Гелий-неоновый лазер
Характеристика газовых лазеров и изучение принципа действия гелий-неонового лазера как лазера, активной средой которого является смесь гелия и неона. Применение гелий-неоновых лазеров в лабораторных опытах и медицине. Устройство современных лазеров.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.05.2011 |
Размер файла | 170,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
6
Содержание
1. Введение
2. Принцип действия лазеров
3. Газовые лазеры
4. Гелий-неоновый лазер
5. Гелий-неоновый лазер типа ЛГ-36а
6. Применение гелий-неонового лазера в медицине
7. Некоторые сведения о современных гелий-неоновых лазерах
8. Список используемой литературы
1. Введение
Лазеры или оптические квантовые генераторы - это современные источники когерентного излучения. Их создание явилось одним из самых важных достижений физики ХХ века. Лазеры нашли достаточно широкое применение почти во всех областях науки, а так же техники, медицине и военном деле.
Окунёмся немного в историю:
Мысль исследовать газовые разряды ради наблюдения вынужденного излучения в начале ХХ века никому не пришла в голову - ведь ученые ещё не подозревали о его существовании.
В 1913 году Альберт Эйнштейн высказал гипотезу, что в недрах звезд излучение может генерироваться под действием вынуждающих фотонов. В классической статье «Квантовая теория излучения», опубликованной в 1917 году, Эйнштейн не только вывел существование такого излучения из общих принципов квантовой механики и термодинамики, но и доказал, что оно имеет одинаковое направление, длину волны, фазу и поляризацию, то есть когерентно вынуждающему излучению. А спустя десять лет Поль Дирак строго обосновал и обобщил эти выводы.
Первые эксперименты.
Работы теоретиков не остались незамеченными. В 1928 году Рудольф Ладенбург, директор отдела атомной физики Института физической химии и электрохимии Общества кайзера Вильгельма, и его ученик Ганс Копферманн экспериментально наблюдали инверсию населенностей в опытах с неоновыми трубками. Но вынужденное излучение было очень слабым, и различить его на фоне спонтанного излучения было сложно.
Одной из попыток создания лазера послужила достаточно серьезная работа, связанная с усилением оптических сигналов с помощью вынужденного излучения. Этой работой стала докторская диссертация москвича Валентина Фабриканта, опубликованная в 1940 году. В 1951 году В.А. Фабрикант, Ф.А. Бутаева и М.М. Вудинский подали заявку на изобретение нового метода усиления электромагнитного излучения, основанного на использовании среды с инверсией населенностей. К сожалению, эта работа была опубликована лишь через 8 лет и мало кем замечена, а попытки построить действующий оптический усилитель оказались бесплодными. Причиной этого стало отсутствие резонатора.
Путь к созданию лазера был найден не оптиками, а радиофизиками, которые издавна умели строить генераторы и усилители электромагнитных колебаний, использующие резонаторы и обратную связь. Им-то и было суждено сконструировать первые квантовые генераторы когерентного излучения, только не светового, а микроволнового.
Мазеры.
Возможность создания такого генератора первым осознал профессор физики Колумбийского университета Чарльз Таунс. Он понял, что можно построить микроволновой генератор с помощью пучка молекул, имеющих несколько уровней энергии. Для этого их нужно разделить электростатическими полями и загнать пучок возбужденных молекул в металлическую полость, где они перейдут на нижний уровень, излучая электромагнитные волны. Чтобы эта полость работала как резонатор, ее линейные размеры должны равняться длине излучаемых волн. Таунс поделился этой мыслью с аспирантом Джеймсом Гордоном и научным сотрудником Гербертом Цайгером. На роль среды они избрали аммиак, молекулы которого при переходе с возбужденного колебательного уровня на основной испускают волны длиной 12,6 мм. В апреле 1954-го Таунс и Гордон запустили первый в мире микроволновой квантовый генератор. Этот прибор Таунс назвал мазером.
