Сверхпроводимость и эффекты Джозефсона
История открытия сверхпроводимости. Идеальный проводник и сверхпроводник, эффект Мейснера и Джозефсона. Поведение идеального проводника в магнитном поле. Взаимодействие электронов с фотонами. Сверхпроводимость первого и второго рода, ее использование.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 11.06.2011 |
Размер файла | 113,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное автономное образовательное учреждение высшего профессионального образования
«Уральский федеральный университет имени первого Президента России
Б.Н. Ельцина»
Нижнетагильский технологический институт (филиал)
Реферат
Тема: Сверхпроводимость и эффекты Джозефсона
Студент:
Глазунов А.В
Группа:
10159ТМ
Преподаватель:
Францева И.В.
Нижний Тагил
2011 г.
Содержание
Введение
1. История открытия сверхпроводимости
2. Теория сверхпроводимости
3. Идеальный проводник и сверхпроводник. Эффект Мейснера
4. Биография Брайана Дэвида Джозефсона
5. Эффекты Джозефсона
6. Сверхпроводимость первого рода
7. Сверхпроводимость второго рода
8. Основы микроскопической теории сверхпроводимости. Взаимодействие электронов с фотонами
9. Энергетические щели
10. Высокотемпературная сверхпроводимость
11. Использование сверхпроводимости
Заключение
Приложение
Библиографический список
Введение
Сверхпроводимость - физическое явление, заключающееся в том, что у многих химических элементов, соединений и сплавов (называемых сверхпроводниками), при охлаждении их ниже определенной критической температуры Tс (характерной для данного материала) наблюдается переход из нормального в так называемое сверхпроводящее состояние, в котором их электрическое сопротивление постоянному току полностью отсутствует. При этом переходе структурные и оптические (в области видимого света) свойства сверхпроводников остаются практически неизменными. Электрические и магнитные свойства вещества в сверхпроводящем состоянии резко отличаются от этих же свойств в нормальном состоянии (где они, как правило, являются металлами) или от свойств других материалов, которые при тех же температурах в сверхпроводящее состояние не переходят. За исключением благородных (Cu, Ag, Au, Pt), щелочных (Li, Na, K и др.), щелочноземельных (Be, Mg и др.) и ферромагнитных (Fe, Co, Ni) металлов, большая часть остальных металлических элементов являются сверхпроводниками. Элементы Si, Ge, Bi, Te становятся сверхпроводниками при охлаждении под давлением. Явление сверхпроводимости открыто в 1911 г. Х. Каммерлинг-Оннесом при исследовании низкотемпературного хода сопротивления ртути. Он обнаружил, что при охлаждении ртутной поволоки ниже 4,2 К её сопротивление скачком обращается в нуль. Нормальное состояние может быть восстановлено при пропускании через образец достаточно сильного тока (превышающего критический ток Ic(T)) или помещением его в достаточно сильное внешнее магнитное поле (превышающее критическое магнитное поле Hc(T)). По величине Tс в силу исторических причин сверхпроводники делятся на классические (у которых Tc < 30 K) и высокотемпературные. Наряду с потерей сопротивления важнейшим свойством сверхпроводников является вытеснение магнитного поля из массивного образца. По своему поведению в магнитном поле сверхпроводники делятся на две группы: сверхпроводники первого рода и второго рода. Далее учёными был открыт ряд других важнейших свойств, характерных для сверхпроводников, на основе которых и была построена теория сверхпроводимости. Практическое использование сверхпроводников ограничилось низкими значениями критических полей и температур. Интерес к вопросу практического использования сверхпроводников появился в 50-х гг, когда были открыты сверхпроводники второго рода с высокими критическими параметрами как по значению плотности тока, так и по величине магнитной индукции. В настоящее время использования явления сверхпроводимости приобретает все больше практическое значение. Применение сверхпроводников потребовало решения ряда новых задач, в частности, интенсивного развития материаловедения в области низких температур. При этом исследовались не только сверхпроводники собственно, но и конструкции и изоляционные материалы.
1. История открытия сверхпроводимости
Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.
В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 градуса Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 градусах Кельвина (около ?270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.
В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.
Нулевое сопротивление -- не единственная отличительная черта сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером иРобертом Оксенфельдом в 1933 году.
Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем (англ.) и Хайнцем Лондоном (англ.). Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга -- Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.
Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.
Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/смІ.
В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.
В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La--Sr--Cu--O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y--Ba--Cu--O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg--Ba--Ca--Cu--O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.
2. Теория сверхпроводимости
Оказалось, что при крайне низких температурах целый ряд веществ обладает сопротивлением, по крайней мере, в 10-12 раз меньше, чем при комнатной температуре. Эксперименты показывают, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления
Холла. В то время, как в обычных проводниках под влиянием магнитного поля ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте. Сверхпроводимость исчезает под действием следующих факторов:
1) повышение температуры;
2) действие достаточно сильного магнитного поля;
3) достаточно большая плотность тока в образце.
