Большой адронный коллайдер
Начало работы коллайдера. Экспериментальное доказательство существования бозона Хиггса. Процесс ускорения частиц в коллайдере и потребление энергии. Финансирование проекта и международное сотрудничество. Слухи об опасности. Изучение кварк-глюонной плазмы.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 31.03.2011 |
Размер файла | 26,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Тюменская государственная сельскохозяйственная академия
Реферат на тему:
«Большой адронный коллайдер»
Выполнила
студентка 313 группы
Гусейнова З.Г
Проверила
Доронина М.В
Тюмень 2011г.
Введение
Большой адронный коллайдер - самый мощный в мире ускоритель заряженных частиц на встречных пучках, построенный Европейским центром по ядерным исследованиям (CERN) в подземном тоннеле протяженностью 27 километров на глубине 50-175 метров на границе Швейцарии и Франции. На нем физики хотят проверить некоторые положения специальной теории физики элементарных частиц. Был запущен осенью 2008 года, однако из-за аварии эксперименты на нем начались только в ноябре 2009 года, а на проектную мощность он вышел в марте 2010 года. Запуск коллайдера привлек внимание не только физиков, но и простых обывателей, поскольку в СМИ высказывались опасения по поводу того, что эксперименты на коллайдере могут привести к концу света.
Цели эксперимента.
Основной целью строительства БАК было уточнение или опровержение Стандартной модели - теоретической конструкции в физике, описывающей элементарные частицы и три из четырех фундаментальных взаимодействия: сильное, слабое и электромагнитное, за исключением гравитационного. Формирование Стандартной модели было завершено в 1960-1970-х годах, и все сделанные с тех пор открытия, по мнению ученых, описывались естественными расширениями этой теории. При этом Стандартная модель объясняла, каким образом взаимодействуют элементарные частицы, но не отвечала на вопрос, почему именно так, а не иначе.
· Одна из главных задач БАК - экспериментальное доказательство существования бозона Хиггса. Существование этой частицы было предсказано еще в 1960 году британским физиком Питером Хиггсом. Согласно Стандартной модели, бозон Хиггса фактически создает всю массу во Вселенной, однако для того, чтобы его обнаружить, необходима энергия, которая и будет достигнута на БАК. При столкновении двух заряженных частиц они аннигилируются и выделяется энергия достаточная для "рождения" искомой частицы - бозона Хиггса.
· При помощи БАК физики, возможно, смогут ответить на вопрос, почему видимая материя составляет всего около 4 процентов Вселенной, в то время как остальная часть - это темная материя и "темная энергия", которые участвуют только в гравитационном взаимодействии.
· При помощи БАК физики надеются лучше понять, что представляла из себя Вселенная в первые мгновения после Большого Взрыва.
· Ученые также рассчитывают ответить на другой важный вопрос, стоящий перед Стандартной моделью: почему в существующей Вселенной так мало антиматерии, хотя, теоретически, после Большого Взрыва антиматерии и материи должно было образоваться поровну?
· Возможно, БАК поможет доказать или опровергнуть теорию о том, что кроме привычных нам четырех измерений (пространства и времени) существуют и другие измерения, которые постулируются в "теории струн", описывающей явления, которые выходят за рамки Стандартной модели и ее более простых расширений.
Ученые отмечали, что если на БАК не удастся добиться открытия бозона Хиггса (в прессе его иногда называли "частицей бога") - это поставит под вопрос всю Стандартную модель, что потребует полного пересмотра существующих представлений об элементарных частицах. В то же время, если Стандартная модель будет подтверждена, некоторые области физики потребуют дальнейшей экспериментальной проверки: в частности, нужно будет доказать существование "гравитонов" - гипотетических частиц, которые отвечают за гравитацию.
Есть и еще несколько направлений исследований, которые имеют большое значение: изучение кварк-глюонной плазмы может помочь понять строение некоторых астрофизических объектов и стать основой будущей энергетики, изучение свойств тяжелых кварков может позволить получить сведения об их внутреннем строении, то есть проникнуть на еще более глубокий уровень изучения строения материи, изучение пучков высокоэнергетичных частиц позволит усовершенствовать методы «чтения» информации, приносимых космическими лучами, и многое другое.
Большой адронный коллайдер
Большой адромнный колламйдер -- ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований, на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире. Руководитель проекта -- Лин Эванс. В строительстве и исследованиях участвовали и участвуют более 10 000 учёных и инженеров более чем из 100 стран.
Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26659м; адронным -- из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; коллайдером (англ. collide -- сталкиваться) -- из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.
Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля -- от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (?271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.
