из двух противоречащих друг другу выводов соответствует действительности, и тем самым выделить преимущественную систему!
Но это совсем не так. Чтобы установить, который из двух рисунков 5 или 6) подтверждается на опыте, нужно определить, одновременно ли проходят обе границы окрашенной «половины» ленты через крайнее правое и крайнее левое положения. А ведь в каждой системе отсчета понятие одновременности -- свое! Поэтому нет ничего невозможного в том, что в одной системе отсчета будет «наблюдаться» картина, показанная на рис, 5, а в другой -- показанная на рис. 6 [5].
5.4 Парадокс колеса
Вообразим большое колесо, которое может вращаться относительно системы «Звезды» (рис. 7).
Рисунок 7
Вначале колесо неподвижно, а затем приводится в столь быстрое вращение, что линейная скорость его краев приближается к световой. При этом участки обода АВ, ВС и т. д. сокращаются в К раз, тогда как радиальные «спицы» ОА, ОВ, ОС и т. д. сохраняют свою длину (ведь релятивистское укорочение испытывают только продольные размеры, т. е. размеры в направлении движения).
Выходит, что при неизменном диаметре длина окружности уменьшится в К раз. Если K=10, то окружность станет приблизительно втрое короче своего диаметра -- прямая перестанет служить кратчайшим расстоянием между точками!
Как справится теория относительности с такой геометрической несообразностью?
Чтобы лучше разобраться в деталях физических процессов, сопутствующих быстрому вращению, представим себе сначала, что мы резко охлаждаем покоящееся колесо. Допустим, что его обод изготовлен из материала с большим коэффициентом температурного расширения и сжатия, тогда как длина спиц почти не меняется с температурой. Тогда в результате охлаждения в колесе возникнут механические напряжения: дуговые стержни, стремясь сократиться, будут надавливать на спицы.
В зависимости от механической прочности и упругих свойств после охлаждения колеса либо его обод останется в растянутом состоянии, либо же укоротятся спицы (а вернее сказать, всегда будет в какой-то мере иметь место и тот и другой эффект). Во всяком случае, никакого укорочения окружности при неизменном диаметре не будет. Такое напряженное состояние колеса механически неустойчиво: малейшее отклонение в сторону -- и оно примет форму сферического сегмента (рис. 8).
Рисунок 8
Тогда действительно длина окружности обода будет меньше, чем , где r -- длина изогнутой спицы. Однако изгибанию колеса можно воспрепятствовать, придав ему достаточную жесткость на изгиб или поместив его между двумя прочными пластинами.
Нечто аналогичное происходит и тогда, когда неподвижное вначале колесо приводится в быстрое вращение: его обод стремится сократиться, а спицы -- сохранить неизменную длину. Какая из этих тенденций возьмет верх -- всецело зависит от механических свойств обода и спиц; но никакого укорочения обода без пропорционального ему укорочения спиц не будет (разве что колесо примет форму сферического сегмента). Очевидно, что с принципиальной точки зрения ничто не изменится также и в том случае, если колесо со спицами будет заменено сплошным диском.
Итак, никакого неразрешимого противоречия с геометрией не возникает. Нужно только иметь в виду, что в теории относительности, даже при рассмотрении чисто кинематических вопросов, не всегда допустимо пользоваться абстракцией абсолютно недеформируемого тела (впрочем, представление об абсолютно жестком стержне неприемлемо уже и потому, что с помощью его можно было бы мгновенно передавать сигнал: благодаря неизменности длины оба его конца смещались бы одновременно).
Однако предположим теперь, что колесо изготовлено (например, отлито) внутри быстро вращающейся мастерской. Это значит, что именно в состоянии быстрого вращения относительно системы «Звезды» оно свободно от внутренних напряжений. Если его остановить, обод будет стремиться к удлинению, а спицы -- к сохранению своей длины. При этом возникают напряжения противоположного характера по сравнению с предыдущим случаем: в частности, колесо не будет проявлять никакой тенденции к превращению в сферический сегмент; наоборот, оно будет образовывать по краям складки.
Рассмотрим теперь те же явления в системе «Вращающаяся мастерская». Тогда нам придется считать, что отлитое в этой мастерской колесо, о котором только что шла речь, сперва покоилось, а потом пришло в быстрое вращение. Но при этом в нем возникли внутренние напряжения, ведущие к образованию краевых складок, а не сферического сегмента. Налицо резкое расхождение с результатом такого же эксперимента в системе «Звезды», позволяющее отличить ее от системы «Вращающаяся мастерская».
На этот раз возможность отличить одну систему отсчета от другой не мнимая, а действительная. Однако она ничуть не противоречит частной теории относительности, ведь только одна из этих систем является инерциальной. При этом неинерциальность системы отсчета, вращающейся относительно неподвижных звезд, могла бы быть еще проще обнаружена и по другим, нерелятивистским эффектам (например, центробежному).
В так называемой общей теории относительности Эйнштейном была сделана попытка сформулировать принцип относительности таким образом, чтобы он охватывал не только инерциальные, но также и неинерциальные системы. Однако, как убедительно показал акад. В. А. Фок, это могло быть достигнуто только за счет выхолащивания из самого принципа относительности всего его физического содержания. В действительности же (как показывает уже существование центробежных сил) никакого физически содержательного «общего принципа относительности» не существует, а так называемая «общая теория относительности» в действительности является не расширением частной, а теорией всемирного тяготения.
