История открытия радиоизлучения

Радиоастрономия – наука о измерении и анализе радиоизлучения, история ее возникновения. Открытия астрономов и инженеров. Механизмы радиоизлучения небесных тел. Радиоизлучение Солнца: спокойное и бурное. Радиотелескопы: строение, использование конструкций.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 26.04.2011
Размер файла 33,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

История открытия радиоизлучения

Введение

радиоизлучение астроном телескоп

Многие объекты Вселенной, включая Солнце, планеты, туманности, галактики, а в особенности такие необычные объекты, как, например, пульсары и квазары, излучают радиоволны, которые можно принимать с помощью современной техники. Измерением и анализом радиоизлучения космических источников занимается специальный раздел астрономии - радиоастрономия.

Радиоволны, как и видимый свет, представляют собой электромагнитные колебания, но длина волны у них неизмеримо больше, чем у световых волн. Радиоастрономы обычно работают в диапазоне длин волн от нескольких миллиметров до 15-20 м. Более длинноволновое и более коротковолновое излучение не пропускает земная атмосфера, и для его приёма необходимо выносить аппаратуру в космос.

От изобретения радио до открытия космического радиоизлучения прошло несколько десятилетий. Причина в том, что радиоизлучение космических объектов исключительно слабое, поэтому для его исследования необходимы очень чувствительные приборы и огромные приёмные антенны - радиотелескопы.

1. Рождение новой науки

Впервые космическое радиоизлучение обнаружил в 1932 г. американский инженер Карл Янский. Он тогда исследовал радиопомехи, мешавшие работе трансатлантического беспроводного телефона. Для этих целей была построена большая однонаправленная антенна: специальная металлическая рама, закреплённая на поворотном устройстве - карусели. Размеры конструкции составляли 30,5 м в длину и 3,7 м в высоту. Антенну можно было сориентировать в нужном направлении и изучать приходящее радиоизлучение. Работа велась на волне 14,6 м.

Янский быстро выяснил, что треск и щелчки в наушниках, мешавшие связи, были вызваны ближними и дальними грозовыми разрядами. Но кроме этих помех он уловил постоянное негромкое шипение, которое усиливалось и ослабевало с периодом 23 ч 56 мин. Это время равно звёздным суткам - периоду обращения Земли вокруг собственной оси. Направленность антенны Янского была довольно низкой, он мог определять положение источника радиоизлучения с точностью лишь около 30°. Тем не менее Янский установил, что "паразитное" радиоизлучение приходит из космоса - от Млечного Пути, причём наибольшая интенсивность его наблюдается в направлении центра нашей Галактики. Результаты своих исследований Янский опубликовал в статье "Электрические помехи внеземного происхождения".

Открытие Янского не сразу было замечено астрономами. Только в 1939 г. другой американский радиоинженер, Гроут Ребер, построивший на собственные средства антенну с параболическим рефлектором диаметром 9,5 м, снова зарегистрировал радиоизлучение Млечного Пути на волне 1,87 м. В течение пяти лет Ребер проводил систематические измерения и в 1942 г. издал первую радиокарту всего северного неба. На ней кроме обнаруженного Янским мощного радиоисточника в центре Галактики отмечено ещё несколько более слабых источников. Они находятся в созвездиях Лебедя, Кассиопеи, Большого Пса, Кормы и Единорога.

В отличие от Янского, который поместил статью в техническом журнале, Ребер направил свою работу в ведущее астрономическое издание - "Астрофизический журнал" ("Astro-physical Journal"). Статья Ребера привлекла, наконец, внимание астрономов и радиофизиков, и сразу после окончания Второй мировой войны новая наука - радиоастрономия - стала быстро развиваться.

2. Эпоха открытий

Астрономы и инженеры поняли, что для измерения космического радиоизлучения нужны радиотелескопы гораздо больших размеров, чем антенны Янского и Ребера. Уже в 1947 г. в Великобритании, в университете города Манчестера, был построен неподвижный параболический радиотелескоп диаметром 66 м. В 1950 г. с его помощью удалось зафиксировать слабое радиоизлучение от туманности в созвездии Андромеды, которая является соседней с нами спиральной галактикой. В 1957 г. вблизи Манчестера, в местечке Джод-релл-Бэнк, сооружён поворачивающийся 76-метровый радиотелескоп. В 1961 г. вступил в строй 64-метровый радиотелескоп в Парксе (Австралия), а в 1962 г. - 92-метровый меридианный радиотелескоп на обсерватории Грин-Бэнк в США.

Увеличение размеров радиотелескопов повысило их чувствительность, а также привело к улучшению углового разрешения (оно характеризует угловые размеры самых мелких наблюдаемых деталей). Разрешение тем выше, чем меньше отношение длины волны к диаметру телескопа. Таким образом, благодаря большому диаметру радиоантенны можно получить более "резкое" изображение радиоисточника на данной длине волны.

Уже в 50-е гг. для достижения более высокого углового разрешения астрономы стали использовать радиоинтерферометры - системы из нескольких радиотелескопов, соединённых электрическими связями. Благодаря этому удалось определить точные координаты радиоисточника

Кассиопея А и отождествить источник Лебедь А с удалённой двойной галактикой. Австралийские исследователи с помощью морского интерферометра, в котором вместо второго радиотелескопа использовался сигнал, отражённый от морской поверхности, отождествили несколько новых радиоисточников: Телец А - с Крабовидной туманностью, Центавр А и Деву А-с далёкими галактиками.