Суть экспериментов с БАК в том, чтобы используя мощнейшие электромагниты, разгонять протоны - первоосновные частицы вещества Вселенной, происхождение и строение которых неизвестно - и сталкивать на встречных направлениях, пытаясь наблюдать, что при этом происходит и понять, что оно означает.
Предыстория
На начало 1990-х годов наиболее мощные коллайдеры действовали в США и Швейцарии. В 1987 году в США недалеко от Чикаго был запущен коллайдер Тэватрон (Tevatron) с максимальной энергией пучка 980 гигаэлектронвольт (ГэВ). Он представляет собой подземное кольцо длиной 6,3 километра. В 1989 году в Швейцарии под эгидой Европейского центра по ядерным исследованиям (CERN) был введен в эксплуатацию Большой электрон-позитронный коллайдер (LEP). Для него на глубине 50-175 метров в долине Женевского озера был построен кольцевой тоннель длинной 26,7 километра, в 2000 году на нем удалось добиться энергии пучка в 209 ГэВ.
В СССР в 1980-е годы был создан проект Ускорительно-накопительного комплекса (УНК) - сверхпроводящего протон-протонного коллайдера в Институте физики высоких энергий (ИФВЭ) в Протвино. Он превосходил бы по большинству параметров LEP и Тэватрон и должен был позволить разгонять пучки элементарных частиц с энергией 3 тераэлектронвольта (ТэВ). Его основное кольцо длиной 21 километр был построено под землей в 1994 году, однако из-за нехватки средств проект в 1998 году был заморожен, построенный в Протвино тоннель - законсервирован. Впрочем, США тоже отказались от строительства собственного Сверхпроводимого суперколлайдера (SSC) в 1993 году, причем по финансовым соображениям.
Вместо строительства собственных коллайдеров физики разных стран решили объединиться в рамках международного проекта, идея создания которого зародилась еще в 1980-х годах. После окончания экспериментов на швейцарском LEP его оборудование было демонтировано, и на его месте начато строительство Большого адронного коллайдера (БАК, Large Hadron Collider, LHC) - самого мощного в мире кольцевого ускорителя заряженных частиц на встречных пучках, на котором будут сталкиваться пучки протонов с энергиями столкновения до 14 ТэВ и ионы свинца с энергиями столкновения до 1150 ТэВ.
Для чего же потребовались все эти технические ухищрения и весьма немалые затраты средств? Физики рассчитывают с помощью LHC получить ответы на целый ряд важнейших вопросов о строении материи и свойствах пространства и времени. Рассмотрим кратко основные направления исследований, планирующихся на LHC. Исследования физики микромира, проводившиеся на протяжении второй половины ХХ века, привели к созданию Стандартной Модели (СМ), которая на базе квантовополевых представлений успешно описывает практически все наблюдаемые нами микропроцессы. Согласно СМ, весь материальный мир состоит из кварков (образующих, в частности протоны и нейтроны, то есть ядерную материю) и лептонов (наиболее известным из которых является электрон). Взаимодействие кварков и лептонов происходит посредством обмена частицами-переносчиками: глюонами (сильное взаимодействие), W± и Z0 - бозонами (слабое взаимодействие) и фотонами (электромагнитное взаимодействие). Существенной чертой СМ является то, что частицы приобретают массу за счет взаимодействия со скалярными полями, носящими название полей Хиггса. Экспериментальное наблюдение кванта этих полей - хиггсовского бозона - позволит окончательно убедиться в справедливости логики СМ и внести «завершающие уточнения» в ее конструкцию. Именно для решения этой задачи энергии LHC являются очень «подходящими»: либо хиггсовский бозон будет найден, либо можно будет сделать вывод о необходимости существенного реформирования СМ. На самом деле, главной целью экспериментов на LHC является именно поиск информации, позволяющей выйти за рамки «стандартной» физики. Главным недостатком СМ является отсутствие описания гравитационного взаимодействия, которое, как поняли физики благодаря Общей Теории Относительности Эйнштейна и созданным после нее другим теориям гравитации, тесно связано со свойствами пространства и времени. В последней четверти ХХ века теоретики предложили целый ряд необычных идей для включения гравитации в фундаментальные теории микромира: существование дополнительных (помимо трех пространственных и одного временного) измерений (эта идея получила косвенное подтверждение в наблюдениях за расширением Вселенной), суперсимметрию, теории суперструн и другие. Однако выбрать среди предлагаемых теорий наиболее правильную на базе имеющихся экспериментальных данных оказалось невозможно: в области низких энергий их предсказания совпадают. Можно сказать, что, пройдя «территорию СМ» почти до конца, физики оказались на распутье, не снабженном никакими указателями для выбора нужного пути среди многих дорог. Данные, которые планируются получить на LHC, могут подтвердить справедливость некоторых из идей (например, обнаружение тяжелых суперпартнеров «обычных» частиц будет веским подтверждением идеи суперсимметрии).