Это не значит, конечно, что нельзя пользоваться вращающимися и вообще неинерциальными системами отсчета. Необходимо лишь помнить, что с инерциальными они не равноправны, и физические явления в них подчиняются иным законам.
Более детальное исследование показывает, что своеобразие неинерциальных систем распространяется не только на физические, но даже и на геометрические соотношения. Когда экспериментатор, пользующийся вращающейся системой отсчет, измеряет длину окружности, он располагает метр в направлении движения. Поэтому с точки зрения неподвижного наблюдателя он получает преувеличенное значение длины окружности, ибо пользуется сокращенным метром. Когда же вращающийся наблюдатель измеряет диаметр, он располагает свой метр перпендикулярно к направлению движения и потому получает результат, с которым безоговорочно согласится также и неподвижный наблюдатель. Но при правильной длине диаметра и преувеличенной длине окружности отношение их уже не может равняться [5].
5.5 Парадокс шеста и сарая
Возьмем шест длиной 20 м и будем двигать его в направлении его длины с такой скоростью, чтобы в лабораторной системе отсчета он оказался длиной всего 10 м. Тогда в некоторый момент этот шест можно целиком спрятать в сарае, длина которого также 10 м.. Но рассмотрим то же самое в системе отсчета бегуна с шестом. Для него наполовину сократившимся в длину оказывается сарай. Как же можно спрятать 20-метровый шест в 5-метровом сарае?!
Разрешение этого «парадокса» состоит в том, что в системе отсчета бегуна передний конец шеста покидает сарай прежде, чем задний конец шеста входит в сарай. Поэтому с точки зрения бегуна шест вообще ни в какой момент времени не находится в сарае целиком. Последовательность событий можно подробнее проиллюстрировать двумя диаграммами пространства-времени (рис. 9 и 10),
Рисунок 9. пространственно - временная Рисунок 10 пространственно - временная диаграмма в системе отсчета сарая диаграмма в системе отсчета бегуна
численные значения длин и моментов времени, на которых можно получить из следующих соображений. Так как множитель, описывающий лорецево сокращение, по условию задачи равен 2, то
Поэтому из тождества
следует, что
.
Отсюда относительная скорость двух систем отсчета равна
Чтобы найти численные значения, приведенные на рисунках 9 и 10, достаточно воспользоваться этими данными, а также тем, что длина шеста в системе отсчета бегуна равна 20 м, а в лабораторной системе 10 м [4].
Подобные документы
Различная запись преобразования Лоренца. Следствия преобразований. Парадоксы кинематики специальной теории относительности: одногодок (модифицированный парадокс близнецов), антиподов, "n близнецов", расстояний и пешеходов. Итоги теории относительности.
реферат [230,7 K], добавлен 03.04.2012Инерциальные системы отсчета. Классический принцип относительности и преобразования Галилея. Постулаты специальной теории относительности Эйнштейна. Релятивистский закон изменения длин промежутков времени. Основной закон релятивистской динамики.
реферат [286,2 K], добавлен 27.03.2012Экспериментальные основы специальной теории относительности, ее основные постулаты. Принцип относительности Эйнштейна. Относительность одновременности как следствие постоянства скорости света. Относительность пространственных и временных интервалов.
презентация [1,8 M], добавлен 23.10.2013Основные положения специальной теории относительности. Проведение расчета эффекта искривления пространства на этапе математического описания гравитационного взаимодействия. Сравнительное описание математической и физической моделей гравитационного поля.
статья [42,4 K], добавлен 17.03.2011Общая теория относительности с философской точки зрения. Анализ создания специальной и общей теорий относительности Альбертом Эйнштейном. Эксперимент с лифтом и эксперимент "Поезд Эйнштейна". Основные принципы Общей Теории Относительности (ОТО) Эйнштейна.
реферат [42,9 K], добавлен 27.07.2010Изучение ключевых научных открытий Альберта Эйнштейна. Закон внешнего фотоэффекта (1921 г.). Формула связи потери массы тела при излучении энергии. Постулаты специальной теории относительности Эйнштейна (1905 г.). Принцип постоянства скорости света.
презентация [1,1 M], добавлен 25.01.2012Сущность принципа относительности Эйнштейна, его роль в описании и изучении инерциальных систем отсчета. Понятие и трактовка теории относительности, постулаты и выводы из нее, практическое использование. Теория относительности для гравитационного поля.
реферат [14,5 K], добавлен 24.02.2009Возникновение теории относительности. Классическая, релятивистская, квантовая механика. Относительность одновременности событий, промежутков времени. Закон Ньютона в релятивистской форме. Связь между массой и энергией. Формула Эйнштейна, энергия покоя.
курсовая работа [194,5 K], добавлен 04.01.2016Изменение формы движущегося объекта и другие явления в рамках преобразования Лоренца. Гносеологические ошибки Специальной теории относительности А. Эйнштейна. Проблема определения границ применимости альтернативной интерпретации преобразования Лоренца.
доклад [3,1 M], добавлен 29.08.2009Доказательство ошибочности специальной теории относительности (СТО). Выяснение физического смысла преобразования Лоренца, подход к анализу "мысленных экспериментов" Эйнштейна и исправление ошибок в этих экспериментах. "Волновой вариант теории Ритца".
статья [68,5 K], добавлен 07.01.2010