В Лаборатории колебаний Физического института АН СССР этой же темой занимались старший научный сотрудник Александр Прохоров и его аспирант Николай Басов. В мае 1952 года на Общесоюзной конференции по радиоспектроскопии они сделали доклад о возможности создания квантового усилителя СВЧ-излучения, работающего на пучке молекул все того же аммиака. В 1954 году, вскоре после выхода работы Таунса, Гордона и Цайгера, Прохоров и Басов опубликовали статью, где были приведены теоретические обоснования работы такого прибора. В 1964 году Таунс, Басов и Прохоров за эти исследования были удостоены Нобелевской премии.
От микроволн к свету.
Поскольку длины световых волн измеряют десятыми долями микрона, изготовление объемного резонатора таких размеров было делом нереальным. Вероятно, возможность генерации света с помощью макроскопических открытых зеркальных резонаторов первым осознал американский физик Роберт Дике, который в мае 1956 года оформил эту идею в патентной заявке. В сентябре 1957 года Таунс набросал в записной книжке план создания такого генератора и назвал его оптическим мазером. Через год Таунс совместно с Артуром Шавловым и независимо от них Прохоров выступили со статьями, содержащими теоретические обоснования этого метода генерации когерентного света.
Сам термин «лазер» возник гораздо раньше. Эту английскую аббревиатуру, Light Amplification by Stimulated Emission of Radiation (в дословном переводе «усиление света с помощью стимулированного испускания излучения», хотя лазерами все же принято называть не усилители, а генераторы излучения, замена слова amplification на generation дает непроизносимое звукосочетание lgser), придумал аспирант Колумбийского университета Гордон Гулд, который совершенно самостоятельно провел детальный анализ методов получения стимулированного излучения оптического диапазона.
Лазеры.
Первый работающий лазер вышел из рук сотрудника корпорации Hughes Aircraft Теодора Меймана, который в качестве активной среды выбрал рубин. Мейман понял, что разделенные большими промежутками атомы хрома могут «светить» не хуже атомов газа. Для получения оптического резонанса он напылил тонкий слой серебра на полированные параллельные торцы цилиндрика из синтетического рубина. Цилиндр по специальному заказу изготовила фирма Union Carbide, на что ей понадобилось пять месяцев. Мейман поместил рубиновый столбик в спиральную трубку, дающую яркие световые вспышки. Шестнадцатого мая 1960 года первый в мире лазер выдал первый луч. А в декабре того же года в Лабораториях Белла заработал гелий-неоновый лазер, созданный Али Джаваном, Уильямом Беннеттом и Дональдом Хэрриотом.
Научная ценность и практическая польза лазеров были настолько очевидны, что ими сразу занялись тысячи ученых и инженеров из разных стран. В 1961 году заработал первый лазер на неодимовом стекле, в течение пяти лет были разработаны полупроводниковые лазерные диоды, лазеры на органических красителях, химические лазеры, лазеры на двуокиси углерода. В 1963 году Жорес Алферов и Герберт Кремер независимо друг от друга разработали теорию полупроводниковых гетероструктур, на основе которых позднее были созданы многие лазеры.
Как уже было выше сказано, лазеры вошли в нашу жизнь, и обосновались в ней достаточно неплохо, занимая хорошее положение во многих областях науки и техники.
В качестве рабочих тел современных лазеров используются вещества, находящиеся в различных агрегатных состояниях: газы, жидкости, твёрдые тела.
Я хочу остановиться на газовых лазерах, и более подробно изучить лазер, активной средой которого является смесь гелия и неона.
действие гелий неон лазер медицина
2. Принцип действия лазеров
Мы знаем, что, если атому, находящемуся на основном уровне W1, сообщить энергию, то он может перейти на один из возбужденных уровней (рис.1а). Наоборот, возбужденный атом может самопроизвольно (спонтанно) перейти на один из нижележащих уровней, излучив при этом определенную порцию энергии в виде кванта света (рис.1б). Если излучение света происходит при переходе атома с уровня энергии Wm на уровень энергии Wn, то частота излучаемого (или поглощаемого) света
нmn = (Wm - Wn)/h.
