Основные вопросы физики, механики и кинематики

Характеристика и сущность кинематики материальной точки. Расчет тангенциальной составляющей ускорения. Особенности механической системы, обладающей только поступательными и вращательными степенями свободы. Доказательства силового взаимодействия молекул.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 03.04.2011
Размер файла 550,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Кинематика материальной точки

Механическое движение -- это изменение с течением времени взаимного расположения тел или их частей.

Система отсчета -- совокупность системы координат и часов, связанных с телом отсчета.

Материальная точка -- тело, обладающее массой, размерами которого в данной задаче можно пренебречь.

Траектория движения материальной точки -- линия, описываемая этой точкой в пространстве.

Перемещение - вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени.

Путь - длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени.

Скорость - быстрота движения м.т в пространстве в определенный промежуток времени.

Вектором средней скорости <v> называется отношение приращения r радиуса-вектора точки к промежутку времени t:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени.

Ускорение - физическая величина, характеризующая быстроту изменения скорости по модулю и направлению.

Мгновенным ускорением а (ускорением) материальной точки в момент времени t будет предел среднего ускорения:

Тангенциальная составляющая ускорения

т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории)

Нормальная составляющая ускорения направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением). нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению (направлена к центру кривизны траектории).

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих (рис.5):

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

периодом вращения T -- временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2. Так как промежутку времени t = T соответствует = 2, то = 2/T, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

откуда

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедленном -- противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

кинематика механический силовой молекула

В случае равнопеременного движения точки по окружности (=const)

где 0 -- начальная угловая скорость.

Динамика материальной точки

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние.

Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно.

Масса тела -- физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (гравитационная масса) свойства. С ила, с которой тело действует на поверхность.

Сила -- это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

более общая формулировка второго закона Ньютона: скорость изменения импульса материальной точки равна действующей на нее силе.

Импульс - векторная величина, численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости.

Третий закон Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:

F12 = - F21,

Замкнутой или изолированной называется механическая система тел, на которую не действуют внешние силы.

Закон сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон сохранения импульса -- фундаментальный закон природы.

Динамика твёрдого тела

Абсолютно твёрдое тело в механике -- механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс л материальных точек системы на квадраты их расстояний до рассматриваемой оси:

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):

Вращательное движение -- это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Поступательное движение -- это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению.

Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распределение массы этой системы.

Уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z. Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Таким образом, момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.0,

Работа, энергия

Мощность - Скорость совершения работы.

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу

Неконсервативные силы - силы, совершаемая работа которых при перемещении тела из одного положения в другое не зависит от того по какой траектории это перемещение произошло, а зависит только от начального и конечного положений.

Консервативные силы

Потенциальная энергия - механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Энергия упруго деформируемого тела

Кинетическая энергия - энергия механического движения системы.

Полная механическая энергия системы - энергия механического движения и взаимодействия:

Закон сохранения энергии в механике: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.

Энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом и заключается физическая сущность закона сохранения и превращения энергии.

Механические колебания

Колебательные процессы - процессы, характеризуемые определенной повторяемостью во времени.

Гармонические колебания - колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса).

Амплитуда - максимальное значение колеблющейся величины.

Фаза - значение колеблющейся величины в данный момент времени.

Частота - полных колебаний, совершаемых в единицу времени.

Период - отрезок времени, за который происходит одно полное колебание.

Уравнение гармонических колебаний.

Физический маятник -- это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела.

Математический маятник -- это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести.

Затухающие колебания - колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются.

Вынужденные колебания - Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с.

Резонанс - Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к частоте, равной или близкой собственной частоте колебательной системы.

Волновое движение

Колебания, возбужденные в какой-либо точке среды (твердой, жидкой или газообразной), распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться.

Процесс распространения колебаний в сплошной среде называется волновым процессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Длина волны - Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе.

Уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид

(154.2)

где А = const -- амплитуда волны, -- циклическая частота, 0 -- начальная фаза волны, определяемая в общем случае выбором начал отсчета х и t, [ (t--x/v)+ 0] -- фаза плоской волны.

В продольных волнах частицы среды колеблются в направлении распространения волны.

В поперечных волнах частицы среды колеблются в плоскостях, перпендикулярных направлению распространения волны.

Молекулярная физика

Молекулярная физика.

Физические основы молекулярно-кинетической теории

МКТ- молукулярно кинетическая теория

1. все тела состоят из молекул. Молекулы из атомов.