С повышением температуры до некоторой Tс почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец (наиболее крутой переход наблюдается в монокристаллах). Переход от сверхпроводящего состояния в нормальное можно осуществить путем повышения магнитного поля при температуре ниже критической T. Минимальное поле в котором разрушается сверхпроводимость называется критическим магнитным полем. Зависимость критического поля от температуры описывается эмпирической формулой. В = B0 [ 1 - (T/Tс)2 ], где В0 - критическое поле, экстраполированное к абсолютному нулю температуры. Для некоторых веществ, по-видимому, имеет место зависимость от Т в первой степени. При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если повышая магнитное поле уничтожить сверхпроводимость при H = Ht ( H - сила поля, Ht - повышенная сила поля: Ht = a(Tс 2 - T2) ) , то с понижением интенсивности поля сверхпроводимость появится вновь при поле Htґ< Ht, dH = Ht - Htґ меняется от образца к образцу и обычно составляет 10% Ht. Повышение силы тока также приводит к исчезновению сверхпроводимости, то есть при этом понижается Tс. Чем ниже температура, тем выше та предельная сила тока it при которой сверхпроводимость уступает место обычной проводимости. Сверхпроводимость наблюдается как у элементов, так и у сплавов и металлических соединений. Сверхпроводимость есть у Hg, Sn(белое), Pb, Tl, Tn, Ga, Ta, Th, Ti, Nb (иногда Cd).
3. Идеальный проводник и сверхпроводник. Эффект Мейснера.
Для анализа поведения идеального проводника в магнитном поле рассмотрим контур, помещенный в поле с индукцией Ba (рис.1, а). Если площадь, ограниченная кольцом равна А, то поток, пронизывающий кольцо, можно описать по формуле
Ф=АВ.(1)
При изменении приложенного поля в кольце, согласно закону Ленца, индуцируются токи. Они направлены так, что созданный ими внутри кольца поток стремится компенсировать изменение потока, вызванное переменной приложенного поля. Между индуцированным током и электродвижущей силой (-АdBа/dt) справедливо следующее соотношение:
-АdBа/dt=Ri+Ldi/dt(2),
где R и L - полное сопротивление и индуктивность контура.
В обычном кольце наведенные токи из-за конечного сопротивления быстро затухают и поток, пронизывающий контур принимает новое значение. В случае идеальной проводимости R=0, последнее соотношение принимает вид
-АdBа/dt=Ldi/dt(3)
или
Li+ABа=const.
Таким образом, полный магнитный поток через контур без сопротивления (Li+ABа) не может измениться. Даже при снижении внешнего поля до нуля, внутренний поток сохраняется благодаря циркулирующему в замкнутом кольце индуцированного незатухающего тока.
Все вышеизложенное относилось к условию, при котором кольцо, находясь в приложенном магнитном поле, охлаждалость ниже температуры Тс, при которой исчезало сопротивление. Если же контур сначала охладить, а затем приложить внешне поле, то результирующий внутренний поток останется равным нулю несмотря на наличие внешнего поля.
Рассмотрим поведение идеального проводника в магнитном поле. Предположим, что образец из идеального проводника проходит следующие стадии: сначала охлаждается ниже некоторой температуры, когда падает сопротивление, а затем накладывается магнитное поле. Сопротивление по любому произвольно выбранному замкнутому контуру внутри металла равно нулю. Следовательно, величина магнитного потока, заключенного внутри этого кольца, остается равной нулю. Произвольность выбора контура позволяет заключить, что магнитный поток равен нулю по всему объему образца. Это связано с индуцированными магнитным полем незатухающими токами по поверхности образца. Они создают магнитный поток, плотность которого Вi повсюду внутри металла точно равна по величине и противоположна по плотности потока приложенного магнитного поля Вa. Таким образом, возникает ситуация, когда поверхностные токи, часто называемые экранирующими, препятствуют проникновению в образец магнитного потока приложенного поля. Если внутри вещества, находящегося во внешнем поле, магнитный поток равен нулю, то говорят, что он проявляет идеальный диамагнетизм. При снижении плотности приложенного поля до нуля образец остается в своем не намагниченном состоянии.
В другом случае, когда магнитное поле приложено к образцу, находящемуся выше переходной температуры, конечная картина заметно изменится. Для большинства металлов (кроме ферромагнетиков) значение относительной магнитной проницаемости близко к единице. Поэтому плотность магнитного потока внутри образца практически равна плотности потока приложенного поля. Исчезновение электросопротивления после охлаждения не оказывает влияния на намагниченность, и распределение магнитного потока не меняется. Если теперь снизить приложенное поле до нуля, то плотность магнитного потока внутри сверхпроводника не может меняться, на поверхности образца возникают незатухающие токи, поддерживающие внутри магнитный поток. В результате образец остается все время намагниченным. Таким образом, намагниченность идеального проводника зависит от последовательности изменения внешних условий.
В течение почти четверти века считали, что единственным характеристическим свойством сверхпроводящего состояния является отсутствие электрического сопротивления. Это означает, что сверхпроводник в магнитном поле будет вести себя так, как описано выше. Однако такой подход приводит к неоднозначному описанию сверхпроводящей фазы.
Эксперимент, иллюстрирующий переход из сверхпроводящего состояния в обычное продемонстрировал, что сверхпроводники - нечто большее, чем идеальные проводники. Они обладают дополнительным свойством, отсутствующим от металла, просто лишенного сопротивления: металл в серхпроводящем состоянии никогда не позволяет магнитному потоку проникнуть внутрь, всегда Вi=0.