Эти открытия, следовавшие одно за другим, обескураживали астрономов. Почему ближайшая галактика в созвездии Андромеды излучает в радиодиапазоне в миллион раз меньше энергии, чем далёкая галактика в созвездии Лебедя? Как объяснить радиоизлучение Млечного Пути - места концентрации звёзд, газа и пыли в нашей Галактике? Простое сложение излучения звёзд Млечного Пути не давало нужного результата, поскольку обычные звёзды типа нашего Солнца в спокойном состоянии излучают очень мало энергии в радиодиапазонс. Радиоизлучение Солнца к тому времени было измерено и хорошо изучено. Пришлось признать, что астрономические объекты устроены во многом не так, как казалось на основании одних только оптических исследований. Уже к концу 50-х гг. стало ясно, что радиоастрономы открыли новую, невидимую Вселенную.

В 60-е - начале 70-х гг. были открыты квазары, пульсары, межзвёздные мазеры, реликтовое радиоизлучение, обнаружены взрывы звёзд, столкновения целых звёздных систем - галактик. Получила развитие теория механизмов радиоизлучения - теплового, синхротронного, мазерного.

В настоящее время радиоастрономия находится на переднем фронте астрофизических исследований. Обладая самыми чувствительными приёмниками излучения, она изучает наиболее далёкие объекты во Вселенной. Современная радиоастрономия обеспечивает и наивысшее угловое разрешение - способность видеть мельчайшие детали строения небесных радиоисточников. Высокочувствительные и высококачественные радиоастрономические исследования разнообразных уникальных и во многом ещё загадочных объектов Вселенной, несомненно, принесут новые захватывающие открытия.

3. Механизмы радиоизлучения небесных тел

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ. Любое нагретое тело излучает электромагнитные волны. Чем выше температура тела, тем более коротковолновое излучение преобладает в его спектре. Закон распределения энергии в спектре теплового излучения был сформулирован немецким физиком Максом Планком и назван в его честь законом Планка. При температуре 6000 К максимум излучаемой энергии приходится на оптический диапазон. Таков спектр излучения поверхности Солнца. Более горячая звезда излучает большую часть энергии в ультрафиолетовом диапазоне, менее горячая - в инфракрасном. Для того чтобы спектр имел максимум в сантиметровом диапазоне радиоволн, температура источника должна быть всего 3 К (-270 °С).

Сопоставив интенсивность радиоизлучения от исследуемого источника на нескольких длинах волн, можно установить, выполняется ли для него закон Планка (т. е. является ли это излучение тепловым), и если да, то какова температура источника. Измерения показали, например, что радиоизлучение Солнца соответствует значительно более высоким температурам, чем температура его видимой поверхности. Так, температура, определённая по радиоизлучению в сантиметровом диапазоне, оказалась равной примерно 10 000 К, а в метровом диапазоне - 1 000 000 К. Это объясняется тем, что радиоизлучение Солнца возникает в верхних слоях его атмосферы, называемых короной (в оптических лучах она видна только во время полного солнечного затмения). Разогретая до миллиона градусов солнечная корона проявляет себя как источник теплового радиоизлучения.

Тепловыми космическими радиоисточниками являются и тела Солнечной системы (Луна, планеты и их спутники), и облака межзвёздного газа, нагретого ультрафиолетовым излучением горячих звёзд. Но, как правило, мощность этого излучения невелика.

СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ. Син-хротронное излучение порождается электронами, движущимися с релятивистскими скоростями (т. е. близкими к скорости света) в магнитном поле. Такое излучение впервые обнаружили в ускорителе частиц - синхротроне. Заряженная частица движется в магнитном поле не по прямой, а по винтовой линии. Размер витков зависит от заряда частицы, её массы и напряжённости магнитного поля. Вращаясь, частица постепенно теряет энергию, которая уходит на излучение электромагнитных волн. Излучение релятивистской частицы сосредоточено в узком конусе, направленном вдоль вектора её мгновенной скорости, и имеет более высокую частоту, чем нерелятивистское излучение. Излучение отдельных частиц, обладающих различными скоростями, складывается и образует наблюдаемое синхротронное излучение. Это излучение нетеплового характера, его интенсивность возрастает с увеличением длины волны.

Впервые теория синхротронного излучения была применена для объяснения нетеплового высокоширотного радиоизлучения нашей Галактики. Именно оно было обнаружено при первых радионаблюдениях. Ещё в 1950 г. шведские учёные X. Альвен и Н. Герлофсон высказали гипотезу, что радиоизлучение Галактики является синхротронным излучением космических электронов, движущихся с околосветовыми скоростями в межзвёздных магнитных полях. Их гипотеза блестяще подтвердилась. Синхротронную природу имеет и большинство внегалактических радиоисточников. Это самый распространённый механизм космического радиоизлучения. Его примеры - излучение остатков вспышек сверхновых (Крабовидная туманность, Кас-сиопея А), а также радиоизлучение планеты Юпитер.