Диаметр молекулы ~10-10 или 0.1 нМ

Количество молекул: в 1 м3 жикости =1028

: в 1 м3 газа = 1025

2. Все частицы вещества находяться в хаотическом, непрерывном движении.

Скорость ~ 500 м/с

Диффузия - самопроизвольное проникновение и перемещение частиц двух соприкасающихся газов или жидкостей и даже твердых тел.

Молекулы взаимодействуют друг с другом

Тепловоме движемние -- процесс хаотического (беспорядочного) движения частиц, образующих вещество. Чаще всего рассматривается тепловое движение атомов и молекул.

Бромуновское движемние --, беспорядочное движение микроскопических, видимых, взвешенных в жидкости (или газе) частиц (броуновские частицы) твёрдого вещества (пылинки, крупинки взвеси, частички пыльцы растения и так далее), вызываемое тепловым движением частиц жидкости (или газа).

Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молекулярно-кинетической теории рассмотрим одноатомный идеальный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку S (рис. 64) и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс m0v - (- m0v) = 2m0v, где m0 -- масса молекулы, v -- ее скорость. За время t площадки S достигнут только те молекулы, которые заключены в объеме цилиндра с основанием S и высотой vt (рис. 64). Число этих молекул равно nSvt (n -- концентрация молекул). Необходимо, однако, учитывать, что реально молекулы движутся к площадке S под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина молекул 1/6 движется вдоль данного направления в одну сторону, половина -- в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку S будет 1/6nSvt. При столкновении с площадкой эти молекулы передадут ей импульс

Тогда давление газа, оказываемое им на стенку сосуда,

(43.1)

Если газ в объеме V содержит N молекул, движущихся со скоростями v1, v2, ..., vN, то целесообразно рассматривать среднюю квадратную скорость

(43.2)

характеризующую всю совокупность молекул газа.

Уравнение (43.1) с учетом (43.2) примет вид

(43.3)

Выражение (43.3) называется основным уравнением молекулярно-кинетической теории идеальных газов. Точный расчет с учетом движения молекул по всевозможным направлениям дает ту же формулу

Доказательства силового взаимодействия молекул:

а) деформация тел под влиянием силового воздействия;

б) сохранение формы твердыми телами;

в) поверхностное натяжение жидкостей и, как следствие, явление смачиванияиллярности

Статистическая физика: масса, скорость и термодинамическими параметрами (параметрами состояния) -- совокупностью физических величин, характеризующих свойства термодинамической системы. Обычно в качестве параметров состояния выбирают температуру, давление и удельный объем.

Температура -- одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура -- физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

тройная точка воды

2. Давление- скалярная, физическая величина, характеризующая распределение силы по поверхности на которой она действует.

P=F/S

3. Объем - пространство которое занимает газ(жидкость)

Число степеней свободы: наименьшее число независимых координат, определяющих положение и конфигурацию молекулы в пространстве.

Число степеней свободы

для одноатомной молекулы -3 (поступательное движение в направлении трех координатных осей),

для двухатомной - 5 ( три поступательных и две вращательных, т.к. вращение вокруг оси Х возможно только при очень высоких температурах),

для трехатомной -6 ( три поступательных и три вращательных).

уравнение состояния идеального газа Клапейрона-Менделеева: PV = nRT

где n - число молей газа;

P - давление газа (например, в атм);

V - объем газа (в литрах);

T - температура газа (в кельвинах);

R - газовая постоянная (0,0821 л? атм/моль? K).

2. Распределение максвелла. распределение по скоростям частиц (молекул) макроскопической физической системы, находящейся в состоянии термодинамического равновесия, (в отсутствии внешнего поля, при условии, что движение частиц подчиняется законам классической механики.

При выводе основного уравнения молекулярно-кинетической теории молекулам задавали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и направлению. Однако из-за хаотического движения молекул все направления движения являются равновероятными, т. е. в любом направлении в среднем движется одинаковое число молекул.

в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону. Этот закон теоретически выведен Дж. Максвеллом.

При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что силовые поля на газ не действуют.

Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, т. е.

откуда

Применяя методы теории вероятностей. Максвелл нашел функцию f(v) -- закон о распределеня молекул идеального газа по скоростям:

(44.1)

Из (44.1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).

График функции (44.1) приведен на рис. 65. Так как при возрастании v множитель exp[-m0v2/(2kT)] уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vB, и затем асимптотически стремится к нулю. Кривая несимметрична относительно vB.

Относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, находится как площадь заштрихованной полоски на рис. 65. Площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Это означает, что функция f(v) удовлетворяет условию нормировки

Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью. Значение наиболее вероятной скорости можно найти продифференцировав выражение (44.1) (постоянные множители опускаем) по аргументу v, приравняв результат нулю и используя условие для максимума выражения f(v):

Значения v=0 и v= соответствуют минимумам выражения (44.1), а значение v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость vB:

Из формулы (44.2) следует, что при повышении температуры максимум функции распределения молекул по скоростям (рис. 66) сместится вправо (значение наиболее вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распределения молекул по скоростям будет растягиваться и понижаться.

Средняя скорость молекулы <v> (средняя арифметическая скорость) определяется по формуле

Подставляя сюда f(v) и интегрируя, получаем

(44.3)

Скорости, характеризующие состояние газа: 1) наиболее вероятная 2) средняя 3) средняя квадратичная (рис. 65). Исходя из распределения молекул по скоростям

(44.4)

можно найти распределение молекул газа по значениям кинетической энергии . Для этого перейдем от переменной v к переменной =m0v2/2. Подставив в (44.4) v= и dv=d , получим

где dN() -- число молекул, имеющих кинетическую энергию поступательного движения, заключенную в интервале от до + d.

Таким образом, функция распределения молекул по энергиям теплового движения

Средняя кинетическая энергия <> молекулы идеального газа

т. е. получили результат, совпадающий с формулой (43.8).

3.Распределение Больцмана -- распределение вероятностей различных энергетических состоянийидеальной термодинамической системы (идеальный газ атомов или молекул) в условияхтермодинамического равновесия;

законом распределения Больцмана:

n=noe-mgh/kt

где n - концентрация молекул на высоте h, n0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.

Выражение (45.5) называется распределением Больцмана для внешнего потенциального поля. Из вето следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана (45.5) справедливо в любом внешнем потенциальном поле, а не только в поле сил тяжести.

При выводе основного уравнения молекулярно-кинетической теории газов и максвелловского распределения молекул по скоростям предполагалось, что на молекулы газа внешние силы не действуют, поэтому молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул -- с другой, приводят к некоторому стационарному состоянию газа, при котором давление газа с высотой убывает.

Реальные газы

Реальных газов -- газы, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия.

Любое вещество в зависимости от температуры может находиться в газообразном, жидком или твердом агрегатном состоянии, причем температура перехода из одного агрегатного состояния в другое зависит от значения Пmin, для данного вещества. Например, у инертных газов Пmin мало, а у металлов велико, поэтому при обычных (комнатных) температурах они находятся соответственно в газообразном и твердом состояниях.

уравнение Ван-дер-Ваальса (P+a2/Vo)(V-b)=RT

a,b - const, определяется природой газа

Рассматривая различные участки изотермы при T<Тк (рис. 90), видим, что на участках 1--3 и 5--7 при уменьшении объема Vm давление р возрастает, что естественно. На участке 3--5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3--5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 7--6--2--1. Часть 6-7 отвечает газообразному состоянию, а часть 2-1 -- жидкому. В состояниях, соответствующих горизонтальному участку изотермы 6--2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называется насыщенным.

Критические параметры

Изотерма называется критической, соответствующая ей температура Tк -- критической температурой; точка перегиба К называется критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем Vк, и давление рк называются также критическими. Состояние с критическими параметрами (pк, Vк, Tк) называется критическим состоянием. При низких температурах (Т < Tк ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

5Основы термодинамики

Первое начало термодинамики: теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.

Изопроцессы:

1) Изохорный процесс (V=const). При изохорном процессе газ не совершает работы над внешними телами, т. е.

Как уже указывалось в § 53, из первого начала термодинамики (Q=dU+A) для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии:

2) Изобарный процесс (p=const).

В изобарном процессе при сообщении газу массой т количества теплоты

3) Изотермический процесс (T=const). Как уже указывалось § 41, изотермический процесс описывается законом Бойля--Мариотта:

Так как при Т=const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (Q=dU+A) следует, что для изотермического процесса

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:

Следовательно, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

4) Адиабатическим называется процесс, при котором отсутствует теплообмен (Q=0) между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (Q=dU+A) для адиабатического процесса следует, что

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Второе начало термодинамики: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает или в процессах, происходящих в замкнутой системе, энтропия не убывает.

1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Энтропия

Приведенная теплота - Отношение количества теплоты, подведенной к системе, к температуре, при которой это происходит.

Энтропией называется функция состояния, дифференциалом которой является Q/T, и обозначается S.

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

Жидкости

В жидкостях имеет место так называемый ближний порядок в расположении частиц, т. е. их упорядоченное расположение, повторяющееся на расстояниях, сравнимых с межатомными.