кварк глюонный плазма коллайдер энергия
Технические характеристики
Светимость БАК во время первого пробега составит всего 1029 частиц/см?·с. Это весьма скромная величина. Однако, после запуска БАК для экспериментальных исследований, светимость будет постепенно повышаться от начальной 5?1032 до номинальной 1,7?1034 частиц/см?·с, что по порядку величины соответствует светимостям современных B-фабрик BaBar (SLAC, США) и Belle (KEK, Япония). Выход на номинальную светимость планируется в 2010 году.
Детекторы.
На БАК будут работать 4 основных и 2 вспомогательных детектора:
· ALICE (A Large Ion Collider Experiment)
· ATLAS (A Toroidal LHC ApparatuS)
· CMS (Compact Muon Solenoid)
· LHCb (The Large Hadron Collider beauty experiment)
· TOTEM (TOTal Elastic and diffractive cross section Measurement)
· LHCf (The Large Hadron Collider forward)
· MoEDAL (Monopole and Exotics Detector At the LHC).
ATLAS, CMS, ALICE, LHCb -- большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf -- вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.
Процесс ускорения частиц в коллайдере и потребление энергии
Сгустки проходят полный круг ускорителя быстрее чем за 0,0001 сек, совершая, таким образом, свыше 10 000 оборотов в секунду.
Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего CERNа на 2009 год с учётом работающего коллайдера -- 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты -- около 10 % от суммарного годового энергопотребления кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы.
БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий. Задачи, которые ставят перед собой создатели БАКа, мы рассмотрим ниже.
Изучение топ-кварков
Топ-кварк -- самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c?. Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе -- Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК -- ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков.
Изучение кварк-глюонной плазмы
Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. Будут происходить не только протон-протонные столкновения, но и столкновения ядер свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики.
Поиск суперсимметрии
Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» -- теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».
Проверка экзотических теорий
Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны являются составными частицами, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений.
Другие задачи
Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).
Начало работы коллайдера
10 сентября 2008 года в БАК был запущен первый пучок протонов. Планировалось, что через несколько месяцев на коллайдере будут осуществлены первые столкновения, однако 19 сентября из-за дефектного соединения двух сверхпроводящих магнитов на БАК произошла авария: магниты были выведены из строя, в тоннель вылилось более 6 тонн жидкого гелия, в трубах ускорителя был нарушен вакуум. Коллайдер пришлось закрыть на ремонт. Несмотря на аварию 21 сентября 2008 года состоялась торжественная церемония введения БАК в строй. Первоначально опыты собирались возобновить уже в декабре 2008 года, однако затем дата повторного запуска была перенесена на сентябрь, а после - на середину ноября 2009 года, при этом первые столкновения планировалось провести лишь в 2010 году. Первые после аварии тестовые запуски пучков ионов свинца и протонов по части кольца БАК были произведены 23 октября 2009 года. 23 ноября в детекторе ATLAS были произведены первые столкновения пучков, а 31 марта 2010 года коллайдер заработал на полную мощность: в тот день было зарегистрировано столкновение пучков протонов на рекордной энергии в 7 ТэВ.
Научные результаты
Поскольку статистика, полученная к настоящему моменту, остаётся весьма небольшой, ни о каких громких открытиях в 2010 году говорить не приходится. Работу детекторов в течение этого времени можно охарактеризовать как «переоткрытие Стандартной модели». Несмотря на это, коллайдер позволил «заглянуть» в недоступную ранее область энергий и получить научные результаты, накладывающие ограничения на ряд теоретических моделей.
Краткий перечень основных научных результатов, полученных в 2010 году:
· при трёх различных энергиях (0,9, 2,36 и 7 ТэВ) изучены основные статистические характеристики протонных столкновений -- количество рождённых адронов, их распределение по быстроте, бозе-эйнштейновские корреляции мезонов, дальние угловые корреляции, вероятность остановки протона;
· показано отсутствие асимметрии протонов и антипротонов;
· обнаружены необычные корреляции протонов, вылетающих в существенно разных направлениях;
· получены ограничения на возможные контактные взаимодействия кварков;
· получены более веские, по сравнению с предыдущими экспериментами, признаки возникновения кварк-глюонной плазмы в ядерных столкновениях;
· исследованы события рождения адронных струй;
· подтверждено существование топ-кварка, ранее наблюдавшегося только на Тэватроне;
· обнаружено два новых канала распада Bs-мезонов.