РАДИОИЗЛУЧЕНИЕ НЕЙТРАЛЬНОГО ВОДОРОДА НА ВОЛНЕ 21 СМ. Как тепловое, так и синхротронное радиоизлучение имеют непрерывный спектр. Они рождаются при движении свободных электронов. Но связанный, т. е. входящий в состав атома или молекулы, электрон также может излучать при переходе с одной орбиты на другую (из одного энергетического состояния в другое). При этом излучение имеет определённую длину волны, зависящую от разности энергий исходного и конечного состояния, и представляет собой узкую спектральную линию. Чем больше разность энергий, тем короче длина волны излучаемой спектральной линии.

Чтобы спектральная линия попала в радиодиапазон, необходим переход между очень близкими энергетическими состояниями. В 1945 г. такой переход для атома водорода нашёл нидерландский астрофизик Хендрик ван де Хюлст. Он показал, что когда атом водорода самопроизвольно переходит из состояния с одинаковыми направлениями осей вращения электрона и протона в состояние с противоположными направлениями их осей, то должна излучаться спектральная линия в радиодиапазоне с длиной волны 21 см. Ожидаемую интенсивность этой предсказанной ван де Хюлстом радиолинии рассчитал Иосиф Самуилович Шкловский в 1948 г.

Уже в 1951 г. радиолиния нейтрального водорода с длиной волны 21 см была обнаружена почти одновременно тремя исследовательскими группами в США, Австралии и Нидерландах. Радиоастрономические измерения в линии 21 см стали эффективным средством изучения Вселенной, ведь до этого нейтральный водород, составляющий более половины массы галактического межзвёздного вещества, оставался ненаблюдаемым.

Измерения в линии 21 см позволили определить плотность, температуру и скорость движения облаков межзвёздного водорода в нашей и соседних галактиках.

РЕКОМБИНАЦИОННЫЕ РАДИОЛИНИИ. Линия 21 см излучается облаками холодного нейтрального водорода, в которых атомы находятся на самом низком - основном - энергетическом уровне, т. е. электрон обращается вокруг протона по ближайшей к нему орбите. Кроме основного состояния у атома имеется бесконечный ряд возможных так называемых возбуждённых состояний, когда электрон обращается вокруг протона по более удалённой орбите с некоторым номером п. Для основного состояния п = 1. В возбуждённом состоянии атом не может находиться долго. В конце концов электрон возвращается на основную орбиту путём одного или нескольких переходов, каждый раз испуская излучение соответствующей длины волны. Переходы между орбитами с большими номерами (к примеру, с номера 110 на 109-й) соответствуют излучению в радиодиапазоне, которое называется реком-бинационным.

Возможность наблюдения реком-бинационных радиолиний предсказал русский астроном Николай Семёнович Кардашёв в 1959 г. Эти линии дают богатую информацию о физических условиях в газовых туманностях и в межзвёздной среде. Рекомби-национные линии обнаружены не только у водорода, но также у атомов гелия и углерода, причём углеродные радиолинии наблюдались при переходах между орбитами с рекордно большими номерами - более 700. Длины волн таких линий составляют около 30 м. Они открыты украинским радиоастрономом А. И. Коноваленко на 2-километровом синфазном радиотелескопе УТР-2 вблизи Харькова.

МОЛЕКУЛЯРНЫЕ ЛИНИИ И МАЗЕР-НОЕ ИЗЛУЧЕНИЕ. О существовании молекул в межзвёздной среде было известно из наблюдений линий межзвёздного поглощения в спектрах далёких звёзд. Но такие линии, к сожалению, попадают преимущественно в ультрафиолетовый участок оптического диапазона, для которого земная атмосфера недостаточно прозрачна. Поэтому детальные исследования межзвёздных молекул стали возможны только с развитием радиоастрономии. На принципиальную возможность радиоастрономических наблюдений межзвёздных молекул обратил внимание И. С. Шкловский ещё в 1949 г. Он рассчитал длины волн ожидаемых радиолиний молекулы гид-роксила (ОН). И хотя этих молекул в межзвёздной среде в 10 млн раз меньше, чем водорода, четыре радиолинии ОН были найдены в 1963 г. на длинах волн, близких к 18 см.

В 1965 г. американские астрономы обнаружили в направлении туманности Ориона очень яркую и чрезвычайно узкую радиолинию в 18-сантиметровом диапазоне. Хотя точное значение длины волны совпадало с одной из четырёх линий ОН, интенсивность линии была столь высока, что учёные вначале приписали её какому-то неизвестному веществу, которое они назвали "мистериум", что значит "таинственный". Однако дальнейшие исследования показали, что линия принадлежит всё-таки молекулам гидроксила, а её аномальные свойства обусловлены особым механизмом излучения. Источник этого излучения именуют мазером по начальным буквам английского названия: Microwave Amplification by Stimulated Emission of Radiation - "усиление микроволн за счёт вынужденного излучения".

Чтобы работал мазерный механизм усиления излучения, число молекул, находящихся на высоком энергетическом уровне, должно быть больше, чем на низком. В нормальных условиях всё как раз наоборот: большинство молекул или атомов пребывает на нижнем энергетическом уровне. Тем не менее оказалось, что при определённых условиях в межзвёздных облаках естественным путём может сложиться такое необычное распределение молекул по энергетическим состояниям. Оно и обеспечивает мазерное радиоизлучение.

Мазерное излучение наблюдается не только для молекул ОН, но и для многих других. Наиболее мощные мазеры обнаружены для молекул водяного пара на волне 1,35 см. Сейчас известно несколько сот источников мазерного излучения в линиях гид-роксила и водяного пара в областях звездообразования и вблизи красных старых звёзд. Мазерный механизм работает в плотных межзвёздных облаках, где число частиц в кубическом сантиметре пространства может достигать миллиона или даже миллиарда.