Характер теплового движения в жидкостях

Тепловое движение в жидкости: каждая молекула в течение некоторого времени колеблется около определенного положения равновесия, после чего скачком переходит в новое положение, отстоящее от исходного на расстоянии порядка межатомного. Таким образом, молекулы жидкости довольно медленно перемещаются по всей массе жидкости и диффузия происходит гораздо медленнее, чем в газах. С повышением температуры жидкости частота колебательного движения резко увеличивается, возрастает подвижность молекул, что, в свою очередь, является причиной уменьшения вязкости жидкости.

Повемрхностное натяжемние -- термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Явление смачивания.

Смачивание зависит от характера сил, действующих между молекулами поверхностных слоев соприкасающихся сред. Для смачивающей жидкости силы притяжения между молекулами жидкости и твердого тела больше, чем между молекулами самой жидкости, и жидкость стремится увеличить поверхность соприкосновения с твердым телом. Для несмачивающей жидкости силы притяжения между молекулами жидкости и твердого тела меньше, чем между молекулами жидкости, и жидкость стремится уменьшить поверхность своего соприкосновения с твердым телом.

Капиллярные явления.

Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широкий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости -- мениск -- имеет вогнутую форму, если не смачивает -- выпуклую.

Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по формуле. Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости gh уравновешивается избыточным давлением p, т. е.

где -- плотность жидкости, g -- ускорение свободного падения.

Если r -- радиус капилляра, -- краевой угол, то из рис. 101следует, что (2 cos)/r = gh, откуда

Размещено на Allbest.ru


Подобные документы

  • История развития кинематики как науки. Основные понятия этого раздела физики. Сущность материальной точки, способы задания ее движения. Описание частных случаев движения в зависимости от ускорения. Формулы равномерного и равноускоренного движения.

    презентация [1,4 M], добавлен 03.04.2014

  • Понятие кинематики как раздела механики, в котором изучается движения точки или тела без учета причин, вызывающих или изменяющих его, т.е. без учета действующих на них сил. Способы задания движения и ускорения материальной точки, направления осей.

    презентация [1,5 M], добавлен 30.04.2014

  • Основные положения и постулаты кинематики – раздела теоретической механики. Теоретические основы: определения, формулы, уравнения движения, скорости и ускорения точки, траектории; практические примеры в виде решения наиболее типичных задач кинематики.

    методичка [898,8 K], добавлен 26.01.2011

  • Основные понятия кинематики, динамики, электростатики, статики и гидростатики. Законы сложения скоростей и ускорений. Нормальное и тангенциальное ускорения. Теорема о движении центра масс. Силы, действующие через контакт. Импульс материальной точки.

    шпаргалка [7,4 M], добавлен 28.02.2011

  • Исследование относительного движения материальной точки в подвижной системе отсчета с помощью дифференциального уравнения. Изучение движения механической системы с применением общих теорем динамики и уравнений Лагранжа. Реакция в опоре вращающегося тела.

    курсовая работа [212,5 K], добавлен 08.06.2009

  • Изучение кинематики материальной точки и овладение методами оценки погрешностей при измерении ускорения свободного падения. Описание экспериментальной установки, используемой для измерений свободного падения. Оценка погрешностей косвенных измерений.

    лабораторная работа [62,5 K], добавлен 21.12.2015

  • Расчетная схема балки. Закон движения точки. Определение составляющих ускорения. Кинематические параметры системы. Угловая скорость шкива. Плоская система сил. Определение сил инерции стержня и груза. Применение принципа Даламбера к вращающейся системе.

    контрольная работа [307,9 K], добавлен 04.02.2013

  • Анализ ошибок и знаменитых опытов, в ходе которых была открыта кинематика. Фундаментальные открытия Аристотеля. Учения Галилео Галилея. Опыт на Пизанской башне. Вложения Пьера Вариньона в учения о кинематике. Ученые, выделившие отдельный раздел механики.

    реферат [143,6 K], добавлен 23.12.2014

  • Основные понятия и определения теоретической механики. Типы и реакции связей. Момент силы относительно точки, ее кинематика и виды движения в зависимости от ускорения. Динамика и колебательное движение материальной точки. Расчет мощности и силы трения.

    курс лекций [549,3 K], добавлен 17.04.2013

  • Границы применимости классической и квантовой механики. Исследование одиночных атомов. Сила и масса. Международная система единиц. Определение секунды и метра. Сущность законов Ньютона. Инерциальные системы отсчета. Уравнение движения материальной точки.

    презентация [1,7 M], добавлен 29.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.