Когда сверхпроводник охлаждается в слабом магнитном поле, то при температуре перехода на его поверхности возникает незатухающий ток, циркуляция которого обращает внутренний магнитный поток в нуль. Это явление, заключающееся в том, что внутри сверхпроводника плотность магнитного потока всегда, даже во внешнем магнитном поле, равна нулю, называется эффектом Мейснера.
Эффект выталкивания магнитного поля из сверхпроводника можно пояснить на основе представлений о намагниченности. Если экранирующие токи, полностью компенсирующие внешнее магнитное поле, сообщают образцу магнитный момент m, то намагниченность M выражается соотношением
M=m/V(4),
где V - объем образца. Можно говорить о том, что экранирующие токи приводят к появлению намагниченности, соответствующей намагниченности идеального ферромагнетика с магнитной восприимчивостью, равной минус единице.
4. Биография Брайана Дэвида Джозефсона
Родился в еврейской семье, в Кардиффе, Великобритания. Окончил в 1960 году Тринити-колледж Кембриджского университета. В этом же колледже Джозефсон получил ученые степени магистра и доктора философии (1964). С 1962 года -- младший научный сотрудник Колледжа. В 1967--1972 годах Джозефсон работал заместителем директора по научным исследованиям в Кембридже. В 1972--1974 годах -- лектор Кембриджского университета, с 1974 -- профессор физики Кембриджского университета.
С 1962 года Джозефсон изучает свойства сверхпроводимости. Будучи аспирантом, в двадцать два года, теоретически предсказал явление прохождения электронов через тонкий слой диэлектрика, помещённый между двумя сверхпроводящими металлами (стационарный эффект Джозефсона). Был открыт экспериментально в 1963 году. Он предположил также, что если к контакту приложить разность потенциалов, то через него пойдет осциллирующий ток с частотой, зависящей только от величины приложенного напряжения (нестационарный эффект Джозефсона). Оба эффекта очень чувствительны к магнитному полю в области контакта. Открытие эффектов Джозефсона оказало существенное влияние на современную физику. Они позволили уточнить величину постоянной Планка, способствовали созданию принципиально нового квантового стандарта напряжения, используемого ныне во многих национальных бюро стандартов. Они способствовали также конструированию сверхчувствительных датчиков магнитного поля (СКВИД), применяемых для измерения магнитных полей живых организмов и обнаружения объектов, скрытых под поверхностью. На основе эффектов Джозефсона были изготовлены чувствительные детекторы очень слабых измерений напряжения. В перспективе -- применение быстродействующих компьютерных сетей с очень низким потреблением энергии, построенных на базе эффекта Джозефсона.
В последующие годы Джозефсон продолжал заниматься исследованиями сверхпроводимости и критических явлений, возникающих в системах вблизи точек перехода, проявил интерес к проблемам разума и интеллекта, занимался медитацией и ментальной теорией.
В настоящее время является профессором Кембриджского университета, где возглавляет проект по объединению материи и разума в области теории конденсированных сред. Также он является членом Тринити-колледжа в Кембридже.
Джозефсон получил половину Нобелевской премии «за теоретическое предсказание свойств тока, проходящего через туннельный барьер, в частности явлений, общеизвестных ныне под названием эффектов Джозефсона» в 1973 году. Один из самых молодых нобелевских лауреатов в истории. Вторую половину премии получили Лео Эсаки и Айвор Джайевер «за экспериментальные открытия туннельных явлений в полупроводниках и сверхпроводниках».
Брайан Джозефсон удостоен премии «За успехи в науке» Американской исследовательской корпорации и медали Хьюза Лондонского королевского общества. Джозефсон -- член Лондонского королевского общества и иностранный член американского Института инженеров по электротехнике и электронике, Американской академии наук и искусств.
Джозефсон известен также своей верой в существование паранормальных явлений. По его словам, лозунгом учёного должно быть «никому не верь на слово» (nullius in verba), что означает, «если все учёные хором отрицают какую-либо идею, это не следует считать доказательством того, что идея абсурдна, скорее следует тщательно изучить все причины такого мнения и решить, насколько это мнение обосновано».
5. Эффекты Джозефсона
Если два сверхпроводника разделены между собой достаточно тонким слоем диэлектрика (например, два металлических слоя, разделенных окислом), то проникновение через барьер макроскопических волновых функций приводит к их перекрытию или к туннелированию электронных пар. Связанные с этим эффекты были количественно исследованы Брайаном Джозефсоном в 1962г. Он показал, что если имеется разность фаз между этими двумя волновыми функциями, то ток может протекать в отсутствие какой-либо разности потенциалов. Слой диэлектрика - не единственно возможный тип “слабого звена”, среди других типов можно отметить точечный контакт двух хорошо
пришлифованных сверхпроводников, или же микромостик, образованный
путем травления сверхпроводящей пленки. На практике при нулевом напряжении через контакт можно пропустить ток только вплоть до некоторого порогового значения, выше которого появится напряжение. Это напряжение затем возрастает при росте тока. Такое явление называется стационарным эффектом Джозефсона. Нестационарный эффект Джозефсона возникает, когда к контакту прикладывается напряжение и через него начинает течь переменный ток. Эффект Джозефсона может иметь много приложений, но он может быт и паразитным. Он возникает на границах зерен в поликристаллических образцах новых сверхпроводников и препятствует, например, попыткам измерения лондоновской глубины проникновения.