Именно такие спонтанные процессы излучения происходят в нагретых телах и светящихся газах. Нагревание или электрический разряд переводят часть атомов в возбужденное состояние; переходя в нижние состояния, они излучают свет. В процессе спонтанных переходов атомы излучают свет независимо один от другого. Кванты света хаотически испускаются атомами в виде волновых цугов. Цуги не согласованы друг с другом во времени, т.е. имеют различную фазу. Поэтому спонтанное излучение некогерентно.
Наряду со спонтанным излучением возбужденного атома существует вынужденное (или индуцированное) излучение: возбужденные атомы излучают под действием внешнего быстропеременного электромагнитного поля, например света. При этом оказывается, что под действием внешней электромагнитной волны атом излучает вторичную волну, у которой частота, поляризация, направление распространения и фаза полностью совпадают с параметрами внешней волны, действующей на атом. Происходит как бы копирование внешней волны (рис.1в). Понятие об индуцированном излучении было введено в физику А.Эйнштейном в 1916 г. Явление вынужденного излучения дает возможность управлять излучением атомов с помощью электромагнитных волн и таким путем генерировать и усиливать когерентный свет.
Чтобы осуществить это практически, нужно выполнить три условия.
1. Необходим резонанс - совпадение частоты падающего света с одной из частот нmn спектра атома. О выполнении резонансного условия позаботилась сама природа, т.к. спектры излучения одинаковых атомов абсолютно идентичны.
2. Другое условие связано с населенностью различных уровней. Наряду с вынужденным излучением света атомами, находящимися на верхнем уровне Wm, происходит также резонансное поглощение атомами, населяющими нижний уровень Wn. Атом, находящийся на нижнем уровне Wn, поглощает световой квант, переходя при этом на верхний уровень Wm.
Резонансное поглощение препятствует возникновению генерации света.
Будет ли система атомов генерировать свет или нет, зависит от того, каких атомов в веществе больше. Для возникновения генерации необходимо, чтобы число атомов на верхнем уровне Nm было больше числа атомов на нижнем уровне Nn, между которыми происходит переход.
Конечно, можно использовать лишь ту пару уровней, между которыми возможен переход, т.к. не все переходы между любыми двумя уровнями разрешены природой. В естественных условиях на более высоком уровне при любой температуре меньше частиц, чем на более низком. Поэтому в любом теле, сколь угодно сильно нагретом, поглощение света будет преобладать над излучением при вынужденных переходах.
Для возбуждения генерации когерентного света необходимо принять специальные меры, чтобы из двух выбранных уровней верхний был заселен больше, чем нижний. Состояние вещества, в котором число атомов на одном из уровней с более высокой энергией больше числа атомов на уровне с меньшей энергией, называется активным или состоянием с инверсией (обращением) населенностей.
Таким образом, для возбуждения генерации когерентного света необходима инверсия населенностей для той пары уровней, переход между которыми соответствует частоте генерации.
3. Третья проблема, которую необходимо решить для создания лазера, - это проблема обратной связи. Для того, чтобы свет управлял излучением атомов, необходимо, чтобы часть излучаемой световой энергии все время оставалась внутри рабочего вещества, так сказать, на "размножение", вызывая вынужденное излучение света все новыми и новыми атомами. Это осуществляется с помощью зеркал. В простейшем случае рабочее вещество помещается между двумя зеркалами одно из которых имеет коэффициент отражения около 99.8%, а второе (выходное) - около 97-98%, что может быть достигнуто только за счет применения диэлектрических покрытий. Световая волна, испущенная в каком-либо месте в результате спонтанного перехода атома, усиливается за счет вынужденного испускания при распространении ее через рабочее вещество. Дойдя до выходного зеркала, свет частично пройдет сквозь него. Эта часть световой энергии излучается лазером во вне и может быть использована. Часть же света, отразившаяся от полупрозрачного выходного зеркала, дает начало новой лавине фотонов. Эта лавина не будет отличаться от предыдущей в силу свойств вынужденного излучения.