4. Радиовселенная. Спокойное и бурное солнце

Солнце - самый яркий радиоисточник на небе, но только потому, что оно намного ближе к Земле, чем другие объекты. Если Солнце поместить на расстоянии ближайших звёзд, то его можно будет увидеть невооружённым глазом, но не удастся заметить даже на самых крупных радиотелескопах. В радиодиапазоне Солнце излучает лишь очень небольшую часть своей энергии. Что же представляет собой это излучение?

Радиоизлучение Солнца делится на два вида: излучение спокойного Солнца и радиовсплески. Радиоизлучение спокойного Солнца наблюдается в минимумах солнечной активности, которая имеет в среднем 11-летний цикл. Это излучение возникает главным образом в протяжённой солнечной атмосфере. Проявления активности Солнца - выбросы плазмы, наблюдаемые в оптике в виде вспышек и протуберанцев, - сопровождаются радиовсплесками, т. е. резким и кратковременным увеличением интенсивности радиоизлучения в миллионы раз.

Сами выбросы плазмы движутся с огромными скоростями и через какие-то десятки минут достигают района Земли. Они воздействуют на земную ионосферу, зажигают полярные сияния, вызывают магнитные бури, нарушают коротковолновую радиосвязь. К счастью, магнитное поле Земли отклоняет поток заряженных частиц и запирает их в "ловушке" - магнитосфере. Но находящиеся на околоземной орбите космонавты могут пострадать от повышенной радиации. В общем, наблюдения за активностью Солнца и прогнозирование этой активности имеют большое практическое значение. Преимущество радиослужбы Солнца по сравнению с оптической состоит в том, что она работает при любой погоде.

ПУЛЬСАРЫ. История открытия пульсаров весьма поучительна. В первые годы своего развития радиоастрономия больше всего страдала от недостаточной "остроты зрения". Изображения радиоисточников выглядели расплывчатыми, как бы несфокусированными. Годились в дело любые методы, помогавшие отличить протяжённые источники типа остатков сверхновых от компактных, каковыми являются ядра галактик и квазары. Один из таких способов состоит в наблюдениях мерцаний радиоисточников.

В ясную ночь можно заметить, что яркие звёзды, особенно находящиеся вблизи горизонта, быстро меняют свой блеск - мерцают. Это связано с особенностями прохождения света сквозь атмосферу: неоднородности воздушной среды искажают пучок лучей, и глаз наблюдателя получает то больше, то меньше света. Однако планеты - Венера, Юпитер, Марс - не мерцают. Дело в том, что планеты представляют собой на небе не точку, а протяжённый диск. Мерцания отдельных точек диска усредняются, и мы видим постоянный блеск. Таким образом, по мерцаниям можно отличить компактный источник излучения от протяжённого. В радиодиапазоне мерцания наблюдаются на неоднородностях межпланетной плазмы, которая выбрасывается из атмосферы Солнца.

В середине 60-х гг. радиоастрономы Великобритании решили провести первый полный обзор северного полушария неба по выявлению мерцающих радиоисточников на волне 75 см. Для этого была сооружена специальная антенная решётка из параллельных рядов медной проволоки. Работу по анализу наблюдений поручили аспирантке Кембриджского университета Джослин Балл. Её научным руководителем и организатором всей программы был Энтони Хьюиш.

Мерцания на околосолнечной плазме наблюдаются только в дневное время, когда радиоисточник находится на угловом расстоянии 30-60° от Солнца. Но Джослин решила не выключать самописец, регистрирующий радиоизлучение, даже ночью. День за днём она аккуратно просматривала записи, фиксируя мерцающие радиоисточники. И однажды она нашла быстропеременный источник - "помеху", которая наблюдалась глубокой ночью, когда мерцающих источников не должно было быть. Вскоре Джослин обнаружила, что "помеха" повторяется через 23 ч 56 мин. Вспомнили открытие Янского? Да, этот период соответствует одним звёздным суткам. Значит, источник находится за пределами Солнечной системы.

Хьюиш, Бэлл и другие члены кембриджской группы сделали специальную запись "помехи" с повышенной скоростью самописца. Они увидели, что странный сигнал представляет собой периодические короткие импульсы, точность повторения которых просто феноменальна. Поначалу астрономы даже считали, что обнаружили сигналы внеземной цивилизации. Поэтому несколько месяцев открытие держали в строгом секрете. Первые специальные записи периодического сигнала были сделаны 28 ноября 1967 г., а публикация об открытии появилась лишь в феврале 1968-го. За это время Джослин нашла в своих записях ещё несколько подобных источников. По импульсному характеру излучения они и были названы пульсарами. За открытие и интерпретацию радиоизлучения пульсаров Энтони Хьюишу присуждена Нобелевская премия по физике.

В настоящее время установлено, что пульсары представляют собой нейтронные звёзды, образовавшиеся после вспышек сверхновых. Нейтронная звезда - очень экзотический объект. Масса её в полтора раза больше солнечной, а радиус всего около 10 км. Она генерирует узконаправленный поток радиоизлучения. В результате вращения нейтронной звезды этот поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени - так образуются импульсы пульсара (см. статью "Необычные объекты: нейтронные звёзды и чёрные дыры").