6. Сверхпроводники первого рода
Проанализируем протекание тока по проволоке круглого сечения, находящемся в сверхпроводящем состоянии. В отличии от экранирующего тока, возникающего при наложении магнитного поля, ток от внешнего источника будем называть транспортным. Если бы этот ток протекал внутри сверхпроводника, он создавал бы в его объеме магнитное поле, что противоречит эффекту Мейснера. Следовательно, ток, протекающий должен быть ограничен тонким слоем около поверхности, в который проникает магнитное поле. Толщина этого поверхностного слоя равна глубине проникновения .
Протекающий по сверхпроводнику транспортный ток будет создавать магнитное поле. Между плотностью тока и магнитным полем существует строгая связь, которая означает, что критическому полю соответствует определенная критическая плотность тока (правило Сильсби). Причем совершенно безразлично, о каком токе идет речь - транспортном, или экранирующем. Для проволоки круглого сечения магнитное поле на поверхности В0 и суммарный ток I связаны отношением
B0=0(1/(2R))(5),
где R - радиус проволоки.
Из данного уравнения следует, что критический ток имеет такую же зависимость от температуры, как и критическое магнитное поле. Расчет показывает, что, например, для оловянной проволоки радиусом 0,5 мм критическая сила тока при Т=0 К составляет 75 А .
С помощью правила Сильсби можно определить также критические токи для сверхпроводников во внешнем магнитном поле. Для этого необходимо сложить внешнее магнитное поле с полем транспортного тока на поверхности. Плотность тока достигает результирующее значение, когда это результирующее поле Врез становится критическим. Для проволоки радиусом R в магнитном поле Bа, перпендикулярном ее оси:
Врез=2Bа+(1/(2R))0.(6)
Здесь значение 2Вa на образующей цилиндра получено для коэффициента размагничивания uм=1/2.
Зависимость критического тока от внешнего поля Вa можно определить из уравнения:
Iс=(2R)/0(Bс-2Bа).(7)
График ее представлен на рис.2
Процесс нарушения сверхпроводимости в массивных образцах при достижении критической силы тока происходит с образованием промежуточного состояния. Структура его для цилиндрического образца представлена на рис.3. При включении внешнего магнитного поля происходит его наложение на круговое поле тока, в результате чего геометрия межфазных границ между сверхпроводящими и нормальными областями значительно усложняется.
В конце разговора о сверхпроводниках первого рода отметим, что низкие критические параметры делают практически невозможным их техническое использование.
7. Сверхпроводники второго рода
Принципиальное отличие сверхпроводника второго рода от сверхпроводника первого рода начинает проявляться в тот момент, когда магнитное поле на поверхности достигает значения Вc1 . При этом сверхпроводник переходит в смешанное состояние. Проникновение магнитного поля в объем сверхпроводника приводит к тому, что в этих условиях транспортный ток распределяется равномерно по всему сечению, не занятому вихревыми нитями. Таким образом, в отличие от сверхпроводников 1 рода, в которых ток протекает по тонкому поверхностному слою, в сверхпроводники 11 рода транспортный ток проникает во всем объеме.
Известно, что между током и магнитным полем всегда существует сила взаимодействия, которую называют силой Лоренса. Применительно к смешанному состоянию сверхпроводника эта сила будет действовать между абрикосовскими вихрями и транспортным током. Возможности транспортного перераспределения тока ограничены конечными размерами проводника, и, следовательно, под действием силы Лоренса вихревые нити должны перемещаться.
Для описания особенностей поведения сверхпроводников в магнитном поле проанализируем термодинамику образования поверхностей раздела между сверхпроводящей и нормальной фазами. В нормальной области ВBc, в сверхпроводящей спадает до нуля на глубине порядка (рис.3). В нормальном состоянии плотность сверхпроводящих электронов равна нулю, в то время, как в сверхпроводнике она имеет определенную величину ns(Т). На некотором расстоянии от границы плотность сверхпроводящих электронов по порядку величины достигает значения, равного ns(Т). Характеристический параметр называют длиной когерентности, зависимость ее от температуры определяется формулой
(Т)=0(Tc/(Tc-T)),(8)
где 0 зависит от свойств сверхпроводника и составляет по порядку величины 10-6 - 10-8 м.Рис4
8. Основы микроскопической теории сверхпроводимости. Взаимодействие электронов с фотонами
Ранее было показано, что переход о нормального к свехпроводящему состоянию связан с определенным упорядочиванием в электронной системе твердого тела. На основании этого можно предположить, что переход в сверхпроводящее состояние обусловлен взаимодействием электронов друг с другом.