При этом, как и в любом резонаторе, условие резонанса выполняется только у тех волн, для которых на двойном оптическом пути внутри резонатора укладывается целое число длин волн. Наиболее благоприятные условия складываются для волн, распространяющихся вдоль оси резонатора, что и обеспечивает чрезвычайно высокую направленность излучения лазера.
Выполнение описанных условий еще недостаточно для генерации лазера. Для того, чтобы возникла генерация света, усиление в активном веществе должно быть достаточно большим. Оно должно превышать некоторое значение, называемое пороговым. Действительно, пусть часть светового потока, падающего на выходное зеркало, отразилась назад. Усиление на двойном расстоянии между зеркалами (один проход) должно быть таким, чтобы на выходное зеркало вернулась световая энергия, не меньшая, чем в предыдущий раз. Только тогда световая волна начнет нарастать от прохода к проходу. Если же этого нет, то в течение второго прохода выходного зеркала достигнет меньшая энергия, чем в предыдущий момент, в течение третьего - еще меньшая и т.д. Процесс ослабления будет продолжаться до тех пор, пока световой поток не затухнет полностью. Ясно, что чем меньше коэффициент отражения выходного зеркала, тем большим пороговым усилением должно обладать рабочее вещество. Таким образом, в списке источников потерь зеркала стоят на первом месте.
Итак, сформулируем кратко условия, необходимые для создания источника когерентного света:
· нужно рабочее вещество с инверсной населенностью. Только тогда можно получить усиление света за счет вынужденных переходов;
· рабочее вещество следует поместить между зеркалами, которые осуществляют обратную связь;
· усиление, даваемое рабочим веществом, а значит, число возбужденных атомов или молекул в рабочем веществе должно быть больше порогового значения, зависящего от коэффициента отражения выходного зеркала.
При выполнении этих трех условий мы получим систему, способную генерировать когерентный свет, и называемую лазером.
3. Газовые лазеры
Газовыми называются лазеры, в которых активной средой являются газ, смесь нескольких газов или смесь газов с парами металла.
Особенности газообразной активной среды.
Среда в газовых лазерах имеет несколько замечательных свойств. Прежде всего, только газовые среды могут быть прозрачными в широком спектральном диапазоне от вакуумной УФ области спектра до волн ИК, по существу СВЧ, диапазона. В результате газовые лазеры работают в громадном диапазоне длин волн.
Далее. По сравнению с твердыми телами и жидкостями газы обладают существенно меньшей плотностью и более высокой однородностью. Поэтому световой луч в газе в меньшей степени искажается и рассеивается. Это позволяет легче достигать дифракционного предела расходимости лазерного излучения. При малой плотности для газов характерно доплеровское уширение спектральных линий, величина которого мала по сравнению с шириной линии люминесценции в конденсированных средах. Это позволяет легче достигать высокой монохроматичности излучения газовых лезеров.
Как известно, для выполнения условий самовозбуждения усиления в активной среде за один проход резонатора лазера должно превышать потери. В газах отсутствие нерезонансных потерь энергии непосредственно в активной среде облегчает выполнение этого условия. Технически трудно изготовить зеркала с потерями, заметно меньшими 1%. Следовательно, усиление должно превышать 1%. Относительная легкость выполнения такого требования в газах, например путем увеличения длины активной среды, объясняет наличие большого количества газовых лазеров в широком диапазоне длин волн.
Вместе с тем малая плотность газов препятствует получению такой высокой плотности возбужденных частиц, которая характерна для твёрдых тел.