Также в 2010 году были предприняты попытки обнаружить следующие гипотетические объекты:
· лёгкие чёрные дыры;
· возбуждённые кварки;
· суперсимметричные частицы;
· лептокварки.
Финансирование проекта и международное сотрудничество
Отмечалось, что проект масштаба БАК не под силу создать одной стране. Он создавался усилиями не только 20 государств-участников CERN: в его разработке принимали участие более 10 тысяч ученых из более чем ста стран земного шара. С 2009 года проектом БАК руководит генеральный директор CERN Рольф-Дитер Хойер.
Бюджет проекта по состоянию на ноябрь 2009 года составил 6 млрд долларов. Именно столько было инвестировано в строительство установки, которое продолжалось семь лет. Ускоритель частиц создавался под руководством Европейской организации ядерных исследований. В проекте задействовано 700 специалистов из России. Общая стоимость заказов, которые получили российские предприятия, по некоторым оценкам, достигает 120 млн долларов.
В создании БАК принимает участие и Россия как член-наблюдатель CERN: в 2008 году на Большом адронном коллайдере работало около 700 российских ученых, в их числе были сотрудники ИФВЭ. Россия принимает активное участие как в строительстве БАК, так и в создании всех детекторов, которые должны работать на коллайдере.
Слухи об опасности
В последнее время LHC приобрел широкую известность из-за выступлений средств массовой информации и некоторых исследователей о возможности глобальных катастрофических последствий пуска коллайдера. Они основаны на предположениях о возможности рождения на LHC некоторых гипотетических объектов: микроскопических черных дыр (ЧД), «зародышей» новых вакуумов, «червоточин» пространства-времени, магнитных монополей и гиперустойчивых ядер с примесью странных кварков («страпелек»). Далее к этим предположениям присоединяются новые о возможности катастрофического влияния этих объектов на Землю. Все перечисленные «опасности» трудно признать реалистичными. Даже возможность существования этих объектов до сих пор не установлена. Кроме того, масштаб энергий LHC не является «критическим» для их рождения. Например, типичные энергии, которые требуются (согласно большинству из теорий, допускающих такие события) для рождения микрочерных дыр, «зародышей» и «червоточин» превосходят энергии LHC в 1015 (миллион миллиардов) раз, магнитных монополей - в 1012 раз. Поэтому вероятность рождения этих объектов катастрофически мала даже с точки зрения теорий, допускающих их существование. В теориях, где такая вероятность несколько выше (но все равно очень мала с «житейской» точки зрения), эти объекты обычно очень нестабильны и исчезают, не успев причинить никакого вреда. Для рождения стабильных страпелек энергии LHC напротив, слишком большие. Суммируя сказанное, можно сделать вывод о том, что аккуратный теоретический анализ не дает оснований хоть какую-нибудь из «опасностей» считать серьезной. Помимо теоретических, есть и практические причины не верить катастрофическим ожиданиям. В самом деле, энергии, достигнутые на уже существующих установках (например, «Тэватрон» лаборатории имени Э.Ферми и релятивистский коллайдер тяжелых ионов Брукхейвенской лаборатории), лишь на порядок уступают энергиям LHC. Эта разница существенна с точки зрения поиска бозона Хиггса или изучения свойств топ-кварка, но не является очень существенной для упоминающихся «опасных» событий. Если бы они могли происходить на LHC, физики бы обязательно увидели хоть какие-нибудь их проявления в статистике событий этих установок. Однако ничего похожего не наблюдалось. Кроме того, в просторах видимой части Вселенной немало астрофизических объектов, генерирующих пучки частиц с энергиями, о которых земные экспериментаторы даже и не мечтают. К тому же плотность потока частиц в этих пучках существенно превосходят все, что есть на Земле. Частицы с энергиями, превышающими энергии LHC, присутствуют в космических лучах, попадающих в атмосферу Земли. Наблюдения за всеми этими явлениями также не обнаруживают признаков рождения катастрофически опасных частиц
Ученые неоднократно заявляли о том, что вероятность конца света ничтожно мала. Была даже собрана специальная Группа оценки безопасности БАК, которая провела анализ и выступила с отчетом о вероятности катастроф, к которым могут привести эксперименты на БАК. Как сообщили ученые, столкновения протонов на БАК будут не опаснее, чем столкновения космических лучей со скафандрами космонавтов: они имеют иногда даже большую энергию, чем та, что может быть достигнута в БАК. А что касается гипотетических черных дыр, то они "рассосутся", не долетев даже до стенок коллайдера.