В принципе можно предположить различные механизмы такого взаимодействия. Были попытки объяснить упорядочение системы с помощью механизма кулоновского отталкивания электронов. Рассматривалось магнитное взаимодействие электронов, которые, пролетая через решетку с большими скоростями, создают магнитное поле и с помощью него взаимодействия между собой. Однако эти и другие подходы не позволяют построить теорию сверхпроводимости и объяснить электрические, магнитные и тепловые свойства сверхпроводников.
Конструктивной основой для создания такой теории стала идея о взаимодействии электронов через колебания решетки, сформулированная в 1950-51 гг. практически независимо друг от друга Г. Фрелихом и Дж. Бардиным. Такое рассмотрение позволило уже в 1957 г. Дж. Бардину, Л. Куперу и Дж. Шифферу создать микроскопическую теорию сверхпроводимости, получившая название БКШ ( по начальным буквам фамилий авторов).
Рассмотрим качественно механизм межэлектронного взаимодействия через колебания решетки. Как известно, ионы в кристаллической структуре совершают колебания около положений равновесия. Если в такую решетку поместить всего два электрона и пренебречь всеми остальными, то положительно заряженные ионы, расположенные вблизи этих электронов, будут притягиваться к ним. Образуются две области поляризации решетки, то есть скопления положительного заряда ионов вблизи оказывающих поляризующее действие отрицательно заряженных электронов. Второй электрон и поляризованная им область решетки могут реагировать на поляризацию, вызванную первым электроном. При этом второй электрон испытывает притяжение к месту поляризации первого электрона, а следовательно, и к нему самому.
Рассмотренная выше модель имеет весьма существенный недостаток - она является статической. Реально электроны в металле имеют очень большие скорости (порядка 106 м/c) . Поэтому можно предположить, что электрон, перемещаясь по кристаллу, притягивает ионы и создает область избыточного положительного заряда. Такая динамическая поляризация является относительно устойчивой, поскольку масса ионов значительно больше, чем масса электронов. Таким образом, второй электрон, пролетая сквозь решетку, притягивается к этому сгустку положительного заряда, а следовательно, и к первому электрону. Отметим, что при высоких температурах ( больше критической) интенсивное тепловое движение узлов кристалла делает поляризацию решетки слабой, а следовательно, практически невозможным взаимодействие между электронами.
9. Энергетические щели
Для развития динамической модели будем полагать, что второй электрон движется по поляризованному следу первого электрона. При этом возможны две ситуации: первая - импульсы электронов одинаковы по величине и направлению, то есть они образуют пару частиц с удвоенным импульсом, вторая - импульсы электронов одинаковы по величине и противоположны по направлению. Такую корреляцию электронов также можно рассматривать, как пару с нулевым импульсом. Если электроны, кроме того, будут иметь противоположные спины, то такая пара будет обладать уникальными свойствами.
Чрезвычайно интересным с точки зрения понимания механизма сверхпроводимости является вопрос о процессах энергообмена в свехпроводящем состоянии. В принципе ясно, что эти процессы связаны с разрушением куеперовских пар и энергетическими переходами в системе свободных электронов, причем как первое, так и второе определяется совокупностью свободных состояний, в которые могут перейти электроны. Сложность рассматриваемой задачи связана с тем, что образование куперовских пар приводит к изменению квантово - механических состояний неспаренных электронов.
Распределение электронов в нормальном металле описывается функцией Ферми-Дирака
f(E)=(e (E-)/(kT)+ 1)-1.(9)
Где k - постоянная Больцмана; - химический потенциал.
При температуре Т=0 К полная функция распределения
N(E)=f(E)g(E)(10)
определяющая число частиц с энергией Е, равна плотности числа состояний g(E), так как
f(E)=1(11):
g(E)=((4V)/ n3)(2m)3/2Е1/2.(12)
График этой функции представлен на рис.5а
Взаимодействие электронов в сверхпроводнике с образованием куперовских пар приводит к тому, что небольшая область энергии вблизи уровня Ферми становится запрещенной для электронов - возникает энергетическая щель. В пределах этой щели нет ни одного разрешенного для неспаренных электронов энергетического уровня. Под влиянием взаимодействия между электронами, имеющими энергию, близкую к Еf, они оказываются как бы сдвинутыми относительно уровня Ферми (рис.5б).
При Т=0 К ширина щели максимальна (2d010-2 - 10-3 эВ), а все свободные (неспаренные) электроны находятся под щелью (на уровне с энергией меньше Еf). При повышении температуры часть куперовских пар разрушается, а некоторые неспаренные электроны “перескакивают” щель и заполняют состояния с энергией больше Еf. Ширина щели 2d(T) при этом уменьшается (рис.6).
Между максимальной (при Т=0 К) шириной щели 2d0 и критической температурой Тc существует прямая зависимость. По теории БКШ, удовлетворительно согласующейся с экспериментальными данными для большого числа сверхпроводников (кроме Nb, Ta, Pb, Hg):
2d0=3,5 kTс.(13)
Ширина щели по этому соотношению определяется в эВ.
10. Высокотемпературная сверхпроводимость
Рассмотренный ранее механизм перехода в сверхпроводящее состояние основан на межэлектронном взаимодействии посредством кристаллической решетки, то есть за счет обмена фононами. Как показывают оценки, для такого механизма сверхпроводимости, называемая фононным, максимальная величина критической температуры не может превышать 40 К.
