Вычисление интенсивности линий в спектрах комбинационного рассеяния света
Интенсивность комбинационного рассеяния света и спектры возбуждения линий. Волновые функции и энергии возбужденных состояний. Сведения о силовом поле, определение знаков производных поляризуемости и дипольного момента. Квантовохимические методы.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 06.03.2011 |
Размер файла | 16,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВЫЧИСЛЕНИЕ ИНТЕНСИВНОСТИ ЛИНИЙ В СПЕКТРАХ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА
Интенсивность линий комбинационного рассеяния (КР) света и спектры возбуждения линий КР, т.е. зависимость интенсивности от частоты возбуждающего света, можно вычислить с большими или меньшими ограничениями с использованием классической, полуклассической или квантовой теории [177, 212, 213]. Для проведения численных расчетов по любой из них необходимо знать величины многих параметров молекулы, часть из которых не удается получить из независимого эксперимента, но можно вычислить с помощью методов квантовой химии. Классическая теория, которую обычно называют "теорией поляризуемости", предназначена для случая большой удаленности от резонанса (частота возбуждающего света лежит далеко от полос поглощения). Интенсивность линий КР Ia в этой теории определяется совокупностью производных компонент тензора электронной поляризуемости молекулы ??? по ядерной нормальной координате Qa. В случае линейно-поляризованного возбуждающего света (лазерное излучение) Ia = 9(a2)' + 7(?2)', где a - сумма диагональных компонент;
? - анизотропия тензора электронной поляризуемости. Значения компонент тензора электронной поляризуемости, необходимые для расчета Ia, могут быть вычислены во втором порядке теории возмущений по следующей формуле:
??? = (l/h) ?e[(M0e?*M0e?)/(ve - v) + (M0e?*M0e?)/(ve + v)],
квантовохимический свет
где M0e? - декартова компонента дипольного момента электронного перехода 0--е;
ve - его частота; v - частота возбуждающего света. Кроме того, компоненты тензора ??? могут быть вычислены с помощью теории конечных возмущений (см. ниже). Для расчета производных обычно используется метод численного дифференцирования.
В полуклассической теории использовано выражение для расчета Ia, такое же, как в классической; тензор ??? вычисляется во втором порядке теории возмущений, но численное дифференцирование его компонент заменено дифференцированием компонент вектора дипольного момента электронного перехода и его энергии, которые входят в выражение для ???.
Согласно квантовой теории, интенсивность линий КР, соответствующая колебательному переходу 0>f пропорциональна
где ?(??)0f - компоненты тензора электронной поляризуемости. При учете вкладов подуровней ev для каждой компоненты тензора можно написать равенство ?(??)0f = const ?ev [<0|M0e?|v> <v|M0e?|f>/(vev -- v) + <0|M0e?|v> <v|M0e?|f>/(vev + v)]. Здесь сумма берётся по всем электронно-колебательным переходам 00>ev, vev - их частоты. Квантовая теория может быть использована для расчета интенсивностей линий КР при любой частоте возбуждающего света как вдали, так и вблизи от резонанса с частотами электронно-колебательных переходов. В последнем случае к знаменателям vev -- v необходимо добавить член iГev, учитывающий естественную ширину полосы поглощения перехода 00>ev.
Расчеты по теории поляризуемости интенсивности линий КР проведены для многих простых молекул (водорода, хлора, метана, этилена, этана, ацетилена, диметилового эфира и др.) [142, 146, 214]. Анализ результатов, полученных с использованием различных квантовохимических методов, показывает, что все они правильно, хотя и весьма грубо, передают распределение интенсивностей в спектрах КР, причем неэмпирические расчеты в базисах среднего размера типа 4-31ГФ не дают ощутимого повышения точности по сравнению с полуэмпирическими.