Постоянство периода пульсации объясняется стабильностью вращения нейтронных звёзд. Некоторые пульсары даже используются для контроля за точностью часов.

Сегодня известны уже сотни пульсаров. Ближайшие из них расположены на расстоянии около 100 световых лет от Солнца. Нейтронные звёзды - пульсары - это заключительная фаза эволюции массивных звёзд.

ГИГАНТСКИЕ РАДИОГАЛАКТИКИ. Радиоисточником является практически каждая галактика. Основной поток радиоволн порождается энергичными электронами, которые движутся в слабых магнитных полях межзвёздного пространства. Свой вклад в радиоизлучение вносят и остатки сверхновых звёзд, и газовые туманности, нагретые молодыми звёздами. Но в целом галактики - довольно слабые "радиостанции". Нормальная галактика излучает в радиодиапазоне на несколько порядков меньше энергии, чем в оптической или инфракрасной области спектра. Однако встречаются поразительные исключения - галактики, мощность радиоизлучения которых в тысячи и десятки тысяч раз выше, чем у нашей Галактики или сходных с ней систем. Поэтому они получили название радиогалактик.

На расстоянии около 16 млн световых лет от нас, в созвездии Центавра, находится эллиптическая галактика, имеющая обозначение NGC 5128. Это самая близкая к нам галактика с мощным радиоизлучением. С ней связан один из наиболее ярких радиоисточников на небе - Центавр А. Галактика NGC 5128 была хорошо известна и до открытия этого радиоисточника. Обычно в эллиптических галактиках мало пыли и газа (см. статью "Многообразие галактик"), а вот NGC 5128 как бы рассечена на две части широкой тёмной полосой пыли и содержит многочисленные газовые облака. Астрономы считают, что в далёком прошлом здесь могло произойти столкновение гигантской эллиптической галактики с другой звёздной системой, содержавшей большое количество межзвёздного газа. Вероятнее всего, эллиптическая галактика разрушила спиральную. Обогащение эллиптической галактики газом, принесённым спиральной галактикой, и обеспечивает функционирование радиогалактики Центавр А.

На радиоизображениях Центавр А предстаёт в виде центрального источника (он совпадает с ярким облаком в самом центре галактики на оптической фотографии) и двух огромных радиовыбросов, выходящих далеко за пределы оптического изображения. Виден также тонкий мост, связывающий ядро и радиовыбросы.

Другая, ещё более грандиозная радиогалактика расположена в созвездии Лебедя. Это самый яркий внегалактический радиоисточник Лебедь А Он находится на расстоянии около 700 млн световых лет от нашей Галактики. Центральный компактный радиоисточник отождествляется с гигантской эллиптической галактикой, которая, по-видимому, тоже переживает или пережила в прошлом столкновение с другой звёздной системой.

Большинство радиогалактик имеет двойную структуру и компактный источник в центре. Напрашивается объяснение, что центральная галактика посредством какого-то механизма выбрасывает два противоположно направленных потока релятивистских заряженных частиц и они, двигаясь в магнитном поле, генерируют синхротронное радиоизлучение. Откуда же испускаются направленные потоки релятивистских частиц в течение многих миллионов лет, и что является источником их энергии? В пульсарах, например, источником энергии служит вращение магнитной нейтронной звезды. Предполагается, что в радиогалактиках энергию генерирует так называемая чёрная дыра - массивный и весьма компактный объект, образовавшийся в центре гигантской галактики. Для нескольких галактик получены косвенные свидетельства существования чёрных дыр: очень быстрое вращение газа в самом центре галактики, которое требует присутствия компактного массивного тела, не излучающего света (см. также статьи "Необычные объекты: нейтронные звёзды и чёрные дыры" и "Галактики с активными ядрами").

Межзвёздный газ, находящийся около такой вращающейся чёрной дыры, будет, падая на неё, вовлекаться во вращение. Взаимодействие между частицами газа - вязкое трение - приведёт к образованию плотного газового диска. По мере приближения к чёрной дыре газ должен нагреваться до миллиардов градусов.

Падающий газ несёт в себе магнитное поле, которое становится очень сильным вблизи чёрной дыры. Его взаимодействие с горячим, быстро движущимся газом в мощном гравитационном поле чёрной дыры приводит к сложным плазменным эффектам, сопровождающимся ускорением заряженных частиц (протонов, электронов) и их выбросом из ядра, а затем и из галактики в форме двух узконаправленных потоков. Возникающее при этом синхротронное излучение электронов и превращает галактику с таким активным ядром в радиогалактику.

Процесс выброса ускоренных частиц может продолжаться десятки миллионов лет, пока не иссякнут запасы газа, способного "упасть" в самый центр галактики. Возникает вопрос: откуда берётся газ для питания чёрной дыры? Является ли он остатками звёзд, подошедших слишком близко к ней и разорванных её гравитационным полем, или газ "упал" на галактику извне? Возможны оба варианта. По-видимому, ядро становится активным тогда, когда эллиптическая галактика, содержащая массивную чёрную дыру и очень мало газа, сталкивается со спиральной, несущей в себе много межзвёздного газа. При слиянии двух галактик в одну систему газ должен образовать вращающийся диск (наподобие наблюдаемого в NGC 5128), причём часть газа, имеющая незначительные скорости вращения, может попасть в самое ядро галактики, стимулируя его активность.