Поэтому удельный энергосъём у газовых лазеров существенно ниже, чем у лазеров на конденсированных средах.
Специфика газов проявляется и в многообразии различных физических процессов, применяемых для создания инверсии населённостей. К их числу относятся возбуждение при столкновениях в электрическом разряде, возбуждение в газодинамических процессах, химическое возбуждение, оптическая накачка (лазерным излучением), электронно-лучевое возбуждение.
В лазере, который будет более подробно рассмотрен далее в этой работе, возбуждение осуществляется электрическим разрядом.
4. Гелий-неоновый лазер
Лазер на смеси гелия с неоном был первым лазером непрерывного действия, в котором излучение с длины волны 1,15 мкм возникает в результате переходов между уровнями 2S и 2P в атомах Ne.
Позднее для получения лазерной генерации на л=0,6328 мкм и на л=3,39 мкм использовались другие переходы в Ne.
Действие можно объяснить с помощью Рис.3 В смеси газа, содержащей обычно гелий (1 мм рт. ст.) и неон (0,1 мм рт. ст.), создается разряд постоянного тока или высокочастотный разряд.
Рис.3
Электроны, ускоренные электрическим полем, переводят атомы гелия в различные возбужденные состояния. При нормальной каскадной релаксации возбужденных атомов к основному состоянию многие из них накапливаются на долгоживущих метастабильных уровнях 2(3)S 2(1)S время жизни которых составляет соответственно 10-4 и 5*10-6 секунд соответственно. Так как эти метастабильные уровни почти совпадают по энергии с уровнями 2Sи 3S в Ne, они могут передавать возбуждение атомам Ne. Находящимися в основном состоянии, и обмена с ними энергией. Небольшая разница в энергии (?400 см-1 в случае 2S уровня) переходит в кинетическую энергию атома после столкновения. Таков основной механизм накачки в He-Ne-системе.
1. Генерация на длине волны 0,6328 мкм. Верхний лазерный уровень-это один из уровней 3S неона, тогда как нижний принадлежит группе 2Р. Нижний 2Р-уровень распадается радиационно с постоянной с постоянной времени около 10-8 с. в долгоживущее по времени 1S-состояние. Это время много короче времени жизни (10-7 с.) верхнего лазерного уровня 3S. Таким образом, условие для инверсии населенности в 3S-2Р-переходе выполняется.
Важное значение имеет уровень 1S. Атомы задерживаются на нём при радиационных переходах с нижнего лазерного уровня 2Р из-за большого времени жизни этого уровня. Атомы в 1S-состоянии сталкиваются с электронами разряда и возбуждаются обратно на нижний лазерный уровень 2Р. Это уменьшает инверсию. Атомы в состояниях 1S релаксируют обратно в основное состояние, главным образом, при столкновениях со стенкой разрядной трубки. По этой причине усиление на переходе 0.6328 мкм увеличивается с уменьшением диаметра трубки.
2. Генерация на длине волны 1.15 мкм. Верхний лазерный уровень 2S неона накачивается при резонансных (т.е. с сохранением внутренней энергии) столкновениях с метастабильным 23S-уровнем гелия. Нижний уровень тот же, что и при генерации на переходе 0,6328 мкм, что также приводит к зависимости населенности 1S-уровня неона от столкновений со стенками.