Более точные неэмпирические расчеты, в которых используются расширенные базисы с поляризационными орбиталями и учитывается электронная корреляция, приводят к очень хорошему согласию с экспериментом. Так, в работе [215] получены следующие значения производных поляризуемости для молекулы водорода (ат. ед.): a/||=178 и a/+=0,83, опытные данные соответственно 1,69 и 0,85. Такое хорошее согласие с экспериментом не вызывает удивления, так как были получены [215] почти точные электронные волновые функции. К сожалению, для сложных молекул такие расчеты практически нельзя осуществить.
Основная трудность, которая возникает при использовании любой из перечисленных выше теорий для расчета интенсивности линий в нерезонансных спектрах КР света, заключается в необходимости вычисления параметров очень большого числа электронно-возбужденных состояний. Эту трудность удается обойти с помощью перехода к теории конечных возмущений [216], для расчетов по которой достаточно знания волновой функции только основного состояния. В этом приближении молекулу помещают во внешнее статическое электрическое поле и вычисляют, как при этом изменяется компоненты ее дипольного момента (??x, ??y и ??z)- Такие расчеты проводят с внешним полем, направленным по очереди вдоль каждой из трех декартовых осей координат, после чего с помощью численного дифференцирования рассчитывают компоненты тензора ???: ??? = ???/E? (?, ? = x, у, z).
Расчеты различными вариантами метода МО ЛКАО для основного состояния обычно дают более точные результаты, чем для электронно-возбужденных, поэтому можно ожидать, что использование теории конечных возмущений позволит вычислять с более высокой точностью значения интенсивностей линии КР при возбуждении вдали от резонанса. В работах [216 - 218] такие расчеты были проведены для метана, этилена, тетрахлорэтилена и других несложных молекул с использованием полуэмпирических и неэмпирических квантовохимических методов. Согласие с экспериментом получилось удовлетворительное.
Следует, однако, подчеркнуть, что с помощью теории конечных возмущений можно рассчитать лишь статические электронные поляризуемости, которые, вообще говоря, не имеют физического смысла, хотя могут немного отличаться от значений, найденных для небольших частот возбуждающего света v<<vev. Последнее оправдывает применение теории конечных возмущений для расчета спектров предельных углеводородов и некоторых других соединений, которые не содержат сопряженных связей и чьи электронные спектры поглощения лежат в дальней УФ-области.
Расчет интенсивностей линий КР этилена по полу классической теории проведен в работе [219]. В ней использован метод ППДП/С с учетом вкладов от всех однократно возбужденных конфигураций. Расчет с достаточно высокой точностью воспроизвел данные эксперимента при возбуждении линий КР в видимой области. При этом оказалось, что для линии полносимметричного валентного колебания связи С=С основной вклад в интенсивность дает длинноволновый электронный переход ?>?*, а для остальных линий наиболее существенными являются вклады от более коротковолновых электронных переходов, которые локализованы преимущественно на связях С--Н. Были проведены расчеты интенсивностей линий КР и спектров возбуждения по квантовой теории для этилена и коротких полиенов и сделан ряд предсказаний [220 - 224].
В частности, показано, что у этилена при возбуждении в длинноволновой полосе поглощения, соответствующей ?>?*-электронному переходу, наиболее интенсивными должны быть линии первого и третьего обертонов крутильного колебания [220]. Экспериментальных данных в то время не было, а в резонансных спектрах КР других молекул крутильные колебания и их обертоны не наблюдались. Однако в дальнейшем этот нетривиальный результат получил экспериментальное подтверждение [225].