КВАЗАРЫ. Квазар излучает столько энергии, сколько могли бы излучать десятки галактик, собранных вместе. И при этом квазары выглядят точечными звездообразными объектами, за что они и получили своё имя: квазизвёздные радиоисточники. Почему же такая энергия выделяется в маленьком объёме? Это основная и пока ещё до конца не раскрытая тайна квазаров.

История их открытия заслуживает внимания. В первые годы развития радиоастрономии положения обнаруженных источников на небе были известны недостаточно точно. Иногда источник радиоизлучения совпадал с каким-нибудь необычным оптическим объектом, в частности с Крабовидной туманностью. Но в большинстве случаев на месте даже ярких радиоисточников ничего примечательного на фотографиях не было. Нужны были точные координаты радиоисточников, чтобы провести более тщательные оптические отождествления.

Астрономы предложили оригинальный способ определения координат некоторых радиоисточников. Иногда Луна, двигаясь по небу, проходит перед радиоисточником и закрывает его. Поскольку положение Луны в любой момент известно с большой точностью, необходимо лишь зафиксировать время, когда источник исчезает за лунным диском и когда он появляется вновь.

В 1963 г. Луна должна была пройти перед ярким радиоисточником ЗС 273. Наблюдения этого покрытия были организованы на Паркском радиотелескопе в Австралии и потребовали весьма сложной подготовки. Башня Паркского телескопа недостаточно высока, гак что зеркало нельзя наклонять к горизонту под углом ниже 30°, иначе оно попросту упирается в землю. Но покрытие ЗС 273 Луной происходило ниже! С радиотелескопа пришлось снять несколько тонн металлических конструкций, чтобы сделать наблюдения возможными. За несколько часов до покрытия источника Луной по местным широковещательным радиостанциям было передано сообщение с просьбой не включать никаких передатчиков. Дороги вблизи радиотелескопа патрулировались, чтобы не пропускать случайные автомобили.

Эти меры оказались не напрасными. Наблюдения прошли успешно, и радиоисточник ЗС 273 удалось отождествить со звездой 13-й звёздной величины. Для астрономов это яркая звезда. При внимательном рассмотрении обнаружилось, что из неё исходит светящийся выброс протяжённостью 20". Чтобы узнать, что собой представляет звезда, нужно получить её оптический спектр. У радиоисточника ЗС 273 он оказался совершенно непохожим на спектр звезды какого-либо класса и содержал яркие линии излучения, характерные для газовых туманностей. Как выяснилось, эти линии принадлежат обычным химическим элементам, но они сильно смещены в красную сторону, что соответствует удалению ЗС 273 от Земли со скоростью около 50 000 км/с. Все галактики участвуют в общем расширении Вселенной и удаляются друг от друга со скоростями тем большими, чем больше расстояния между ними. Коэффициент пропорциональности в этом законе расширения Вселенной, открытом американским астрономом Эдвином Хабблом, называется постоянной Хаббла. Зная скорость удаления галактики, можно определить расстояние до неё. Источник ЗС 273 оказался дальше большинства известных галактик, на расстоянии более миллиарда световых лет.

К настоящему времени открыты тысячи квазаров. Не все, но многие из них являются мощнейшими радиоисточниками. ЗС 273 - один из самых близких. Большинство квазаров находятся на расстояниях 10-15 млрд световых лет от нас, т. е. почти на границе наблюдаемой Вселенной. Что же это за объекты, которые выглядят как звёзды, удалены на гигантские расстояния и излучают энергии в десятки, а то и в сотни раз больше, чем целые галактики? Мощность излучения квазаров наиболее высокой светимости такова, что превышает мощность излучения обычной звезды типа Солнца более чем в тысячу миллиардов раз! Законченной теории квазаров нет, но астрофизики имеют весьма правдоподобную гипотезу.

По своим наблюдаемым свойствам квазары похожи на активные ядра известных галактик (см. статью "Галактики с активными ядрами"), только уровень их активности значительно выше. Для них также характерны и бурное движение газа, и сильное радиоизлучение, и выброс струй вещества. Как и активные ядра галактик, квазары являются переменными источниками. Возникло предположение, что все квазары или по крайней мере их значительная часть - это ядра далёких галактик на стадии необычно высокой активности, когда их оптическое излучение имеет столь высокую мощность, что "забивает" излучение самой галактики. Действительно, вокруг многих не слишком далёких квазаров было обнаружено слабое свечение, по-видимому связанное с окружающей их звёздной системой. Иногда даже видны структурные детали, типичные для галактик.

После знакомства с квазарами читатель вряд ли рассчитывает столк-нугься с чем-либо ещё более грандиозным. Однако именно это нам сейчас и предстоит. Речь пойдёт о самом важном достижении радиоастрономии - об открытии реликтового радиоизлучения, которое является отблеском Большого Взрыва Вселенной.

РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ ВСЕЛЕННОЙ. По современным представлениям, расширяющаяся Вселенная имела в прошлом огромную плотность вещества и очень высокую температуру. Более 15 млрд лет назад всё вещество, из которого сейчас состоят галактики, представляло собой плотную высокотемпературную плазму. Вещество и излучение находились в термодинамическом равновесии. Примерно через миллион лет после начала расширения температура понизилась настолько, что произошёл захват электронов атомными ядрами, после чего равновесие между излучением и веществом нарушилось. Энергия квантов оказалась недостаточной, чтобы ионизовать нейтральный водород. Поэтому излучение стало проходить через вещество как через прозрачную среду. В момент рекомбинации температура вещества составляла около 3000 К. Не взаимодействующее с веществом излучение должно было навсегда остаться во Вселенной как "память" о раннем периоде её эволюции.