Впрочем, слухи о возможных катастрофах все равно держали общественность в напряжении. На создателей коллайдера даже подавали в суд: самые известные иски принадлежали американскому юристу и врачу Вальтеру Вагнеру и профессору химии из Германии Отто Ресслеру . Они обвиняли CERN в том, что своим экспериментом организация подвергают опасности человечество и нарушают гарантированное Конвенцией по правам человека "право на жизнь", однако иски были отклонены. Пресса сообщала, что из-за слухов о скором конце света после запуска БАК в Индии покончила с собой 16-летняя девушка.
Будущие проекты
В 2013 году CERN планирует модернизировать БАК, установив на него более мощные детекторы и увеличив общую мощность коллайдера. Проект модернизации называют Супер большим адронным коллайдером (Super Large Hadron Collider, SLHC). Также планируется строительство Международного линейного коллайдера (International Linear Collider, ILC). Его труба будет длиной в несколько десятков километров, и он должен быть дешевле БАК за счет того, что в его конструкции не требуется применять дорогостоящие сверхпроводящие магниты. Строить ILC, возможно, будут в Дубне.
Также некоторые специалисты CERN и ученые США и Японии предлагали после окончания работы БАК начать работу над новым Очень большим адронным коллайдером (Very Large Hadron Collider, VLHC).
Заключение
Человечество сейчас сталкивается с целым рядом проблем, каждая из которых грозит глобальной катастрофой: экологические кризисы, нарастающая нестабильность мира по отношению к социальным, военным и техногенным катастрофам, процессы деградации в морально-этической сфере. Вряд ли стоит концентрировать свое внимание на проблемах надуманных - полезнее заняться решением реальных.
Размещено на Allbest.ru
Подобные документы
Создание большого адронного коллайдера, ускорителя заряженных частиц на встречных пучках. Предназначение его для разгона протонов и ионов, изучение продуктов их соударений. Изучение космических лучей, моделируемых с помощью несталкивающихся частиц.
презентация [1,1 M], добавлен 16.04.2015Большой Адронный Коллайдер, зачем он нужен физикам и насколько он может быть полезен или опасен для человечества. Связь между экспериментами на БАКе и явлениями планетарного. Опровергая теорию относительности Эйнштейна. Настоящее климатическое оружие.
реферат [18,4 K], добавлен 20.09.2013Ускорители заряженных частиц — устройства для получения заряженных частиц больших энергий, один из основных инструментов современной физики. Проектирование и испытание предшественников адронного коллайдера, поиск возможности увеличения мощности систем.
реферат [685,8 K], добавлен 01.12.2010Энергия как главная составляющая жизни человека. "Традиционные" виды альтернативной энергии: энергия Солнца и ветра, морских волн, приливов и отливов. Ветроэнергетические установки: общий вид, принцип действия, преимущества. Большой адронный коллайдер.
презентация [1,1 M], добавлен 21.05.2015Устройство вещества и принцип комбинирования, структура протона. Схема коллайдера LHC, туннель и сегмент ускорительного кольца. Общий вид детектора ATLAS. Распад хиггсовского бозона в детекторе CMS. Столкновение двух ядер (Pb+Pb) в детекторе ALICE.
презентация [7,8 M], добавлен 23.02.2014Планетарная модель атома Резерфорда. Состав и характеристика атомного ядра. Масса и энергия связи ядра. Энергия связи нуклонов в ядре. Взаимодействие между заряженными частицами. Большой адронный коллайдер. Положения теории физики элементарных частиц.
курсовая работа [140,4 K], добавлен 25.04.2015Возникновение плазмы. Квазинейтральность плазмы. Движение частиц плазмы. Применение плазмы в науке и технике. Плазма - ещё мало изученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках.
реферат [43,8 K], добавлен 08.12.2003Изучение понятия неоднородности плазмы. Определение напряженности поля, необходимой для поддержания стационарной плазмы. Кинетика распыления активных частиц ионной бомбардировкой. Взаимодействие ионов с поверхностью. Гетерогенные химические реакции.
презентация [723,6 K], добавлен 02.10.2013Механизм функционирования Солнца. Плазма: определение и свойства. Особенности возникновения плазмы. Условие квазинейтральности плазмы. Движение заряженных частиц плазмы. Применение плазмы в науке и технике. Сущность понятия "циклотронное вращение".
реферат [29,2 K], добавлен 19.05.2010Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.
реферат [855,2 K], добавлен 11.08.2014