Доступность для расчета электронных волновых функций и энергий возбужденных состояний в различных вариантах метода МО ЛКАО делает возможным привлечение этих методов при изучении практически любых молекулярно-оптических явлений. С их помощью для несложных соединений, комплексов, ионов, радикалов, молекулярных кристаллов можно предсказать общин вид спектров поглощения и излучения и дать отнесение наблюдаемым электронным переходам, составить суждение о зависимости спектра от конформации, начального электронного состояния и дополнительных возмущений. Вместе с тем можно уточнить и дополнить сведения о силовом поле, определить знаки производных поляризуемости и дипольного момента, оценить частоты ненаблюдаемых переходов, охарактеризовать кривые потенциальной энергии для возбужденных состояний и т.д. Точность, с которой можно рассчитать спектральные параметры органических соединений методами квантовой химии, в настоящее время значительно ниже точности эксперимента, однако достаточна для решения многих спектроскопических и спектрохимических задач. При этом совокупность данных расчета и эксперимента приводит к более полному и достоверному описанию спектра. Привлечение квантовохимических методов позволяет повысить информативность спектроскопических исследований, раскрыть основы эмпирически установленных закономерностей, связывающих спектры с различными физическими и химическими свойствами молекул, выяснить природу взаимного влияния функциональных групп в сложных соединениях, опираясь на представления о взаимодействии электронов и ядер.
Размещено на Allbest.ru
Подобные документы
Понятие комбинационного рассеяния света. Переменное поле световой волны. Квантовые переходы при комбинационном рассеянии света. Возникновение дополнительных линий в спектре рассеяния. Устройство рамановского микроскопа, основные сферы ее применения.
реферат [982,7 K], добавлен 08.01.2014Общие сведения о взаимодействии излучения с веществом. Характеристика спектрометра комбинационного рассеяния света. Анализ низкочастотной части спектра стронциево-боратного стекла. Обработка полученных экспериментальных спектров для улучшения их качества.
курсовая работа [925,3 K], добавлен 03.12.2012Исследование методами комбинационного рассеяния света ультрананокристаллических алмазных пленок. Влияние мощности лазерного излучения на информативность спектров. Перспективность UNCD пленок как нового наноматериала для применения в электронике.
курсовая работа [3,9 M], добавлен 30.01.2014Одно из наиболее ярких научных достижений ХХ столетия - теория метода комбинационного рассеяния. Упругое и комбинационное рассеяние света. Применение Рамановской спектроскопии для контроля лекарственных, наркотических и токсичных средств и веществ.
курсовая работа [1,6 M], добавлен 08.06.2011Упругое и неупругое рассеяние света, теория комбинационного метода. Применение Рамановской спектроскопии для контроля лекарственных, наркотических и токсичных средств. Комбинационное рассеяние света как метод изучения вещества, основные преимущества.
курсовая работа [1,4 M], добавлен 28.10.2011Спектральные измерения интенсивности света. Исследование рассеяния света в магнитных коллоидах феррита кобальта и магнетита в керосине. Кривые уменьшения интенсивности рассеянного света со временем после выключения электрического и магнитного полей.
статья [464,5 K], добавлен 19.03.2007Физический механизм рассеяния отдельной частицей. Взаимное усиление или подавление рассеянных волн. Многократное рассеивание света. Полная интенсивность рассеяния скоплением частиц. Поляризация света при рассеянии. Применение поляризованного света.
курсовая работа [283,2 K], добавлен 05.06.2015Расчет интенсивности рассеянного света по Эйнштейну. Критическая опалесценция при фазовых переходах. Свойства особой точки раствора. Способы измерения интенсивности рассеяние света в водном растворе неэлектролитов. Спектры тонкой структуры линии Рэлея.
магистерская работа [474,1 K], добавлен 25.06.2015Общее понятие о люминесценции. Лазерные кристаллы, активированные ионами Ln3+. Соединения cемейства шеелита. Редкоземельные оптические центры. Явление комбинационного рассеяния света. Метод полиэдров Вороного-Дирихле. Главные свойства молибдатов.
курсовая работа [2,8 M], добавлен 18.07.2014Определение структуры вещества как одна из центральных задач физики. Использование метода молекулярного рассеяния света в жидкостях. Время жизни флуктуации в жидкостях. Механизм, обрезающий крыло дисперсионного контура, в реальных физических системах.
реферат [16,3 K], добавлен 22.06.2015