По мере расширения Вселенной излучение охлаждалось, т. е. спектр его соответствовал тепловому излучению среды со всё более и более низкой температурой. По расчёту, выполненному американским астрофизиком Георгием Антоновичем Га-мовым ещё в 1948 г., современная температура излучения должна составлять 5-6 К. В начале 60-х гг. астрофизик Роберт Дике готовил со своими коллегами из Принстонского университета США программу поиска такого излучения. Тогда же советские учёные А. Д. Дорошкевич и И. Д. Новиков независимо рассчитали ожидаемый спектр излучения и высказали предположение, что его можно обнаружить.

Тем временем американские инженеры Арно Пснзиас и Роберт Уилсон настраивали большую рупорную антенну, предназначенную для ретрансляции телевизионных передач из Америки в Европу через спутник связи на волне 7,3 см. (Всё как во времена Ян-ского!) Измерения показали, что после тщательного учёта шумов от неба, земли, кабелей и самого усилителя, остаётся паразитный сигнал, соответствующий источнику с температурой около 3,5 К. Чтобы выяснить его причину, инженеры разобрали антенну на составные части. Оказалось, что внутри неё два голубя свили себе гнездо. Однако голуби вместе с гнездом создавали лишь часть паразитного сигнала (с температурой 0,5 К). Мистические три градуса устранить так и не удалось. Излучение с такой температурой приходило со всех направлений на небе. Пензиас и Уилсон в 1965 г. опубликовали в "Астрофизическом журнале" статью под заголовком "Измерение избытка антенной температуры на частоте 4080 мегагерц". В 1978 г. они были удостоены Нобелевской премии за своё открытие.

Сейчас твердо установлено, что трёхградусное радиоизлучение, приходящее с любого направления на небе, представляет собой излучение горячей Вселенной, оставшееся от эпохи рекомбинации. Обнаружение фонового излучения, которое было названо реликтовым, со всей убедительностью подтвердило модель горячей расширяющейся Вселенной.

Распределение энергии в спектре реликтового излучения соответствует температуре 2,7 К независимо от того, в каком направлении его наблюдать. Потому его часто и называют трёхградусным. Лишь высокоточные измерения интенсивности этого радиоизлучения позволили выявить очень слабую неоднородность. Она связана с движением самого наблюдателя. Удалось обнаружить незначительное "уярчение" реликтового фона в том направлении, в котором движется Земля вместе с Солнцем и всей нашей Галактикой (со скоростью в несколько сот километров в секунду) относительно общего электромагнитного поля реликтового излучения, которое как бы задаёт "абсолютную" систему координат во Вселенной.

5. Радиотелескопы

Радиотелескопы обычно представляют собой конструкции очень больших размеров. Наиболее распространённый тип радиотелескопа - это сооружение, основным элементом которого служит сплошное металлическое зеркало параболической формы. Зеркало отражает падающие на него радиоволны, так, что они собираются вблизи фокуса и улавливаются специальным устройством - облучателем. Затем сигнал усиливается и преобразуется в форму, удобную для регистрации и анализа. Хранение и обработка данных осуществляются с помощью компьютерной техники. Чувствительность радиотелескопа тем выше, чем больше отражающая поверхность.

Обычный радиоприёмник имеет приспособление для настройки на волну нужной радиостанции. Оно представляет собой перестраиваемый фильтр, который усиливает радиоизлучение только на волне выбранной станции и не пропускает (подавляет) сигналы станций, работающих на близких волнах. В отличие от земных радиостанций космические радиоисточники, как правило, излучают в широком диапазоне радиоволн. Поэтому и радиоастрономический приёмник должен иметь чувствительность по возможности в более широком диапазоне. Такой приёмник называется радиометром.

Расширению полосы приёма препятствуют в основном помехи от наземных радиостанций. Поэтому для радиоастрономии международными соглашениями выделены специальные интервалы длин волн, которые запрещается использовать любым наземным радиосредствам.

Крупнейший в мире 300-метровый радиотелескоп с параболической антенной сооружён в 1963 г. в Аресибо, на острове Пуэрто-Рико. Он сконструирован, построен и эксплуатируется Национальным центром астрономических и ионосферных исследований США. Телескоп расположен в огромном естественном котловане в горах. На высоте 150 м над поверхностью гигантского неподвижного зеркала укреплена на стальных тросах 600-тонная платформа, на которую можно подняться по полукилометровому подвесному мосту или по канатной дороге. Подвижная часть платформы поворачивается вокруг собственной оси. По рельсам вдоль платформы перемешается управляемая компьютером кабина с облучателями и приёмниками - так радиотелескоп наводится на исследуемый источник. Из-за неподвижности антенны наблюдения любого источника не могут продолжаться более двух часов. Но этот недостаток компенсируется огромной площадью зеркала, обеспечивающей высокую чувствительность. Радиотелескоп в Аресибо отличается от многих других также тем, что он может служить и передающей антенной. В таком режиме выполнены уникальные эксперименты по радиолокации Солнца, Луны и планет Солнечной системы.