3. Генерация на длине волны 3,39 мкм. Она обусловлена 3S-3Р-переходами в атомах неона. Теперь верхний лазерный уровень тот же, что и при генерации, на длине волны 0.6328 мкм. На этом переходе оптическое усиление для небольшого сигнала1 достигает примерно 50 дБ/м. Это большое усиление частично объясняется коротким временем жизни уровня 3Р, благодаря которому и возможно создание большой инверсии. Из-за большого усиления на этом переходе генерация на длине волны 3,39 мкм препятствует генерации на длине волны 0,6328 мкм. Это обусловлено тем, что пороговые условия вначале достигаются для перехода 3,39 мкм. Как только это происходит, насыщение усиления начинает мешать любому дальнейшему увеличению населенности 3S-уровня. В лазерах с длиной волны 0,6328 мкм с этим борются, вводя в оптический пучок дополнительные элементы, например стеклянные или кварцевые окошки Брюстера, которые сильно поглощают излучение с длиной волны 3,39 мкм и пропускают-с 0,6328 мкм. В этом случае уровень пороговой накачки для генерации на л=3,39 мкм становится выше уровня для генерации на 0,6328 мкм.
Речь идет об усилении очень слабой волны, распространяющейся через область разряда внутри лазерного резонатора, при одном проходе. В лазере усиление на проход уменьшается за счет насыщения, пока оно не становится равным потерям на проход.
5. Гелий-неоновый лазер типа ЛГ-36а
В гелий-неоновом лазере рабочая газовая смесь находится в газоразрядной трубке Рис.4, длина которой может достигать 0,2-1 м.
Трубка изготавливается из высококачественного стекла или кварца. Мощность генерации существенно зависит от диаметра трубки. Увеличение диаметра ведет к увеличению объема рабочей смеси, что способствует возрастанию мощности генерации. Однако с увеличением диаметра трубки уменьшается электронная температура плазмы, что приводит к уменьшению числа электронов, способных возбуждать атомы газов. Что в конечном итоге снижает мощность генерации. Для уменьшении потерь торцы газоразрядной трубки закрыты плоскопараллельными пластинками, которые расположены не перпендикулярно к оси трубки, а так, чтобы нормаль к этой пластинке составляла с осью трубки угол iБ=arctg n (n-показатель преломления материала пластинки), называемый углом Брюстера. Особенность отражения электромагнитной волны от границы раздела различных сред под углом iБ широко применяется в лазерной технике. Установка выходных окон кювета с активной средой под углом Брюстера однозначно определяет поляризацию лазерного излучения. Для излучения поляризованного в плоскости падения, потери в резонаторе минимальны. Естественно, именно это линейно-поляризованное излучение устанавливается в лазере и является преобладающим.
Газоразрядная трубка помещена в оптический резонатор, который образован зеркалами с интерференционным покрытием. Зеркала закреплены во фланцах, конструкция которых позволяет поворачивать зеркала в двух взаимно перпендикулярных плоскостях при юстировке путем вращения юстировочных винтов. Возбуждение газовой смеси осуществляется путем подачи высокочастотного напряжения с блока питания на электроды. Блок питания представляет собой высокочастотный генератор, обеспечивающий генерирование электромагнитных колебаний с частотой около 30 МГц при мощности в несколько десятков ватт.
Широко распространено питание газовых лазеров постоянным током при напряжении 1000-2000 В, получаемых с помощью стабилизированных выпрямителей. В этом случае газоразрядная трубка снабжается подогревным или холодным катодом и анодом. Для зажигания разряда в трубке используется электрод, на который подается импульсное напряжение около 12 кВ. Это напряжение получают путем разряда конденсатора емкостью 1-2 мкФ через первичную обмотку импульсного трансформатора.
Достоинствами гелий-неоновых лазеров являются когерентность их излучения, малая потребляемая мощность (8-10 Вт) и небольшие размеры. Основные недостатки - невысокий к. п. д. (0,01-0,1%) и низкая выходная мощность, не превышающая 60 мВт. Эти лазеры могут работать и в импульсном режиме, если для возбуждения использовать импульсное напряжение большой амплитуды при длительности в единицы микросекунд.
6. Применение гелий-неонового лазера в медицине
Как уже сказано выше гелий-неоновый лазер имеет широкое применение. Я же, в этой работе, хочу рассмотреть применение данного лазера в медицине. А именно, использование гелий-неонового лазера для восстановления и повышения работоспособности человека.