Таким образом, для реализации высокотемпературной сверхпроводимости (с Тc>90 К) необходимо искать другой механизм корреляции электронов. Один из возможных подходов описан подходов описан американским физиком Литтлом. Он предположил, что в органических веществах особого строения возможна сверхпроводимость при комнатных температурах. Основная идея заключалась в том, чтобы получить своеобразную полимерную нитку с регулярно расположенными электронными фрагментами. Корреляция электронов, движущихся вдоль цепочки, осуществляется за счет поляризации этих фрагментов, а не кристаллической решетки. Поскольку масса электрона на несколько порядков меньше массы любого иона, поляризация электронных фрагментов может быть более сильной, а критическая температура более высокой, чем при фоновом механизме.
В основе теоретической модели высокотемпературной сверхпроводимости, разработанной академиком В.Л.Гизбургом, лежит так называемый экситонный механизм взаимодействия электронов. Дело в том, что в электронной системе существуют особые волны - экситоны. Подобно фононам они являются квазичастицами, перемещающимися по кристаллу и не связанными с переносом электрического заряда и массы. Модельный образец такого сверхпроводника представляет собой металлическую пленку в слоях диэлектрика или полупроводника. Электроны проводимости, движущиеся в металле, отталкивают электроны диэлектрика, то есть окружают себя облаком избыточного положительного заряда, который и приводит к образованию электроной пары. Такой механизм корреляции электронов предсказывает весьма высокие значения критической температуры (Тc=200 К).
11. Использование сверхпроводимости
Идея высокотемпературной сверхпроводимости ( ВТСП ) в органических соединениях была выдвинута в 1950г. Ф.Лондоном и лишь 14 лет спустя появился отклик на эту идею в работах американского физика В.Литтла, вызвавший критические отзывы, отрицающие возможность ВТСП в неметаллических системах. Таким образом, хотя идея ВТСП родилась ы работе Ф. Лондона в 1950г., годом рождения проблемы следует считать время появления первых, пока, правда, малочисленных потоков информации по ВТСП - 1964г.. Если рассмотреть эволюцию температуры сверхпроводящего перехода,, то станет ясно, что рост температуры сверхпроводящего перехода приводил к возможности использования хладагентов со все более высокой температурой кипения ( жидкий гелий, водород, неон, азот). Хотя до азотных температур перехода, открытых недавно в металлокерамиках, практически использовался для охлаждения жидкий гелий, однако скачки в росте температуры перехода дают право положить их в основу периодизации ВТСП о гелиевом, водородном, неоновом и, наконец, азотном периодах ВТСП. Так Nb3Sn сменился Nb - Al - Ge, затем наибольшая температура была обнаружена d 1973-81гг. у Nb3Ge (23,9 K), которая оставалась рекордной вплоть до сверхпроводимости металлокерамиками. La - Sr - Cu - O при 30 К в 86г., вырастая до 100 К на материале I - Ba - Cu - O.
Ключевым для проблемы ВТСП является вопрос критической температуры от характеристики вещества. С открытием в 86 нового класса сверхпроводящих материалов с более высокими, чем ранее критическими температурами, во всем мире развернулись работы по изучению по изучению свойств ВТСП с целью определения возможности их применения в различных областях науки и техники. Интерес к ВТСП объясняется в первую очередь тем, что повышение рабочей температуры до азотной позволит существенно упростить и удешевить системы криогенного обеспечения, повысить их надежность. Для успешного применения ВТСП в сильноточных устройствах (соляноидах, накопителях энергии, электромагнитах, транспорте с магнитным подвесом) необходимо решить ряд вопросов. Одной из важнейших проблем при создании сильноточных устройств с использованием ВТСП является проблема обеспечения устойчивой работы обмоток с током. Проблема стабилизации ВТСП включает в себя несколько аспектов. Внутренним свойством сверхпроводимости является скачкообразный характер проникновения в них магнитного поля. Этот процесс сопровождается выделением части запасенной энергии магнитного поля при его распределении. Поэтому, наиболее важное направление стабилизации сверхпроводников - их стабилизация против сигналов потока. Крое того, проводники, внутренне стабилизированные против сигналов потока, при работе подвергаются действию различного рода возмущений как механического, так и электромагнитного характера, тоже сопровождающиеся выделением энергии.
Основные характеристики композитных ВТСП-проводников.
Традиционные сверхпроводники второго рода (сплавы Nb - Ti, соединение Nb3Sn ) применяются в сверхпроводящих магнитных системах в виде композитов с матрицей из нормального метала с высокими тепло- и электропроводностью. Наличие пластичной матрицы (чаще всего медной) значительно облегчает изготовление тонких длинномерных проводников волочением или прокаткой, то есть сверхпроводящие материалы отличаются хрупкостью. Стабильность сверхпроводимости - состояние относительно скачков магнитного потока - достигается путем изготовления проводников с весьма малым диаметром отдельных сверхпроводящих или же лент с малой толщиной сверхпроводящего слоя. По этим же причинам ВТСП-проводники в большинстве случаев изготавливаются в форме композитов, имеющих малую толщину или диаметр. Дополнительная причина применения нормального металла связана с необходимостью защиты ВТСП-материала от влажности и других факторов окружающей Среды, вызывающих деградацию оксидного сверхпроводника. Наилучшие результаты получены при использовании серебряной матрицы или обмотки сверхпроводника: кроме того, что серебро лишь в минимальной степени реагирует с ВТСП или его исходной продукции даже при высокой температуре синтеза, серебро отличается высокой диффузионной проницательностью для кислорода, что необходимо при синтезе и обжиге ВТСП.