В 1972 г. в Германии построен 100-метровый полноповоротный радиотелескоп. Он сооружён в ушелье невысоких гор в 50 км от Бонна, вблизи небольшого городка Эф-фельсберг. Радиотелескоп имеет достаточно высокую точность поверхности, что позволяет использовать его даже на волне 4 мм. Угловое разрешение телескопа на такой короткой волне составляет около 10". Радиотелескоп в Эффельсберге до сих пор считается крупнейшим в мире полноповоротным радиотелескопом.

Радиотелескопов с диаметром зеркала больше 50 м единицы. Вторым в Европе по размеру после Эф-фельсбергского является 76-метровый радиотелескоп на обсерватории Джодрелл-Бэнк. Он эффективно используется только в дециметровом диапазоне волн, так как точность поверхности зеркала не очень высокая.

В 1994 г. в России начал работать 64-метровый радиотелескоп, третий по величине в Европе. Он расположен недалеко от города Калязина на Волге, в 180 км к северу от Москвы.

Крупным отечественным радиотелескопом является РАТАН-600 (Радиотелескоп Академии наук диаметром 600 м), сооружённый в 1976 г. на Северном Кавказе, близ станицы Зеленчукской. Зеркало этого телескопа не покрывает всю площадь круга, а представляет собой кольцо диаметром 600 м, собранное из 895 алюминиевых шитов высотой 7 м. Угловое разрешение такой системы определяется диаметром кольца и составляет на волне 3 см около 10". В реальных наблюдениях всё кольцо сразу используется редко. Телескоп разбит на секторы: северный, южный, восточный и западный. Шиты каждого сектора ориентируются на выбранный источник, а в фокусе каждого сектора установлен облучатель, который может перемешаться, обеспечивая наблюдения данного источника в течение нескольких минут.

До сих пор были рассмотрены радиотелескопы, на которых вся энергия радиоволн фокусируется с помощью зеркала или системы зеркал на общий облучатель и усиливается затем одним приёмником. Есть другой тип радиотелескопа: излучение принимается независимыми антеннами, усиливается на каждой антенне и передаётся по кабелям или волноводам для общего суммирования сигнала. Длину кабелей подбирают так, чтобы сигналы ото всех антенн поступали на суммирующее устройство в одной фазе (синфазно). Тем самым осуществляется электрическая фокусировка всей антенной системы. Подобные радиотелескопы называются синфазными антеннами.

На радиоастрономической станции ФИАН в городе Пушино Московской области работает Большая синфазная антенна (БСА), представляющая собой поле взаимосвязанных дипольных антенн длиной 300 м и шириной 400 м. Эффективная собирающая площадь БСА почти такая же, как у радиотелескопа в Аресибо. БСА работает на волне 3 м. На этом радиотелескопе исследуются прежде всего пульсары и ядра галактик

Размещено на Allbest.ru


Подобные документы

  • Оценка характера радиоизлучения выхлопной газовой струи. Нахождение корреляции между изменением характера радиоизлучения и возникновением конкретных неисправностей в момент их зарождения. Исследования собственного радиоизлучения газотурбинных установок.

    контрольная работа [1,9 M], добавлен 24.03.2013

  • Электрическое поле Земли. Атмосферики, радиоизлучения Солнца и галактик. Физические основы взаимодействия электромагнитных полей с биологическими объектами. Главные преимущества и недостатки лазеротерапии. Глубина проникновения волн в различные ткани.

    курсовая работа [179,2 K], добавлен 16.05.2016

  • История возникновения баллистического движения. Баллистика как наука. История открытия закона всемирного тяготения. Применение баллистики на практике. Траектория полета снаряда, баллистической ракеты. Перегрузки, испытываемые космонавтами в невесомости.

    реферат [624,6 K], добавлен 27.05.2010

  • Электромагнитное излучение, которое занимает спектральный диапазон между концом красного света и коротковолновым радиоизлучением. История открытия инфракрасного излучения, его основные свойства. Применение в медицине. Воздействие на организм человека.

    презентация [1,5 M], добавлен 20.02.2013

  • Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.

    реферат [999,0 K], добавлен 22.12.2010

  • Предпосылки и история развития процесса открытия электрона. Опыты Томсона и Резерфорда и методы открытия электрона. Метод Милликена: описание установки, вычисление элементарного заряда. Метод визуализации Комптона. Научное значение открытия электрона.

    реферат [362,3 K], добавлен 21.05.2008

  • Энергетика - наука о закономерностях процессов прямо или косвенно связанных с получением, преобразованием, передачей, распределением и использованием различных видов энергии. История открытия электричества. Гальванопластика, освещение и электротермия.

    доклад [41,1 K], добавлен 18.05.2009

  • История изобретения источника постоянного электрического тока итальянским физиком А. Вольтой. Устройство гальванического элемента. Классификация источников тока. Строение батарей и электрических аккумуляторов, их основные типы и особенности применения.

    презентация [1,3 M], добавлен 09.12.2015

  • История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.

    курсовая работа [1,3 M], добавлен 14.01.2018

  • История открытия закона всемирного тяготения. Иоган Кеплер как один из первооткрывателей закона движения планет вокруг солнца. Сущность и особенности эксперимента Кавендиша. Анализ теории силы взаимного притяжения. Основные границы применимости закона.

    презентация [7,0 M], добавлен 29.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.