Лазеры в медицине применяют более 20 лет. За этот период исследования с использованием лазерного излучения оформились в специализированную область медико-биологической науки, которая включает два основных направления: разрушение тканей патологических очагов сравнительно мощным лазерным излучением и биостимуляционные воздействия низкоэнергетическим излучением.
Исследования показали, что гелий-неоновый лазер оказывает на живой организм стимулирующее действие, способствует очищению ран от микроорганизмов и ускоряет эпителизацию, улучшает функциональные показатели центральной нервной системы и мозгового кровообращения у больных гипертонической болезнью; вызывает прекращение болей или их уменьшение у больных остеохондрозом позвоночника.
Многими исследователями было показано, что энергия, принесенная лазерным излучением, "востребуется" в том случае, когда это обусловливается нуждами саморегуляции состояния человека. Это дает право считать, что лазерное излучение имеет не раздражающий, возбуждающий, а нормализующий недопинговый характер.
Рассмотрим более подробно исследование, проводимое кандидатом медицинских наук, доцентом Т.И. Долматовой, Г.Л. Шрейберг, кандидатом биологических наук, доцентом Н.И. Близнец Московской государственной академии физической культуры Всероссийского научно-исследовательского института физической культуры. Они локально воздействовали лазерным лучом на биологически активные точки (БАТ) на поверхности тела. Примененяли гелий-неоновый лазер на БАТ в спорте для изучения процессов восстановления после физических нагрузок и последствия излучения. Лазерное излучение проводилось аппаратом АГ-50, длина волны которого 632 А, мощность излучения - 10 мВ, площадь облучения - 0,5 см2; точки облучения - "хе-гу"2, "джу-сань-ли", время облучения - 2,0 мин на каждую симметричную точку, общее время экспозиции - 10 мин, процедура осуществлялась ежедневно в течение 10 дней.
Спортсмены облучались гелий-неоновым лазером до физической нагрузки. На 5-й день они отмечали лучшее восстановление после нагрузок, так же лучше переносили тренировку с большими весами. К 10-му дню воздействия гелий-неонового лазера самочувствие спортсменов оставалось хорошим, они тренировались с удовольствием, нагрузки переносили хорошо. Так же воздействовали лазером в период восстановления, сразу после нагрузки, исследования показали, что более быстро, чем без воздействия излучения происходило восстановление, расслабление, хороший сон, наблюдались урежение пульса и понижение максимального и минимального артериального давления.
Таким образом, у всех спортсменов, получавших облучение гелий-неонового лазера, более выражено повышение спортивной работоспособности за цикл тренировочных занятий, так же восстановление протекало значительно лучше, чем без воздействия излучения.
Хе-гу точка расположена на верхушке складки между сжатыми указательным и большим пальцами рук.
7. Некоторые сведения о современных гелий-неоновых лазерах
Наиболее распространены отпаянные плазменные He-Ne трубки со встроенными зеркалами и высоковольтными источниками питания. Лабораторные He-Ne лазеры со внешними зеркалами так же существуют и дорого стоят.
Длины волн:
· Красный 632,8 нм (выглядит на самом деле как оранжево-красный) сейчас самый распространенный.
· Оранжевый 611,9 нм
· Желтый 594,1 нм
· Зеленый 543,5 нм
· ИК 1523,1 нм (они так же существуют, но они менее эффективны и поэтому более дороги при равной мощности луча).
Качество луча:
Исключительно высокое. Выходное излучение хорошо сколлимировано без дополнительной оптики и имеет прекрасную длину когерентности (от 10 см до нескольких метров и более). Большинство маленьких трубок работают в одной поперечной моде (ТЕМ00).
Выходная мощность:
От 0,5 до 35 мВт (самые распространенные), существуют на 250 мВт и более.