В настоящее время все усилия в области ВТСП наряду с совершенствованием их свойств и способов получения направлены на создание изделий на основе ВТСП, пригодных для применения в радиоэлектронных системах для детектирования, аналоговой и цифровой обработки сигналов. (см. рис.1).
Основными достоинствами ВТСП являются отсутствие потерь на постоянном и сравнительно небольшие потери на переменном токах, возможность экранирования магнитных и электромагнитных полей, возможность передачи сигналов с крайне малыми искажениями.
Параметром, непосредственно определяющим высокочастотные свойства ВТСП материалов является их поверхностное сопротивление. В обычных металлах поверхностное сопротивление увеличивается пропорционально квадратному корню из частоты в то время, как в ВТСП - пропорционально ее квадрату. Однако, благодаря тому, что начальное значение поверхностного сопротивления ( на постоянном токе) у ВТСП на несколько порядков ниже, чем у металлов, высококачественные ВТСП сохраняют преимущества по сравнению с металлами при частоте до нескольких сотен гигагерц.
Интерес к вопросу практического использования сверхпроводников появился в 50-х гг, когда были открыты сверхпроводники второго рода с высокими критическими параметрами как по значению плотности тока, так и по величине магнитной индукции. В настоящее время использования явления сверхпроводимости приобретает все больше практическое значение.
Применение сверхпроводников потребовало решения ряда новых задач, в частности, интенсивного развития материаловедения в области низких температур. При это исследовались не только сверхпроводники собственно, но и конструкции и изоляционные материалы.
Наибольшее распространение из сверхпроводящих материалов в электротехнике получили сплав ниобий-титан и интерметаллид ниобий-олово. Технологические процессы изготовления исключительно тонких ниобий-титановых нитей и их стабилизации достигли весьма высокого уровня развития. При создании многожильных проводников на основе ниобий-олова широкое применение находит так называемая бронзовая технология.
Развитие сверхпроводниковой техники также связано с созданием ожижителей и рефрижераторов все большей хладопроизводительности на уровне температур жидкого гелия.
Наиболее широкое реальное применение сверхпроводимость находит при создании крупных электромагнитных систем. В 80-х гг в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тороидального магнитного поля.
Сверхпроводящие катушки используются также для пузырьковых водородных камер, для крупных ускорителей элементарных частиц. Изготовление таких катушек для ускорителей довольно сложно, так как требование исключительно высокой однородности магнитного поля вызывает необходимость точного соблюдения заданных размеров.
В последние годы имеет место все более широкое использование явления сверхпроводимости для турбогенераторов, электродвигателей, униполярных машин, топологических генераторов, жестких и гибких кабелей, коммутационных и токоограничивающих устройств, магнитных сепараторов, транспортных систем и др.. Следует также отметить важное направление в работах по сверхпроводимости - создание измерительных устройств для измерения температур, расходов, уровней, давлений и т.д.
На настоящий момент имеются два главных направления в области применения сверхпроводимости. Это прежде всего магнитные системы различного назначения и затем - электрические машины (прежде всего турбогенераторы).
Применение сверхпроводимости в турбогенераторах большой мощности перспективно потому, что именно здесь удается достигнуть того, чего при других технических решениях сделать невозможно, а именно, уменьшить массу и габариты машины при сохранении мощности. В обычных машинах это уменьшение всегда связано с увеличением потерь и трудностями обеспечения высокого КПД. Здесь этот вопрос решается радикально: массу турбогенераторов можно увеличить в 2-2,5 раза, в тоже время в связи с отсутствием потерь в роторе удается повысить КПД примерно на 0,5% и приблизиться для крупных турбогенераторов к КПД порядка 99,3%. Повышение КПД турбогенераторов на 0.1% компенсирует затраты, связанные с созданием генераторов на 30%. В этих условиях экономия энергии, получаемая за счет снижения потерь, очень быстро оправдывает те затраты, которые вкладываются в создание новых сверхпроводниковых машин. Экономически это, конечно, оправдано, но все дело в том, что для того, чтобы выйти в энергетику с большими машинами, нужно пройти очень сложный путь создания машин все больших мощностей. При этом нужно решать и более трудную проблему - обеспечение высокой надежности. Очень важным моментом в этой связи, является отработка токовводов при создании машин высокой мощности. Перепад температур на токовводах составляет около 300К, они имеют внутренние источники тепловыделения, и поэтому представляют собой один из наиболее напряженных в эксплуатационном отношении узлов сверхпроводникового электротехнического устройства, являясь потенциально опасным источником аварий в криогенной зоне. Поэтому, при разработке токовводов, в первую очередь необходимо обращать внимание на надежность их работы, обеспечивая ее даже в ущерб тепло- и электрохарактеристикам токовводов.
Заключение
Эффект сверхпроводимости применяется во многих отраслях человеческой деятельности. Исследование способов увеличения критического магнитного поля позволяет создавать сверхпроводники, имеющие возможность пропускать высокие токи. На электростанциях достаточно давно применяются криотурбогенераторы, способные увеличивать мощность станций примерно на 40%. С явлением сверхпроводимости неразрывно связан наблюдаемый в жидком гелии эффект сверхтекучести. Жидкий гелий является уникальной жидкостью, часто его называют квантовой жидкостью, так как многие его макросвойства являются прямым отражением событий, происходящих на уровне атомов и элементарных частиц. Открытие сверхпроводимости было бы невозможно без создания технологии сжижения гелия. Особое применение имеет эффект Мейсснера--свойство отталкивания использоваться в создании магнитной подушки, применяемой в создании многих новых видов транспорта. Сверхпроводимость имеет также огромное значение для более глубокого понимания процессов, происходящих на уровне внутреннего строения атомов.
Приложение
рис.2 Зависимость критического тока от внешнего магнитного поля, перпендикулярного проволоке.
рис.3 Структура промежуточного состояния проволоки, несущей критический ток.
рис.4 Распределение магнитного потока и плотности сверхпроводящих электронов вблизи фазовой границы
рис.5 а) плотность состояний электронов в нормальном металле при Т =0. Занятое состояние заштриховано. б) плотность состояний неспаренных электронов в сверхпроводнике. Занятое состояние заштриховано
рис.6 Зависимость ширины энергетической щели от температуры
Табл.1 “Сферы применения сверхпроводимости”
Применение |
Примечания |
|
экранирование |
Сверхпроводник не пропускает магнитный поток, следовательно, он экранирует электромагнитное излучение. Используется в микроволновых устройствах, защита от излучения при ядерном взрыве. |
|
Магниты - научно-исследовательское оборудование - магнитная левитация |
НТСП магниты используются в ускорителях частиц и установках термоядерного синтеза. Интенсивно проводятся работы по созданию поездов на магнитной подушке. Прототип в Японии использует НТСП. |
|
передача энергии, аккумулирование, вращающиеся электрические машины, вычислительные устройства |
Прототипные линии НТСП продемонстрировали свою перспективность. Возможность аккумулировать электроэнергию в виде циркулирующего тока. Комбинация полупроводниковых и сверхпроводящих приборов открывает новые возможности в конструкциировании аппаратуры. |
Библиографический список
сверхпроводимость джозефсон магнитный проводник
1. “Сверхпроводимость”; Павлов Ю.М, ШугаевВ.А.
2. “Сверхпроводимость в технике”; Труды второй всесоюзной конференции по техническому использованию сверхпроводимости.
3. “Введение в сверхпроводимость”; Зайцев, Орлов.
4. “Сверхпроводимость: физика, химия, техника” №1-6, 1996
5. “Сверхпроводимость: исследования и разработки” №6, 1994.
6. Интернет источники
Размещено на Allbest.ru
Подобные документы
Квантование магнитного потока. Термодинамическая теория сверхпроводимости. Эффект Джозефсона как сверхпроводящее квантовое явление. Сверхпроводящие квантовые интерференционные детекторы, их применение. Прибор для измерения слабых магнитных полей.
контрольная работа [156,0 K], добавлен 09.02.2012Открытие явления сверхпроводимости. Первые экспериментальные факты. Эффект Мейснера, изотопический эффект. Теория сверхпроводимости. Щель в энергетическом спектре. Образование электронных пар. Квантование магнитного потока (макроскопический эффект).
дипломная работа [2,7 M], добавлен 24.08.2010Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.
курсовая работа [851,5 K], добавлен 04.06.2016Сверхпроводники. У начала пути. Сверхпроводники первого второго рода. Абрикосовские вихри. Свойства сверхпроводников. Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова. Теория Гинзбурга - Ландау.
курсовая работа [60,1 K], добавлен 24.04.2003История открытия сверхпроводников, их классификация. Фазовый переход в сверхпроводящее состояние. Научные теории, описывающие это явление и опыты, его демонстрирующие. Эффект Джозефсона. Применение сверхпроводимости в ускорителях, медицине, на транспорте.
курсовая работа [77,2 K], добавлен 04.04.2014Обращение в нуль электрического сопротивления постоянному току и выталкивание магнитного поля из объема. Изготовление сверхпроводящего материала. Промежуточное состояние при разрушении сверхпроводимости током. Сверхпроводники первого и второго рода.
курсовая работа [3,6 M], добавлен 24.07.2010Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.
презентация [2,7 M], добавлен 11.04.2015Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".
презентация [471,0 K], добавлен 22.11.2010Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.
реферат [42,2 K], добавлен 01.12.2010Эквивалентность движения проводника с током в магнитном поле. Закон Фарадея. Угловая скорость вращения магнитного поля в тороидальном магнитном зазоре. Фактор "вмороженности" магнитных силовых линий в соответствующие домены ферромагнетика ротора, статора.
доклад [15,5 K], добавлен 23.07.2015