Некоторые применения:
Заводская настройка и измерения; подсчет и анализ клеток крови; медицинская наводка и наблюдение во время операций (для лазеров большой мощности); печать, сканирование и оцифровка высокого разрешения; сканеры штрих-кода; интерференционная метрология и измерение скорости; бесконтактные измерения и мониторинг; общая оптика и голография; лазерные шоу; Laser Disk и другие накопители данных.
Цена:
От 25 до 5000 долларов и более в зависимости от размера, качества, состояния (новый или нет).
Достоинства:
Недорогой, детали широко доступны, надежный, долго работающий.
8. Список используемой литературы
1. Н. В. Карлов Лекции по квантовой физике. 314с.
2. А. С. Борейшо Лазеры: Устройство и Действие. Санкт-Петербург 1992. 214с.
3. А. Ярив Введение в оптическую электронику. “Высшая школа” Москва 1983. 398 с.
4. Ю. В. Байбородин Основы лазерной техники. “Высшая школа” 1988. 383с.
Размещено на Allbest.ru
Подобные документы
Общая характеристика гелий-неонового лазера, его проектирование и расчет основных параметров: коэффициент усиления активной среды, оптимальный ток, длина резонатора, радиус пучка в перетяжке, эффективная площадь сечения пучка, мощность накачки и КПД.
контрольная работа [131,1 K], добавлен 24.07.2013Основа принципа работы лазеров. Классификация лазеров и их основные характеристики. Использование лазера при маркировке товаров. Способ возбуждения активного вещества. Расходимость лазерного луча. Диапазон длины волн. Области применения лазера.
творческая работа [17,5 K], добавлен 24.02.2015Теория атомно-абсорбционных измерений: излучение и поглощения света, понятие линии поглощения и коэффициента поглощения, контур линии поглощения. Принцип работы лазера. Описание работы гелий-неонового лазера. Лазеры на органических красителях.
реферат [392,9 K], добавлен 03.10.2007Создание оптического квантового генератора или лазера - великое открытие физики. Принцип работы лазеров. Вынужденное и спонтанное излучение. Газовый, полупроводниковый непрерывного действия, газодинамический, рубиновый лазер. Сферы применения лазеров.
презентация [4,4 M], добавлен 13.09.2016История создания лазера. Принцип работы лазера. Некоторые уникальные свойства лазерного излучения. Применение лазеров в различных технологических процессах. Применение лазеров в ювелирной отрасли, в компьютерной технике. Мощность лазерных пучков.
реферат [610,1 K], добавлен 17.12.2014Лазер - квантовый генератор, излучающий в диапазоне видимого и инфракрасного излучения. Схема устройства лазера и принцип его действия. Временные режимы работы прибора, частота поступления энергии. Применение лазеров в различных отраслях науки и техники.
реферат [439,5 K], добавлен 28.02.2011Понятие, классификация лазеров по признакам, характеристика основных параметров, их преимущества. Причины конструкции лазеров с внешним расположением зеркал. Описание физических процессов в газовых разрядах, способствующих созданию активной среды.
реферат [594,8 K], добавлен 13.01.2011Характеристики полупроводниковых материалов и источников излучения. Соединение источника с волокном. Конструкции одномодовых лазеров, особенности РБО-лазеров. Расчет параметров многомодового лазера с резонатором Фабри-Перо. Светоизлучающие диоды (СИД).
реферат [561,8 K], добавлен 11.06.2011Устройство и назначение простейшего твердотельного лазера; их изготовление из рубинов, молибдатов, гранатов. Ознакомление с оптическими свойствами кристаллов и особенностями генерации света. Определение энергетических характеристик импульсного лазера.
реферат [1,5 M], добавлен 12.10.2011Ознакомление с историей создания генераторов электромагнитного излучения. Описание электрической схемы и изучение принципов работы полупроводникового лазера. Рассмотрение способов применения лазера для воздействия на вещество и для передачи информации.
курсовая работа [708,7 K], добавлен 08.05.2014